

Abstract

The purpose of this project is to develop an autonomous rover powered by
Arduino as part of a feasibility study. As this project begins from scratch, a
preliminary study of the different sensors is mandatory. In addition, a simulation
has been developed in Python. It was used to test different navigation systems
using Kalman filtering in a controlled environment. It results that the model
used in the simulation does not fit with the real system. Nevertheless, the
simulated rover manages to reach a target while avoiding obstacles despite the
bad accuracy of the sensors employed.

Résumé

Le but de ce projet est de développer un rover autonome sous Arduino dans
le cadre d’une étude de faisabilité. Comme ce projet part d’aucune base, une
étude préliminaire des différents capteurs est nécessaire. De plus, une simulation
a été développé sous Python. Elle a été utilisée pour tester différent systèmes
de navigation utilisant du filtrage de Kalman dans un environnement controlé.
Il résulte que le modèle utilisé dans la simulation ne correspond pas au système
réel. Néanmoins, le rover simulé peut atteindre une cible tout en évitant des
obstacles malgré la mauvaise précision des capteurs employés.

1

Contents

1 Build a Rover 4
1.1 Sensors . 5

1.1.1 GPS Module . 5
1.1.2 Compass . 6
1.1.3 Gyroscope . 8
1.1.4 Encoders . 8
1.1.5 Ultrasonic Range Finders . 9

1.2 Data Processing . 9
1.2.1 Switching to a Local Map . 9
1.2.2 Fill the Local Map with Obstacles 11

2 Modelisation 12
2.1 Global Overview . 13
2.2 Kinematic Model . 14

2.2.1 Vehicle geometry . 14
2.2.2 Kinematic Equations . 14

2.3 Dynamic Model . 15
2.3.1 Inertia Term . 16
2.3.2 Resistance Term . 16
2.3.3 Traction Term . 19
2.3.4 Results . 20

3 Make the Rover Autonomous 22
3.1 Choice of State Observer . 22

3.1.1 EKF with a Dynamic Model 22
3.1.2 EKF with Kinematic . 23
3.1.3 Double Kalman Filter . 24
3.1.4 Back-Mean-Forth . 24
3.1.5 Confrontation . 26

3.2 Controller . 28
3.3 Guidance . 29

3.3.1 Obstacles . 29
3.3.2 Target . 29
3.3.3 Results . 30

4 Simulation 31

5 Conclusion and Remarks 33

2

Introduction

Autonomous cars are increasingly present on the roads and the University of
Plymouth is seeking for research in this field. In this context, Dr. Jian Wan
proposed a small-scaled feasibility study that fits into a three months internship.
The purpose of this project is to build an autonomous rover powered by Arduino.
This project covers the study of the different sensors, the data processing, the
hardware system integration, the navigation system using Kalman Filtering, but
also a simulation based on research papers.

It is important to note that this project was shared with Sophie Tuton,
another student from ENSTA Bretagne. Several parts of the project such as
the Arduino sketches implemented on the rover or some studies on sensors do
not appear in the report. Indeed, this report is only about what I have been
working on during this internship.

3

Chapter 1

Build a Rover

Global Overview

eCompass GyroscopeEncodersGPS Module Ultrasonic
Sensors

Infrared
Sensors

Arduino
Mega

SD Card

Arduino
Mega

Motor
Shield

Battery

Geared
Motors

I2C

UART
Digital

I2C I2C

PWM
PWM

I2C

PWM
12V

12V

PWM

Figure 1.1 – Physical architecture of the rover

4

1.1 Sensors

1.1.1 GPS Module

Presentation

The GPS module provided is a NEO-6M GPS module. It is not very accurate
(the accuracy of the horizontal position measurement is about 15 meters) but
is enough for a feasibility study.

The module receipts – with its antenna – signals from the GPS constellation
and transmits data messages via its serial pins. These messages are sentences
that follow the NMEA communication standard, which is a well-known standard
in the field of marine navigation. As the robot will only use the GPS module to
know its horizontal position, we will only study the sentence that contain this
piece of information: the GPGGA sentence. Here is an example of a GPGGA
sentence:

$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M„*47

Description
123519 The UTC date of the message: 12h 35 19
4807.038,N The latitude of the receiver: 48°07.038’ North
01131.000,E The longitude of the receiver: 11°31.000’ East
1 The “fix quality”. 0: no fix, 1: GPS fix (GPS satellites found)
08 Number of satellites found
0.9 “Horizontal dilution of position”. It gives information on the hor-

izontal position accuracy
545.4,M Altitude above sea level of the module, in meters.
46.9,M The geoidal separation, which corresponds to the difference if

height between the geoid surface and the ellipsoidal surface.
*47 The checksum, a hexadecimal number which corresponds to the

XOR of every characters between $ and *. The checksum provide
a way to check if the frame contains errors.

The blank before the checksum is filled with the time in seconds since the last
DGPS and the DGPS station ID number when the fix quality is equal to 2, i.e.
DGPS fix.

Code

The Arduino library used to work with the GPS module is TinyGPS++.
This library makes the frame parsing transparent: It directly gives the latitude
and the longitude of the module from the NMEA data flow.

