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Chapter 1

Background information

1.1 CPU and GPU

In recent years, the computing power of GPUs (Graphic Processor Units)
has evolved exponentially, much faster than that of CPUs (Central Processing
Units). As these two components tackle very different problems, they also move
in different directions.

CPUs are designed to get the maximum performance from an instruction
flow, so to execute a task as quickly as possible; whereas GPUs are designed to
process the maximum number of tasks in a reduced time so parallel computing
is using different units.

Control ALU | ALU ™

ALU || ALU =

i

= [
= [ 11 [1]

CPU GPU

17
|

11
EFEEETE]
|5 ]
11

il

| |

Figure 1.1: Representation of a CPU and a GPU

A CPU is composed of:

e ALU (Arithmetic and Logical Unit), which support arithmetic calculations
and tests, and allow several instructions to be processed at the same time.

e a control unit, which synchronises the various processor elements (register
initialisation during machine startup and interrupt management).

e registers, small memories (a few bytes), fast enough for the ALU to ma-
nipulate their contents at each clock cycle.



e a clock that synchronises all the CPU’s actions.

e an input-output unit, supporting communication with the computer’s
memory, and allowing the processor to access the computer’s peripher-
als.

Today’s processors also incorporate more complex elements, such as mem-
ory cache that speeds up processing by reducing memory access times. These
Buffer memories are much faster than RAM and slow down the CPU less. The
cache instructions receives the next instructions to be executed, the data cache
manipulates the data.

A graphics processor forms the core of the graphics card and processes the
images according to the selected resolution and coding depth. The GPU is
a specialised processor with advanced image processing instructions, including
3D.

By definition, texture is a surface containing data (most of the time, these
data represent colors). It is composed of a set of 2D pixels (Picture Element).
But by applying the texture on a 3D surface, these pixels are then The two
products are shaped and constitute a texel (TEXture ELementS). Texel rep-
resents the smallest 2D graphic unit applied to a surface and can occupy the
space of several pixels or on the contrary, be lower to the size of a pixel.

1.2 Graphics Card Architecture

The architecture of graphics cards has undergone certain developments en-
abling programmers to make better use of their computing power. The graphics
card has non-specialised computing units that can process all types of data.

A graphics card processor is actually a multiprocessor, composed of several
dozen processors on which calculations are performed in parallel.

1.2.1 Memory

Graphics cards have a RAM called DRAM (Device Random Access Memory).
They also have different memories more or less close to GPU processors:

e A global memory.
e A set of 32-bit local registers per processor.

e Shared memory: cache shared by all processors.

A constant read-only memory.
e A read-only texture memory.

Constant and texture memories are faster to access than global memory
because they have a cache.



1.2.2 Programming with streams

The architecture of the new GPUs is designed around the principles of stream-
based programming, which involves performing multiple calculations in parallel
on one or more data streams. We define:

e a stream: set of elements on which similar treatments will be applied.
e a kernel: treatment applied to each element of a stream.

e a thread: treatment executed by a programmable unit applied to an ele-
ment of the stream.

1.2.3 Gather and Scatter

When a kernel is applied to a stream, it applies all its instructions to each
element of the stream and writes to a defined element on an output stream. In
a GPU, memory writes are usually made at well-defined positions (the x and y
coordinates of the pixel). The scatter is a direct writing, i.e. writing a value to
a given index in the stream. It can be represented by the operation afi]=n.
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The gather is a direct reading, i.e. a reading of a value at a given index in
the stream. The gather corresponds to operation a=Dbli].
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Figure 1.3: Reading in DRAM



Chapter 2

CUDA 6.2

2.1 CUDA Presentation

In November 2006, NVIDIA introduced CUDA (Computed Unified Device Ar-
chitecture), an architecture for parallel computing that leverages the computing
capabilities of GPUs. The CUDA development team has therefore developed a
set of software layers to communicate with the GPU, and is used in a software
environment that allows developers to use the C language. Thus, the graphics
card is seen as a device capable of executing a large number of threads in paral-
lel. it will be able to run a program several times at the same time on different
data.