5

1.1.2 Compass

Presentation

The robot’s heading is a crucial piece of information for its navigation. The
heading, coupled with the GPS module’s data gives the course error that the
robot has to correct in order to reach the target in straight line. Coupled in
addition with the ultrasonic sensors’ data, the robot can permanently localize
obstacles.

magn
etic

field

Figure 1.2 – Tilted sensor in the
magnetic field

To get its heading, the robot has a eCom-
pass, which is a tilt-compensated electronic
compass. It is composed of a magnetometer
and an accelerometer. The first one mea-
sures the magnitude of the local magnetic
field, while the second one measures the mag-
nitude of the resulting acceleration on him
along three axes. To compute the heading,
the magnetometer gives the direction of the
Earth’s magnetic field in its own frame of
reference R1. This is enough to compute
the heading only if the sensor is level, i.e.
if its XY plane is parallel to the ground. To
compute a tilt-compensated heading, the ac-
celerometers measures the direction of the

gravitational field in R1. As it must be straight down in the Earth’s frame
of reference R0, the accelerometer gives access to the tilt, which the sensor can
now compensate.

Magnetometer Calibration

During the first test of the magnetometer, the returned heading was not evenly
spaced in 360 degrees. It is due to the fact that the magnetometer is subject to
distortions that are mainly produced by the hard iron effect and the soft iron
effect.

Hard iron distortions are produced by magnetized pieces of iron, which can
be found in speakers for example. If this pieces are attached to the frame of the
robot, the hard iron effect will beget offsets in the sensors output. This is the
case for the ultrasonic modules. Soft iron distortions distort the magnetic field
in such a way that it can be modeled by a 3x3 matrix.

Following [6], a model of a disturbed magnetometer is:m̂x

m̂y

m̂z

 =

axx axy axz
ayx ayy ayz
azx azy azz

mx

my

mz

+

bxby
bz

⇒ M̂ = A ·M +B (1.1)

6

Where M is the true data, M̂ is the output data, A the soft iron distortion and
B the hard iron distortion.

The computation of A and M is done by a piece of software called MagCal
fed with raw data from the three axes of the magnetometer. To obtain this data
sample, an Arduino sketch sends the formatted outputs of the magnetometer
on the serial link, while a Python script collects them via serial communication.

The raw data sample must be acquired when rotating the magnetometer so
that the different orientations cover a whole sphere.

According to the model, if the set
{

[mx,my,mz]
T
n , n ∈ N

}
covers a sphere,

then the disturbed set
{

[m̂x, m̂y, m̂z]
T
n , n ∈ N

}
must cover an ellipsoid.

The piece of software compute the twelve calibration values whose ellipsoid
best fits the disturbed set.

Finally, A−1[M̂ −B] gives the undisturbed magnetometer outputs.

After this calibration, the returned heading was now equally spaced in 360
degrees.

Accelerometer Calibration

A one-axis accelerometer can be described as follows:

â = Gain · a+Offset (1.2)

With a the real acceleration and â the sensor’s output.

The calibration is about finding Gain and Offset for each axis. To achieve
that, we can measure the outputs when the sensor is immobile and with one
axis toward the centre of the Earth. Indeed, the gravity is the only acceleration
the sensor is subjected to, so the real output along this axis is equal to 1g:{

â1g = Gain · a1g +Offset = Gain · 1g +Offset
â−1g = Gain · a−1g +Offset = Gain · (−1g) +Offset

(1.3)

Therefore, {
Gain =

â1g−â−1g

2g

Offset =
â1g+â−1g

2

(1.4)

Finally, a = â−Offset
Gain gives the real acceleration magnitude along each axis.

7

1.1.3 Gyroscope
A gyroscope gives the rover’s yaw rate with high precision and low noise.

On one hand, an integration of this rate gives a robust relative heading for the
rover on a short term, but not on a long term the integration error makes this
heading drifts. On the other hand, the compass is noisy and sensible to magnetic
disturbances. Both sensors has different defects, therefore a fusion can give a
robust absolute heading. This will be discussed later in this paper.

Calibration

The calibration of the gyroscope is similar to the accelerometer one.

ω̂ = ω +Offset (1.5)

Offset corresponds to the gyroscope’s output value when it is level and still.

1.1.4 Encoders
Using encoders is the best way to get the rover’s velocity. Those used on the

rover are cheap ones and their resolutions are 40 ticks per revolution. This low
number makes the velocity difficult to compute with great accuracy.

Figure 1.3
encoder wheel

Indeed, with a sampling period of 50 ms the computed
velocity is accurate to the nearest 5 cm/s, which is an
unsatisfactory accuracy. The latter is equal to 0.5 cm/s
for a sampling period of 500 ms, but this computed
velocity is an average of the true velocity on the last 500
ms. This means that the encoders give measurements
on the true velocity with a precision of half a centimeter
per second when the latter one is constant, but give bad
measurements when the rover is accelerating. It must
be noted in advance that despite this problem, a simple
PID controller is still able to make the wheels reach the
desired velocity in a couple of seconds.

8

1.1.5 Ultrasonic Range Finders
The rover uses three range finders to detect obstacles in order to avoid them.

Figure 1.4 – Sensors positioning Figure 1.5 – HC-SR04 Range Finder

1.2 Data Processing

1.2.1 Switching to a Local Map
The rover must reach a target whose GPS position is known. It is interesting

to work not with latitudes and longitudes, but in an X-Y axis linked to a local
map (arbitrary centred on the first position of the robot).