2.1.1 CUDA Architecture

CUDA exploits the computing capabilities of GPUs by having them process
kernels (programs) on a number of threads. It is represented by a driver, a
runtime, mathematical libraries (CUFFT and CUBLAS), an API based on an
extension of the C language and the associated compiler (which redirects the
non-executed part on the GPU to the classical default compiler of the system).
CUDA offers two types of APIs:

e a high level API: the CUDA runtime API.
e a low level API: the CUDA driver API

The high level CUDA API globally ignores the hardware although taking
into account its specificities is required to obtain an interesting yield. It is
implemented "above" the low level API, each call to a runtime function is broken
down into more basic instructions managed by the driver API.

The API driver is more complex to manage, it requires more work to run
processing on the GPU, but in return it is more flexible, offering additional
control to the programmer who wants it. It therefore acts as an intermediary
between the compiled code and the GPU.The CUDA runtime is an intermediary
between the developer and the driver, which facilitates development by hiding
certain details.



CUDA proposes either to go through the runtime API, or to directly access
the driver API, itsthat these APIs are mutually exclusive. The runtime APT can
thus be seen as the high level language, and the API driver as an intermediary
between the high and low level, which allows you to manually optimise the code
in more depth.
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Figure 2.1: CUDA Structure

2.1.2 Some definitions

First, let’s define a kernel, it’s a function called by the CPU and executed by
the GPU. A thread is an instance of a kernel. CUDA threads are expected to
be much more numerous than in other environments. Indeed, a GPU thread
performs more precise calculations than a CPU, and always in parallel (a thread
is intended to be executed a large number of times in parallel). The design of
threads derives from that of data parallelisation. Indeed, a thread is a portion
of code that handles part of the data, all the threads handle all the data in
parallel.

A warp is a group of 32 threads. But this granularity is still not enough to be
easily usable by a programmer, so in CUDA one does not directly manipulate
warps, one works with blocks that can contain from 64 to 512 threads.

These blocks are gathered in grids. The advantage of this grouping is that
the number of blocks processed simultaneously by the GPU is closely linked to
the hardware resources. The number of blocks in a grid allows to completely
abstract this constraint and to apply a kernel to a large quantity of threads in a
single call, without worrying about fixed resources. The other terms frequently
encountered in the CUDA API are used to designate the CPU, called host, and
the GPU designated as device.
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Figure 2.2: Organisation of grids, blocks, threads, and kernels.

Thread Block : A thread block is a set of threads that cooperate by effi-
ciently sharing data through shared memory and synchronise their executions
to harmonise memory access.

More precisely, synchronisation points can be
specified in the kernel, where the threads of a block are interrupted when they

reach the synchronisation point. In each block, a thread is identified by its
threadID, which is the thread number in the block. Thread identification can

be done on one, two or three dimensions. By for example, a thread will be
identified by :

e index (x) for one dimension.
e the index (x, y) for two dimensions, so in a size block (Dx, Dy) its threadID
is (x + y.Dx).

e the index (x, y, z) for three dimensions, so in one size block (Dx, Dy, Dz)
its threadID is (x + y.Dx + z.Dx.Dy).

Block Grid : A block can only contain a limited number of threads. However,
blocks of the same size that execute the same kernel can be grouped into a grid
of blocks, so the total number of threads that can be thrown to summon a kernel
is higher. However, this implies a reduced thread cooperation, since threads in
different blocks of the same grid cannot communicate or synchronise.



As for threads in a block, blocks in a grid have their identifier : the blockID.
This model allows kernels to run efficiently without recompiling on various pe-
ripheral devices with different parallelisation capabilities. A device can run all
blocks of a grid sequentially if it has few parallelisation capabilities, or in par-
allel if it has high parallelisation capabilities, or it can combine both. It’s the
CUDA runtime that breaks it down for us.