In the Cartesian coordinate system R0(O, x, y, z) the position of m is des-
brided as follows: xy

z

 =

ρ cos ly cos lx
ρ cos ly sin lx
ρ sin ly

 (1.6)

By differentiating this relation, we get:dxdy
dz

 =

−ρ cos ly sin lx −ρ sin ly cos lx cos ly cos lx
ρ cos ly cos lx −ρ sin ly sin lx cos ly sin lx

0 ρ cos ly sin ly

︸ ︷︷ ︸

J

dlxdly
dρ

 (1.7)

The matrix J can be interpreted as a transformation matrix between R0 and
R1(m,

−−−−→
eastm,

−−−−−→
northm,

−−−−−−−→
altitudem), the coordinate system centred on m, and

whose axes correspond to East, North and sky respectively. As each column
of J represents the coordinate of the vector of the new base expressed in the
former base, we can even rewrite J as follows:

J =

−ρ cos ly sin lx −ρ sin ly cos lx cos ly cos lx
ρ cos ly cos lx −ρ sin ly sin lx cos ly sin lx

0 ρ cos ly sin ly

R0

=
(−−−−→
eastm

−−−−−→
northm

−−−−−−−→
altitudem

)
R0

(1.8)

9

Figure 1.6 – local map centred on point the robot m. a is the target to reach.
Illustration from [2]

By normalizing each column of J , we obtain R, the rotation matrix between R0

and R1:

R =

− sin lx − sin ly cos lx cos ly cos lx
cos lx − sin ly sin lx cos ly sin lx

0 cos ly sin ly

 (1.9)

We will use this rotation matrix to obtain the coordinate of m in the local map
centred on its initial position m0. Indeed:

−−→
OmR1 = RT · −−→OmR0

with RT =

 − sin lx0
cos lx0

0
− sin ly0 cos lx0

− sin ly0 sin lx0
cos ly0

cos ly0 cos lx0 cos ly0 sin lx0 sin ly0

 (1.10)

As m and m0 are close enough, we can simplify this expression using a first-
order approximation:

−−→
OmR1 w

ρ cos ly · (lx − lx0)
ρ(ly − ly0)

ρ

 (1.11)

Therefore,

−−−→m0mR1 w

ρ cos ly · (lx − lx0)
ρ(ly − ly0)
ρ− ρ0

 (1.12)

10

It is possible to find the heading toward a target a:

heading = angle(−−−→m0aR1
−−−−→m0mR1

) (1.13)

1.2.2 Fill the Local Map with Obstacles
As noted previously, the obstacles are detected using ultrasonic range finders.

To avoid them, the choice that has been made is to fill the local map with the
different obstacles seen. This technique implies an estimation of the rover’s
position and heading.

O
X

Y

y

x

ϕ

d

× obstacle detected

γ

xsys

Figure 1.7 – Obstacle position in the local map

[
xobs
yobs

]
=

[
X
Y

]
+Rϕ

([
xs
ys

]
+ d

[
cos γ
sin γ

])
(1.14)

11

Chapter 2

Modelisation

Introduction

In order to design different systems such as localization, navigation or control
for the rover, it is best to build first a model for the rover. It should be noted
that the model must be very accurate in order to fit perfectly with the real
system. In this condition, any designed system successfully integrated to the
simulated rover can itself be successfully integrated to the real one. Therefore,
reliable kinematic a dynamic models of the rover must be used.

As the real environment is mainly indoor and level, the model will only be
two-dimensional.

12

2.1 Global Overview

∫
Kinematic
Model

Dynamic
Model

(ul, ur) (ωl, ωr) (vy, ϕ̇) (X,Y, ϕ)

Figure 2.1 – simulated system

Notation
L rover length
B rover width
b wheel width
r wheel radius
X–Y global frame
x–y frame centred on the rover
xl–yl frame centred on the

rover’s left wheels
xr–yr frame centred on the

rover’s right wheels
ϕ rover’s heading in the

frame of reference
vx, vy rover speed components

on its local frame
ωl, ωr q̇: wheels angular veloci-

ties
ul, ur motor input ∈ [0, 255]

.̄ desired physical parame-
ter

ICR rover’s instantaneous cen-
ter of rotation

R radius of curvature
α yaw rate correction pa-

rameter
l, c patch related distances
m rover’s mass
M mass matrix
C resistance term
τ traction term
I rover’s moment of inertia
F wheel/floor interaction re-

lated force
f internal resistance force
j shear deformation
p normal pressure on the

contact patch
µ coefficient of friction
K shear deformation modu-

lus

13

2.2 Kinematic Model

2.2.1 Vehicle geometry
The rover the project is based on is a four-wheeled skid steering vehicle. This

type of vehicle turns by rotating the wheels on both sides at different speeds.

O
X

Y

x

y

	
ϕ̇

L

B

b
r

ωl

ωl

ωr

ωr

vy

Figure 2.2 – Skid-steering vehicle

Figure 2.2 displays the geometry of the rover this report refers to.

2.2.2 Kinematic Equations
From [4], we know that the kinematic law of such a vehicle is given by:

vxvy
ϕ̇

 = r

0 0
1
2

1
2

− 1
αB

1
αB

[
ωl

ωr

]
(2.1)

Where α is a terrain-dependent correction parameter [4, 9]. This parameter will
be adjusted in order to fit with the experimental results. It should be noted
that the lateral velocity vx is zero. This is true only if one assumes that a
skid-steering vehicle is equivalent to a differential drive vehicle 1[4, 7].

1. A differential drive vehicle is similar to a skid-steering vehicle, but with two wheels.

14

From these equations, we see that the longitudinal velocity is the average of
the left and right wheels’ velocities.

2.3 Dynamic Model

The kinematic model take the rotational velocities ωl and ωr as inputs. These
rotational velocities are computed by the dynamic model. Indeed, ωl and ωr
depend on the torque provided by the motors, the friction caused by the inter-
action between the wheels and the ground, but also internal frictions and the
inertia of the rover.

O
X

Y

xr

yr

xl

yl c
l

vy

R

•
ICR

Figure 2.3 – Rover turning left

Let q̇ = (ωl, ωr)
T . Following [9], the dynamic model that rules this system

is given by:
Mq̈ + C(q̇) = τ (2.2)

Where M is the mass matrix, C is the resistance term, and τ = (τl, τr)
T is the

torque of the left and right motors. This model is expressed in the local frame
x-y. As stated above, this matrix equation brings together a traction term (τ),
a inertia term (Mq̈) and a resistance term (C(q̇)).

15

2.3.1 Inertia Term
Following [9], the mass matrix expressed in the local frame x-y is given by:

M =

mr2

4
+

r2I

αB2

mr2

4
− r2I

αB2

mr2

4
− r2I

αB2

mr2

4
+

r2I

αB2

 (2.3)

Where m is the mass of the rover, B its width, r the radius of the wheels, and
I the moment of inertia of the rover.

By approximating the rover as a rectangle with a equally distributed mass, I
can be calculated using:

I =
m

12
(L2 + (B − b)2) (2.4)

2.3.2 Resistance Term

Theory

As noted previously, the resistance term C encapsulates the effort created by
the interaction between the wheels and the floor, and internal resistances

Let dF be the force caused by the wheel-floor interaction on an arbitrary
point (x, y) on the contact patch. This force can be expressed as follows [9, 8]:

dF = τss(x, y) dS = τss(x, y) dxdy (2.5)

Where τss is the shear stress of the tread. τss is function of the shear displace-
ment:

τss = pµ(1− e−j/K) (2.6)

Where p is the normal pressure, that is mg/4
Spatch

= mg/4
b(l−c)/2 , µ is the coefficient of

friction, K is the shear deformation modulus, and j is the shear deformation.

An excellent development of the shear deformation and of the angle of the
sliding velocity had been made by Yu, following Wong’s work. The formulas
expressed in the global frame X-Y, given point (xl, yl) (resp. (xr, yr)) of the
local frame xl-yl (resp. xr-yr), and given a left turn, are:

jfr,X =

(
R+

B

2
+ xr

)[
cos

(
(l/2− yr)ϕ̇

rωr

)
− 1

]
− yr sin

(
(l/2− yr)ϕ̇

rωr

)
(2.7a)

jfr,Y =

(
R+

B

2
+ xr

)
sin

(
(l/2− yr)ϕ̇

rωr

)
− l

2
+ yr cos

(
(l/2− yr)ϕ̇

rωr

)
(2.7b)

16

jrr,X =

(
R+

B

2
+ xr

)[
cos

(
(−c/2− yr)ϕ̇

rωr

)
− 1

]
− yr sin

(
(−c/2− yr)ϕ̇

rωr

)
(2.7c)

jrr,Y =

(
R+

B

2
+ xr

)
sin

(
(−c/2− yr)ϕ̇

rωr

)
+
c

2
+ yr cos

(
(−c/2− yr)ϕ̇

rωr

)
(2.7d)

jfl,X =

(
R− B

2
+ xl

)[
cos

(
(l/2− yl)ϕ̇

rωr

)
− 1

]
− yl sin

(
(l/2− yl)ϕ̇

rωr

)
(2.7e)

jfl,Y =

(
R− B

2
+ xl

)
sin

(
(l/2− yl)ϕ̇

rωr

)
− l

2
+ yl cos

(
(l/2− yl)ϕ̇

rωr

)
(2.7f)

jrl,X =

(
R− B

2
+ xl

)[
cos

(
(−c/2− yl)ϕ̇

rωr

)
− 1

]
− yl sin

(
(−c/2− yl)ϕ̇

rωr

)
(2.7g)

jrl,Y =

(
R− B

2
+ xl

)
sin

(
(−c/2− yl)ϕ̇

rωr

)
+
c

2
+ yl cos

(
(−c/2− yl)ϕ̇

rωr

)
(2.7h)

and

γfr = γrr = arctan

(
(R+B/2 + xr)ϕ̇− rωr

−yrϕ̇

)
(2.8a)

γfl = γrl = arctan

(
(R−B/2 + xl)ϕ̇− rωl

−ylϕ̇

)
(2.8b)

where fr, rr, fl and rl refer to front-right, rear-right, front-left and rear-left
respectively.