2.1.3 Memory Management

A thread running on the device has access to the following memory spaces:
e registers by thread, reading and writing.

e local memory by thread, read and write.

shared memory by block, read and write.

global memory by grid, reading and writing.
e constant memory per grid, read only.
e texture memory by grid, read only.

Global, constant and texture memory spaces can be read or written by the
host and persist at kernel launches by the same application.
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Figure 2.3: Memory Model

Local memory : This memory is, like the global memory, not hidden, and
with a very high latency. This memory is only used for certain variables, which
are automatically placed there when there are too many register variables, or
when a structure would take up too much space in the registers, or if the compiler
cannot determine if an array is indexed with constant values. This memory is
automatically managed during compilation.

Global memory : CUDA is able to read and write to the memory embedded
in the graphics card. These operations bear, respectively, the names of gath-
ering and scattering. Global memory (DRAM) is the usable memory of any
CUDA location, with the same performance at the key: this memory is not
hidden, and you have to wait 400 to 600 cycles before accessing it. This leaves
a multiprocessor inactive during this time.

Constant memory : The constant memory is hidden: reading from this
memory costs only one cycle. For all half-warp threads, read from constant
memory is as fast as from a register, as long as all threads read the same memory
location. The cost of reading increases linearly with the number of different
addresses requested by the threads. It is recommended that all threads in a
warp use the same address, not just half warps, as future devices will require it
for optimal operation. It can only be allocated from the host and only the host
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can write data to it. The GPU has permission to read only from the non-volatile
memory, so being in a kernel, it is impossible to modify data from that memory.

Texture memory : This memory space is hidden, so the cost of reading is
very low. This memory is optimised for a two-dimensional space, so threads
of the same warp that read at close addresses will have optimal performance.
Also, it is intended for flow requests with constant latency. Reading the device’s
memories through the texture mechanism can be an advantageous alternative
to reading from the global or constant memories.

Shared memory : FEach multiprocessor has a small memory area called
Shared memory. Its management is entirely the responsibility of the program-
mer. It allows to break in part the limitations imposed by a parallel processing
of threads by allowing them to communicate and thus interact between them
quickly, without going through the memory of the graphics card. All threads
in the same block are guaranteed to be executed by the same multiprocessor.
Conversely, the allocation of blocks to different multiprocessors is completely
indefinite, so two separate block threads cannot communicate during their exe-
cution. Using this memory well is therefore complicated but can be profitable
because, except in the case where several threads try to access the same memory
bank which causes a conflict, the rest of the time access to the shared memory
is as efficient as access to the registers. Thus, more threads per block means
less memory per thread and fewer threads per block means fewer threads will be
able to communicate. In addition, it is generally advisable to allow each mul-
tiprocessor to work on several blocks so that a second block can be processed
when the first is paused to optimise resources. This reduces the size of shared
memory, in the recommended case where 2 blocks are in each multiprocessor.

It is faster to access than global and local memory, and is used to exchange
and share data between threads in the same block. Its use also makes it possi-
ble to limit access to DRAM, and thus to increase the performance of certain
treatments. The following figure shows the difference between direct access to
DRAM and access to data from shared memory.
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With shared memory

Figure 2.4: Memory access with and without shared memory

Registers : Generally, access to a registry does not take a single additional
cycle per instruction, but delays may occur, due to read after write dependencies,
and conflicts may occur. Delays entered by dependencies can be ignored, as soon
as there are at least 192 active threads per multiprocessor, which allow to hide
them. The compiler and thread scheduler organise the instructions for optimal
performance, which requires avoiding conflicts with banks. The best way to get
good performance is to use a multiple of 64 as the number of threads per block.
An application has strictly no way of controlling these conflicts.

Shared memory is therefore not the only memory to which multiprocessors
have access, they can of course use video memory but it offers lower bandwidth
and higher latency. As a result, in order to limit too frequent access to this
memory, NVIDIA has equipped its multiprocessors with caches (approximately
8 KB per multiprocessor) for access to constants or textures. The GPU has a
cache memory at the texturing units, they can be used to efficiently read data.

Multiprocessors have 8192 registers to share between all threads of all active
blocks on this multiprocessor. The number of active blocks per multiprocessor
cannot exceed 8, the number of active warps is limited to 24 (768 threads).
Thus, the more threads there are per block the better the latency of some
operations is hidden but the less registers they have. Optimising a CUDA
program consists essentially in balancing the number of blocks and their size.
Moreover, a block of 512 threads would be particularly inefficient because only
one block could be active on a multiprocessor, potentially wasting 256 threads.
NVIDIA recommends using blocks of 128 to 256 threads that offer the best
compromise between latency masking and enough registers for most kernels.

CUDA threads can access data in various memory locations. Thus, each
thread has a local private memory. Each thread block has a shared memory
visible to all threads in the block and with the same block life. All threads
have access to the same global memory. Two read-only memory spaces are also
available for all threads: constant and texture memory spaces. The global,
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constant or texture memory spaces are optimised for different memory uses.
The texture memory offers various addressing modes for specific data formats.
Global, constant or texture memory spaces persist at kernel launches by the
same application.

The CUDA programming model assumes that CUDA threads run on phys-
ically separate devices that operate as a co-processor on the host running the
C program. For example, the kernel runs on the GPU and the rest of the C
program runs on the CPU. In addition, the host and the device have their own
DRAM, which is called host memory or device memory respectively. So a pro-
gram manages the global, constant and texture memory spaces so that they are
visible by the kernel through the CUDA runtime calls. This includes memory
allocations and de-allocations, as well as data transfers between host and device
memory.

2.2 Hardware

The device is implemented as a set of multiprocessors. Each multiprocessor
has a Single Instruction Multiple Data (SIMD) architecture: at a given cycle,
each multiprocessor processor executes the same instruction, but operates on
different data. Each multiprocessor has on its memory :

e A set of 32-bit registers per processor.

e A parallel data cache or shared memory, which is shared by all processors
and implements shared memory space.

e A read-only constant cache, shared by all processors and which accelerates
the reading of the constant memory space, which is implemented as a read-
only region of the device memory.

e A read-only texture cache, shared by all processors and that accelerates
the reading of the texture memory space, which is implemented as a read-
only region of the device memory.

Local and global memory spaces are implemented as read-write regions of
the device memory and are not hidden. Each multiprocessor has access to the
texture cache via a texture unit that implements different addressing modes and
data filtering.

The number of blocks that a multiprocessor can process simultaneously (the
number of active blocks per multiprocessor) depends on the number of registers
per thread and the amount of shared memory required per block for a given
kernel, as the multiprocessor registers and shared memory are shared between
all threads of the active blocks.

If there are not enough registers or shared memory available per multipro-
cessor to process at least one block, the kernel will fail to launch.
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Figure 2.5: Hardware Model

2.3 Language and Compilation

2.3.1 C language extensions

The CUDA programming interface is intended to provide an easy way to write
programs to be executed on the device. It consists of :

e A set of extensions to the C language, which allow the programmer to
target portions of code that will run on the device.

e A runtime library that is divided into :
— A host component that runs on the host and provides functions to
control and access one or more devices from the host.

— A device component, which runs on the device and provides GPU-
specific functions.

— A common component, which provides vector types and a subset of
the C library supported by the host and device.
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The only functions of the standard C library that run on the device are the
functions of the common runtime component. The C language extensions are
as follows:

e Function IDs that specify whether a function is running on the host or
device and whether it is called by the host or device.

e Variable identifiers to specify the memory location of a variable on the
device.

e A new directive that specifies how a kernel is executed on the device from
the host.

e Four construction variables that define the grid and block dimensions, and
block and thread clues.

Each source file that contains these extensions must be compiled with the com-
piler of CUDA nvce.

Function identifiers : A kernel, a function called by the CPU and executed
by the GPU, will be referenced by ~ global . Such a function is executed
on the device and can only be called by the host.