Therefore,

j =
√
j2X + j2Y (2.9)

Finally, the forces caused by the interaction between the wheels and the ground
on each side is given by:

Fl =

∫ l/2

c/2

∫ b/2

−b/2
pµ(1− e−jfl/K) sin(π + γfl)dxdy

+

∫ −c/2

−l/2

∫ b/2

−b/2
pµ(1− e−jrl/K) sin(π + γrl)dxdy

(2.10a)

Fr =

∫ l/2

c/2

∫ b/2

−b/2
pµ(1− e−jfr/K) sin(π + γfr)dxdy

+

∫ −c/2

−l/2

∫ b/2

−b/2
pµ(1− e−jrr/K) sin(π + γrr)dxdy

(2.10b)

where the term sin(π + γ) implies that the force is in the opposite direction of
the sliding velocity, and that only the longitudinal component is kept.

17

These forces must be added to the internal resistance force f to generate the
final resistance torque term:

τ =

[
r(Fl + f)
r(Fr + f)

]
(2.11)

Symetry

The previous section implies ϕ̇ ≥ 0, i.e. a left turn. Symetry is used to
compute F when the rover is turning to the right.

xr

yr

xl

yl
vy

R

•
ICR

v	s,rr

~ex

xr

yr

xl

yl

vy

R

•
ICR

v�s,rl

~ex

Figure 2.4 – Symetry principle

Figure 2.4 displays a relation between sliding velocities when turning left and
right, noted v	s and v�s respectively. In the example of the figure:

v	s,rr(x, y) · ~ex = −v�s,rl(−x, y) · ~ex (2.12)

Generally,
v	s,r(x, y) · ~ex = −v�s,l(−x, y) · ~ex (2.13)

This relation links F�
l with F	

l andF�
r with F	

r , which are known from the
Theory section.

Approximation

Due to the double integration, the time to compute each force F is significant.
Moreover, F depends on the instantaneous radius of curvature R, which can
reach very high values when the rover is moving forward. Indeed, R = vy/ϕ̇
with ϕ̇ w 0. This makes the integration really hard to compute, and even make
the integration fail.

18

In order to accelerate the simulation significantly, a good idea is to find a good
approximation for this force. As F = F (vy, ϕ̇), the latter can be approximated
by a 2D-regression using a least-square method.

The first step is to generate the data set, i.e. {(xn, yn, zn) | zn = F (xn, yn)}.
Then an equation for the 2D surface must be chosen. After different attempts,
the following equation has been accepted:

z = c1 x
3 + c2 y

3 + c3 x
2y + c4 xy

2 + c5 x
2

+ c6 y
2 + c7 xy + c8 x+ c9 y + c10

(2.14)

Finally, a least-square method is run to determine every parameter ci.

ϕ̇ (rad.s−1)

−0.6 −0.4 −0.2
0.0

0.2
0.4

0.6

v
(m
.s
−1)

0.50
0.55

0.60
0.65

0.70
0.75

0.80
0.85

0.90
F

(N
)

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

R2 = 0.9939

Figure 2.5

2.3.3 Traction Term
The equation that models the motor is the following [5]:

τm
τs

+
ωm
ωn

= 1 (2.15)

19

with τm is the motor torque, ωm the motor speed, τs the stall-torque and ωn
the no-load speed. These two latter are given for a given voltage, following [5]:

τs =
VmKt

Ra
(2.16)

ωn =
Vm
KB

(2.17)

These equations shows that τs and ωn are proportional to the voltage Vm.
As τs and ωn are given in the motor data sheet for a given voltage, the constants
Kt/Ra and 1/KB can be easily deduced.

Finally, we obtain from 2.15, 2.16 and 2.17 the equation for the motor torque:

τm =
VmKt

Ra

(
1− Vm

KB
ωm

)
(2.18)

As the rover has two wheels on each side, the traction term τ is:

τ =

[
τl
τr

]
=

2VmKt

Ra

([
1
1

]
− Vm
KB

[
ωl
ωr

])
(2.19)

2.3.4 Results
To confront the model with the real rover, a good measurement of the rover

velocity is mandatory. As the encoders give a bad estimation of the rover when
the latter is accelerating – coupled with a low measurement rate – another
method of acquisition must be used.

0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500

Li
ne

ar
 v

el
oc

ity
 (c

m
/s

)

Time (ms)

Encoders Simulation Tracker

Figure 2.6 – model confronted to experiment for a constant PWM input equal
to 80.

20

A physics oriented video processing piece of software named Tracker has been
used to get a reliable estimation of the rover’s velocity. It can track a target on
a video to give a X-Y position in a given frame of reference. The velocity is the
derivative of this position. It must be noted that the speed computed from the
encoders is given because encoders measurements are very accurate at constant
speed 2.

The graph 2.6 refers to a situation where a constant PWM input equal to 80
is sent to the motor controller on both sides of the rover. The idea is to confront
the behaviours of the simulated rover with the real one. The difference of speed
is striking. Despite the many weeks of tuning, the model has never matched
with the real system in all situations (different inputs in the motor controller).

Even if the model does not fit with the real system, it is still a good model
for a typical skid-steering rover. Moreover, it is stable and does not differ much
with the real rover. Finally, it was too late to abandon this model and restart
from scratch. Therefore, the navigation system elaborated in the next chapter
has been firstly developed and tested on simulation using this flawed model.

2. At constant speed, the accuracy of the encoders is about 5 mm/s, see 1.1.4.

21

Chapter 3

Make the Rover Autonomous

3.1 Choice of State Observer

In order to apply a guidance algorithm to make the rover autonomous, it
must be provided with an estimation of its state. Different state observers have
been tested.