A function referenced by ~  device  is a function used in a kernel, so
it will be executed by the GPU and can only be called from the GPU.

A classic function (function called by the CPU and executed on the CPU)
will be referenced by =~ host | a keyword that can be omitted since it
represents the default behavior. However, this qualifier can be used with the
qualifier __ device _if a function is compiled by the host and the device.

The  device _and __ global _ functions do not support recursion.
The  device and  global functions cannot declare static variables.
The  device and  global functions cannot have a variable number of
parameters.

The  global _and __ host _identifiers cannot be used together.

The memory address of the functions __device cannot be requested.

The  global functions have a void return type.

At execution, the configuration for the _ global _ functions must be specified.
A call toa __global _function is asynchronous, the kernel returns before the
device has completed its execution.

The parameters of the _ global _ functions are stored in the shared memory
and limited to 256 bytes.

Variable identifiers : Variables also have new qualifiers to control the mem-
ory area in which they will be stored.

The  device  identifier declares a variable that is and remains on
the device. It resides in the global memory space, will live no longer than the
application, is accessible to all threads in the grid, and to the host through the
runtime library. This type can be combined with the following two types.
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The qualifier _  constant  declares a variable that is and remains in
constant memory space. It will live no longer than the application, is accessible
to all threads in the grid, and to the host through the runtime library. These
variables can only be declared from the host but not from the device.

A variable preceded by the keyword  shared  indicates that it will
be stored in the shared memory of a thread block, so will have the lifetime
of the block, and will only be accessible to threads in the block. The shared
memory being much faster than the global memory, one must try to replace all

the accesses to the global memory by the accesses to the shared memory.

Runtime Configuration : The execution configuration must be specified
for the ~ global  functions. It defines the size of the grid and blocks used to
execute the function on the device, and the associated stream. The definition
of the kernel is done as follows:

__global__woid func(float * parameter) ;

And its use via :

func«« Dg, Db, Ns, S »>(parameter) ;

Dg is of type Dim3, and specifies the size and dimension of the grid, such
that Dg.x * Dg.y equals the number of blocks thrown, Dg.z is not used.

Db is of type Dim3, and specifies the size and dimension of each block, such
that Db.x *Db.y * Db.z equals the number of threads per block.

N is of type size_t, and specifies the number of bytes in the shared memory
that are dynamically allocated per block in addition to the statically allocated
memory. This is an optional parameter that is 0 by default.

S is of type cudaStream _t, and specifies the associated stream. This is an
optional parameter that is 0 by default.

Grid construction variables : gridDim is of type dim3 and contains the
dimensions.

BlockIdx is uint3 type and contains the block index in the grid.

BlockDim is dim3 type and contains the block dimensions.

ThreadIdx is of type uint3 and contains the thread index in the block.

We can’t take the addresses of these construction variables, nor assign values
to these variables.

Compilation : nvce is a compiler for CUDA, it provides command line op-
tions, and executes them by invoking tools that implement the various compi-
lation steps. It consists of separating the peripheral code from the host code
and compiling the peripheral code into a binary form. The generated host code
is either output as C code that will be compiled using another tool or as object
code by calling the host compiler directly during the last build step.

Applications can either ignore the generated host code, load and execute
the Cubin object on the device using the CUDA driver API, or can link to the
generated host code, which includes the Cubin object as an initialised global
data array and contains a translation of the runtime configuration syntax into
the CUDA runtime start code to load and run each compiled kernel.
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Kernels must be written using the CUDA instruction architecture, called
PTX. However, it is more efficient to use a high-level programming language,
such as C. In both cases, kernels must be compiled in binary code via nvcc.
It is a compilation driver that simplifies the C compilation process for CUDA
code. It provides command line options and executes them by invoking a series
of tools that implement the various compilation steps.
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Chapter 3

Dynamic Parallelism

The first CUDA programs had to conform to a parallel, flat, mass program-
ming model. Programs had to run a sequence of kernel launches, and to get
the best performance, each kernel had to exhibit enough parallelism to use the
GPU effectively. For "parallel for" loop applications, the parallel mass model is
not too limiting, but some parallel models - such as nested parallelism - cannot
be expressed as easily. Nested parallelism occurs naturally in many applica-
tions, such as those that use adaptive grids, which are often used in real-world
applications to reduce computing complexity while capturing the relevant level
of detail. Flat and solid parallel applications must either use a fine grid and
perform unwanted calculations, or use a coarse grid and lose finer details.

CUDA 5.0 introduced Dynamic Parallelism, which allows kernels to launch
from threads running on the device; threads can launch other threads. An
application can launch a coarse grain core which, in turn, launches finer grain
cores to do the job where it is needed. This avoids unwanted calculations while
capturing all the interesting details.

too coarse

less work

just right

too fine

more work

Figure 3.1: A fluid simulation that uses adaptive mesh refinement performs
work only where needed
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A device thread that configures and launches a new grid belongs to the parent
grid, and the grid created by the invocation is a child grid. the invocation and
completion of child grids is correctly nested, which means that the parent grid
is not considered complete until all child grids created by its threads have been
completed. Even if invoking threads are not explicitly synchronised on launched
child grids, the runtime guarantees implicit synchronisation between parent and
child.

On the host and device, the CUDA runtime provides an API for launching
kernels, waiting for the work to be completed and tracking dependencies between
launches through streams and events. On the host system, the launch status
and CUDA primitives referencing streams and events are shared by all threads
within a process however, processes run independently and cannot share CUDA
objects. A similar hierarchy exists on the device: launched kernels and CUDA
objects are visible for all threads in a thread block, but are independent between
thread blocks. This means for example that a feed can be created by one thread
and used by any other thread in the same thread block, but cannot be shared
with threads in any other thread block.

Parent-Child Launch Nesting
Time —»

CPU Thread -
Grid A Launch Grid A Complete

Grid AThreads ————e

Grid A - Parent

\ .

\
Grid B Launch Grid B Complete

Grid B - Child Grid B Threads

Figure 3.2: Parent Child launch nestling
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Chapter 4

Further Documentation
Resources

This section aims to help further work on the subject by gathering a handful
of useful information about CUDA programming, how to use the Jetson TX2
and works on Interval programming.

4.1

Jetson TX2

4.1.1 Hardware

The Jetson TX2 module integrates:

256 core NVIDIA Pascal GPU. Fully supports all modern graphics
APIs, unified shaders and is GPU compute capable. The GPU supports
all the same features as discrete NVIDIA GPUs, including extensive com-
pute APIs and libraries including CUDA. Highly power optimised for best
performance in embedded use cases.

ARMVvS8 (64-bit) Multi-Processor CPU Complex. Two CPU clus-
ters connected by a high-performance coherent interconnect fabric de-
signed by NVIDIA; enables simultaneous operation of both CPU clus-
ters for a true heterogeneous multi-processing (HMP) environment. The
Denver 2 (Dual-Core) CPU clusters is optimised for higher single-thread
performance; the ARM Cortex-A57 MPCore (Quad-Core) CPU clusters
is better suited for multi-threaded applications and lighter loads.

Advanced HD Video Encoder. Recording of 4K ultra-high-definition
video at 60fps. Supports H.265 and H.264 BP/MP/HP/MVC, VP9 and
VP8 encoding.

Advanced HD Video Decoder. Playback of 4K ultra-high-definition
video at 60fps with up to 12-bit pixels. Supports H.265, H.264, VP9, VP8
VC-1, MPEG-2, and MPEG-4 video standards.