3.1.1 EKF with a Dynamic Model
The first state observer that have been implemented in the simulation was an

extended Kalman filter (EKF) using the dynamic model highlighted in section
2.3. As said previously, the dynamic model does not fit with the real rover.
Therefore, such a state observer cannot be implemented in the real rover. But
it is not without point to study it with the simulation, as the latter uses the
same model and therefore fits perfectly. Thus the performance of this state
observer can be studied after all.

Dynamic and
Kinematic Model

EKF

ul

ur

X

Y
ϕ

ωl

ωr

X̂

Ŷ
ϕ̂

ω̂l

ω̂r

Figure 3.1 – EKF using the dynamic model

22

Unfortunately, this observer is sensible to the rover’s main issue which is
the encoders’ sampling periods. As explained in subsection 1.1.4, in order to
have a good accuracy on the wheels’ speeds, the sampling period is set to 500
milliseconds. This begets the dynamic model to diverge.

A solution is to run the filter with a high rate, and use measurements of the
speeds only every 500 ms in the correction step. But as this observer is only
theoretical as it cannot be implemented on the real rover, this work has not
been done because it was not a priority.

3.1.2 EKF with Kinematic
The first state observer that could be implemented on the rover is a extended

Kalman filter that uses a simple kinematic model (see figure 3.2).

Ẋ = v cosϕ

Ẏ = v sinϕ
ϕ̇ = ϕ̇

EKF

v

ϕ̇

X

Y
ϕ

X̂

Ŷ
ϕ̂

Figure 3.2 – EKF using the kinematic model

The inputs v and ϕ̇ for the prediction step are given by the encoders and the
gyroscope respectively. The measurements X, Y and ϕ for the correction step
are given by the GPS module and the compass respectively.

23

3.1.3 Double Kalman Filter
It can be noted that the state observer of the last section uses a non-linear

model due to trigonometric functions. However, the use of a extended Kalman
filter is not mandatory. Indeed, two Kalman filters in series can remove this
non-linearity. The use of this double Kalman filter is displayed in figure 3.3.

ϕ̇ = ϕ̇

Kalman

Filter

ϕ̇ ϕ

Ẋ = v cosϕ

Ẏ = v sinϕ

ϕ̂

v

Kalman

Filter

X

Y

X̂

Ŷ

Figure 3.3 – double Kalman filter using the kinematic model

3.1.4 Back-Mean-Forth
Another state observer that has been tested is a pure creation called "back-

mean-forth" (BMF). The idea is to combine dead reckoning with GPS data
samples over time.

When the rover receives a GPS measurement ~gn for its current position ~pn, the
BMF subtracts it by the estimated displacement of the rover ~dn. This estimation
is given by the dead reckoning. If the noise of the GPS position is centred, this
operation gives a pseudo measurement of the initial position of the rover. Taking
the average of all these pseudo measurements gives a better estimation p̂0 for
the initial position of the rover. Finally, add it to the displacement ~dn gives a
better estimation p̂n for the current position ~pn of the rover.

This principle is summed up in figure 3.4. It also displays that the dead
reckoning path estimation drifts over time. Therefore, the BMF method cannot
be used for a long period of time, as any system using dead reckoning.

24

•

true position: ~pn

•

dead reckoning: ~dn

•

GPS: ~gn

•

p̂n = p̂0 + ~dn

•

~gn − ~dn

•

~gn−1 − ~dn−1

•
•

••

p̂0 = 1
n+1

∑n
i=0(~gi − ~di)

real path
dead reckoning

• , p̂ estimated position

Figure 3.4 – BMF principle

It must be noted that this method implies a centred noise for the GPS mea-
surements, independent from the receiver true position. This is true only if
there is no building around, i.e. no bounces [3, 1].

25

3.1.5 Confrontation
To confront the different state observers, the best is to confront them directly

and all together on a simulation where the rover moves following predefined
paths.

Easy path

Figure 3.5 displays the paths of the rover and of the different state observers.
Here, the rover performs a large circular turn from position (0, 0). All the state
observers converge on the position of the rover. The double Kalman filter and
the EKF estimations are virtually identical.

15 10 5 0 5 10 15

5

0

5

10

15

20

25

real
double KF
dead reckoning
BMF
EKF
GPS

Figure 3.5 – confrontation of the different state observers for a large turn.

26

On this example, the BMF provides a better estimation than the Kalman
filters. The reason is that the BMF relies more on the model than the Kalman
filters. Indeed, the BMF uses the model through a dead reckoning, and the
Kalman filters through their prediction steps. The difference is that the BMF
considers the dead reckoning as the true path of the rover, unlike Kalman filters.
But here, the dead reckoning is efficient because the path is simple. Therefore
the BMF gives better results.

Complex path

Figure 3.6 displayed a situation where the path of the rover is complex.

0 5 10 15 20 25

10

5

0

5

10

15

real
double KF
dead reckoning
BMF
EKF
GPS

Figure 3.6 – confrontation of the different state observers for a complex path.

27

Here, the dead reckoning is lost and begets failures in the estimation of the
position for every state observer. This is caused by the bad accuracy of the
encoders. They cannot sense fast 1 accelerations of the wheels. This is the main
problem of this rover.

3.2 Controller

As noted previously, the rover turns when the wheels on each side of the rover
turn at different speeds. To make the rover go toward a desired heading ϕ̄ with
a desired speed v̄, the controller must translate ϕ̄ and v̄ into desired rotary
velocities ω̄l and ω̄r. This is the role of the inverse of the kinematic model, seen
in equation 2.1. To do that, the inversed kinematic model needs a desired yaw
rate, computed by a PID controller given ϕ and ϕ̄. Finally, two PID controllers
compute the PWM inputs to the motor controller given ωl, ωr, ω̄l and ω̄r.

The inner working of the controller is summed up in figure 3.7. The measure-
ments that feed the various PID controllers are represented with dash-dotted
arrows.

PID
Inverse

Kinematic
Model

PID

PID

ϕ̄

ϕ

v̄

¯̇ϕ ω̄l

ω̄r

ωl

ωr

ul

ur

Figure 3.7 – inner working of the controller

1. Fast is relative. As noted in section 1.1.4, the encoders provide the average of the speed
on a period of 500 milliseconds. Therefore, they smooths every acceleration of the rover.

28

3.3 Guidance

To make the rover go to a target while avoiding obstacles, the latter is provided
with an artificial potentials based guidance system. The idea is to compute an
artificial force applied to the rover that makes it move. In other words, the
magnitude of the force is the desired velocity, and the angle is the desired
heading. This force is the resultant of every force generated by an obstacle
(repulsive force) or a target (attractive force).

3.3.1 Obstacles

Let ~d = [Xobs − Xrover, Yobs − Yrover]
T the distance vector between the

obstacle and the rover. The artificial repulsive force applied on the rover is
given by:

~f =
c

‖~d‖3
~d (3.1)

Where c is a tuning constant, used to set a proper "no-go" zone for the rover
around the obstacle.

This force is applied each time a range finder detects an obstacle. The position
of the obstacle [Xobs, Yobs]

T is computed using the formula 1.14.

3.3.2 Target

Again, let ~d = [Xtarget − Xrover, Ytarget − Yrover]
T the distance vector

between the target and the rover. The artificial attrative force applied on the
rover is given by:

~f =
c

‖~d‖
~d = c ~u (3.2)

Where ~u is the unit vector from the rover toward the target. It can be
noticed that c corresponds to the velocity that the rover must satisfy when no
obstacle is nearby.

In order to make the rover stops on the target, the expression of the force
changes near the obstacle (1m for example):

~f = c ~d (3.3)

The norm of this force reduces when the rover approaches the target and
reaches 0 on it. Another solution is to stop the guidance near the target. But
this solution cannot be applied to a situation where the target is moving, because
the rover would stop forever when it reaches the target.

29

3.3.3 Results
Figure 3.8a displays the trajectory of the rover that must reach a target (in

red) while avoiding the obstacle (in black). The rover detects the obstacle but
doesn’t manage to avoid it. This is because the guidance system provides a
new consign for the heading and the speed of the rover each 500 milliseconds
as it requires an up-to-date estimation of the position of the rover. The latter
is given by the state observer which is limited by the measurement rate of the
encoders.

0 2 4 6 8
2

0

2

4

6

8
rover path

(a) measurements each 500 ms.

0 2 4 6 8
2

0

2

4

6

8
rover path

(b) measurements each 100 ms.

Figure 3.8
trajectory of the rover guided to reach a target by avoiding a wall with

different measurement rate.

It is relevant to do the same experiment with the assumption that the encoders
can have the same accuracy on the velocity, but with a measurement rate equal
to 100 milliseconds. The results are displayed in figure 3.8b. In this experience,
the rover does has time to correct its trajectory when approaching an obstacle
too closely in order to avoid it.

To conclude, the guidance system works in a situation where the measurement
rate is not too low. As noted previously, a period of 500 milliseconds between
two measurements is not compatible with a reactive autonomous system.

30

Chapter 4

Simulation

The simulation has been developed in Python language and is object-oriented.
The idea here was to create a simulation that is decomposed as the real system
(frame, sensors, but also software blocs such as the controllers or the guidance
system) to make it more intelligible. Moreover, the inner workings of the sub-
systems of the rover are relatively independent and can be easily encapsulated
within classes.

This chapter will be short as it is not about explaining each classes, firstly
because a part of the simulation is just transcriptions of formulas seen in chap-
ter 2 Modelisation, but also because it would be redundant with the comments
supplied in the code.

The functioning of the simulation is largely summed up through the sequence
diagram in figure 4.1 on the next page. It displays the most important ob-
jects working together during a step of the simulation. Furthermore, it is a
representation of main.py.