Display Controller Subsystem. Two multi-mode (eDP/DP/HDMI)
outputs and up to 8lanes of MIPI-DSI output. Multiple line pixel storage
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allows more memory-efficient scaling operations and pixel fetching. Hard-
ware display surface rotation is also provided for bandwidth reduction in
mobile applications.

e 128-bit Memory Controller.128-bit DRAM interface providing high
bandwidth LPDDR4 support.

e 8GB LPDDRA4 and 32 GB eMMC memory integrated on the module

e 1.4Gpix/s Advanced image signal processing: Hardware accelerated
still-image and video capture path, with advanced ISP.

e Audio Processing Engine. Audio subsystem enables full hardware sup-
port for multi-channel audio over multiple interfaces.

Module Datasheet link.
Jetson TX2 tutorials,guide and datasheet linkl
Jetson TX2 developper kit link.

4.1.2 Instal

NVIDIA JetPack SDK is the most comprehensive solution for building Al
applications. Use the JetPack installer to flash your Jetson Developer Kit with
the latest OS image, to install developer tools for both host PC and Developer
Kit, and to install the libraries and APIs, samples, and documentation needed
to jumpstart your development environment.

Jetpack for Jetson [link.
Jetson Download Center link.

NVIDIA makes available a large range of development tooll such as NSIGHT,
it enables to cross compile from the host device with Eclypse to the Jetson.
NSIGHT tutorial link.

4.2 CUDA Toolkit

NVIDIA provides lots of ressources for programming with CUDA (CUDA
Toolkit). For the embedded systems such as Jetson, a kit with every tools that
could be use is also provided (Jetpack) which includes CUDA Toolkit.

CUDA Toolkit link.
CUDA Toolkit documentation link 1. link 2.

NVIDIA also provides plenty of documentation for CUDA. Here is a list with
the most detailed infomration about the commonly used features.

Programming guide for CUDA [link.

Advice for CUDA programming [linkl

Linking and COmpiling link.

Compute capability and their meaning link!

CUDA Dynamic parallelism guide [link 1. [link 2.
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https://www.docdroid.net/yGXIxZu/data-sheet-nvidia-jetson-tx2-system-on-module.pdf#page=1
https://elinux.org/Jetson_TX2
https://developer.download.nvidia.com/embedded/L4T/r27_Release_v1.0/Docs/Jetson_X2_Developer_Kit_User_Guide.pdf?5lzpWlytNRjDDCPq5I0maiLNEOpBYtgP8QvrLJOmub_jbShGAP4OBMwgIQZ-8zErLhM46T1UB2JC9HDS_d0Z5pvqbdfJK8kNr6qCWKgj_rsXH0EwWbGoo3yhiCU1dnIMTfzjLzk-pI55iV_3-4MpNDNn366fYO8P0rBxXkY_7g2wPdxxhAEJ3Q
https://developer.nvidia.com/embedded/jetpack
https://developer.nvidia.com/embedded/downloads#?tx=$product,jetson_tx2$hardware,design,reference,physical,interface,thermal,testing,schematics
https://devblogs.nvidia.com/cuda-jetson-nvidia-nsight-eclipse-edition/
https://developer.nvidia.com/cuda-downloads
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#introduction
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://devblogs.nvidia.com/separate-compilation-linking-cuda-device-code/
https://en.wikipedia.org/wiki/CUDA
http://dirac.ruc.dk/manuals/cuda-5.0/CUDA_Dynamic_Parallelism_Programming_Guide.pdf
https://devblogs.nvidia.com/introduction-cuda-dynamic-parallelism/

4.3 Interval papers

I have found two Master thesis dealing with SIVIA on parameter estimation
with intervals while working with CUDA and GPUs.

The first one is by Siddharth Sharma on Parameter Estimation for System
Biology Models on GPU Clusters. It deals on SIVIA and shows all the issues
about wordload that comes with this dynamic code. linkl.

The second one is by Maxime LASTERA, it is in French but it can be still
be use by one of the student of ENSTA. The thesis is on the use of GPUs for
scientific computation. [linkl
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https://repository.lib.ncsu.edu/bitstream/handle/1840.16/9374/etd.pdf?sequence=1&isAllowed=y
http://laris.univ-angers.fr/_resources/logo/MASTERLasteraMaxime.pdf
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