31

R
ov

er
K

F
G

ui
da

nc
e

C
on

tr
ol

le
r

R
an

ge

F
in

de
rs

G
yr

os
co

pe
C

om
pa

ss
E

nc
od

er
s

G
P

S

ge
t

po
si
ti

on

ge
t

sp
ee

ds

ge
t

he
ad

in
g

ge
t

ya
w

 r
at

e

ge
t

ob
st

ac
le

s

ge
t

ob
st

ac
le

s
ge

t
st

at
e

ge
t

co
ns

ig
n

ge
t

sp
ee

d

ge
t

co
m

m
an

ds

dynamic stepnavigation system stepsensors step

co
m

pu
te

 n
ew

 e
st

im
at

io
n

co
m

pu
te

 c
om

m
an

ds

co
m

pu
te

 t
he

 n
ew

 p
os

it
io

n
of

 t
he

 r
ov

er
 u

si
ng

 t
he

 m
od

el

Figure 4.1 – sequence diagram of the simulation

Chapter 5

Conclusion and Remarks

This internship has been the best opportunity to connect many fields taught at
ENSTA Bretagne in a challenging project. Sensors study, modelling, simulation,
localization, guidance, control or even system integration. At the end of the
internship, the rover simulated was autonomous but with minor flaws, and the
real rover had serious flaws.

It is important to note that the main difficulties of this project was induced
by the low-cost hardware components and Arduino. For instance, many weeks
have been lost in solving bugs related to the i2c communication between the
Arduino board and the gyroscope. The board gets stuck after few seconds or
minutes in an infinite loop when reading the gyroscope. This was partially fixed
by adding a flawed timeout within the official i2c Arduino library. It is impor-
tant to note that Arduino may not be the best choice for a such a project. In
fact, Kalman filtering requires double-precision floats while mainstream Arduino
board provide only single-precision. Moreover, an Arduino board doesn’t run on
a microprocessor but a microcontroller that doesn’t provide threading. Thread-
ing is virtually mandatory for a robot, as it must move, sense, and process data
while adapting to its environment. The solution that has been developed are
just workarounds. Furthermore, the frame was too low-cost and compels the
use of very bad encoders. This induced many challenging problems because the
state observers get lost by the poor precision of the measured velocities amongst
others.

This internship was a rich experience and I hope that my tutor Jian Wan will
keep taking students from ENSTA Bretagne in internship.

This conclusion was also about emphasizing on problems that can be avoided
next year if other students like me from ENSTA Bretagne have the great op-
portunity to do their internships at the University of Plymouth with Jian Wan,
who I particularly thank.

33

Bibliography

[1] Robin Heß and Klaus Schilling. GPS/Galileo Testbed Using a High Preci-
sion Optical Positioning System. Ed. by Noriaki Ando et al. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2010, pp. 87–96. isbn: 978-3-642-17319-6.
doi: 10.1007/978-3-642-17319-6_11. url: https://doi.org/10.1007/
978-3-642-17319-6_11.

[2] Luc Jaulin. Mobile robotics. Elsevier, 2015.

[3] E.D. Kaplan and C. Hegarty. Understanding GPS/GNSS: Principles and
Applications, Third Edition: 2017. isbn: 9781630814427. url: https://
books.google.fr/books?id=y4Q0DwAAQBAJ.

[4] Anthony Mandow et al. “Experimental kinematics for wheeled skid-steer
mobile robots”. In: Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ
International Conference on. IEEE. 2007, pp. 1222–1227.

[5] Giorgio Rizzoni. Principles and Applications of Electrical Engineering. McGraw-
Hill Science/Engineering/Math, 2005. isbn: 0073220337.

[6] VectorNav. VectorNav Magnetometer. http : / / aiweb . techfak . uni -
bielefeld.de/content/bworld-robot-control-software/. url: http:
//www.vectornav.com/support/library/magnetometer.

[7] Tianmiao Wang et al. “Analysis and Experimental Kinematics of a Skid-
Steering Wheeled Robot Based on a Laser Scanner Sensor”. In: Sensors
15.5 (2015), pp. 9681–9702. issn: 1424-8220. doi: 10.3390/s150509681.
url: http://www.mdpi.com/1424-8220/15/5/9681.

[8] JY Wong and CF Chiang. “A general theory for skid steering of tracked
vehicles on firm ground”. In: Proceedings of the Institution of Mechani-
cal Engineers, Part D: Journal of Automobile Engineering 215.3 (2001),
pp. 343–355.

[9] Wei Yu et al. “Analysis and experimental verification for dynamic modeling
of a skid-steered wheeled vehicle”. In: IEEE transactions on robotics 26.2
(2010), pp. 340–353.

34

http://dx.doi.org/10.1007/978-3-642-17319-6_11
https://doi.org/10.1007/978-3-642-17319-6_11
https://doi.org/10.1007/978-3-642-17319-6_11
https://books.google.fr/books?id=y4Q0DwAAQBAJ
https://books.google.fr/books?id=y4Q0DwAAQBAJ
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
http://www.vectornav.com/support/library/magnetometer
http://www.vectornav.com/support/library/magnetometer
http://dx.doi.org/10.3390/s150509681
http://www.mdpi.com/1424-8220/15/5/9681

	Build a Rover
	Sensors
	GPS Module
	Compass
	Gyroscope
	Encoders
	Ultrasonic Range Finders

	Data Processing
	Switching to a Local Map
	Fill the Local Map with Obstacles

	Modelisation
	Global Overview
	Kinematic Model
	Vehicle geometry
	Kinematic Equations

	Dynamic Model
	Inertia Term
	Resistance Term
	Traction Term
	Results

	Make the Rover Autonomous
	Choice of State Observer
	EKF with a Dynamic Model
	EKF with Kinematic
	Double Kalman Filter
	Back-Mean-Forth
	Confrontation

	Controller
	Guidance
	Obstacles
	Target
	Results

	Simulation
	Conclusion and Remarks

