

2nd Year Internship Report

-

University of Plymouth

FEASABILITY STUDY: Control of a mobile robot

Sophie TUTON Tutor: Jian Wan

2018 Promotion

June 8 2017 – August 30 2017

1 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

Abstract

 English
This feasibility study consists in the creation of a mobile robot with two Arduino Mega boards which

one is wired with different sensors and another with motors. They communicate together.

To reach a target, robot localises itself in indoor and outdoor situation with some encoders, a gyro-

scope and a compass or a GPS, thanks to an observer like a dead reckoning or a Kalman Filter. The

heading is known thanks to a data fusion of the gyroscope and the compass. The robot is guided by

an artificial potential algorithm used with ultrasonic sensors. Then, the robot moves with two propor-

tional-integrative-derivate controllers.

Whereas the line following is done with infrared sensors and uses specific order.

Some tests have been performed in indoor situation to check the functioning of the system. The lo-

calisation had needed outdoor test of different algorithms. Tests have been performed with video

processed by Tracker and with a recording data via an SD card.

In each mode, the study shows that the creation of a robot which can reach a target in simple situa-

tions and avoid obstacles is feasible with low cost sensors. However, safety needs more expensive

sensors, notably to reduce sample time and execution time to improve the reactivity of the robot.

The line following works correctly but in simple situations with small turn. In complex situations, it

may leave the line a long time before find again it. So, it could be interesting to create a more complex

command.

 Français
Cette étude de faisabilité consiste à crée un robot mobile à partir de deux cartes Arduino Mega dont

une d’entre elle est reliée à différents capteurs et l’autre aux moteurs. La première carte communique

les informations nécessaires à la seconde carte pour atteindre la cible en évitant les obstacles ou suivre

la ligne.

Pour atteindre une cible, les capteurs utilisés permettent de localiser le robot en intérieur et en exté-

rieur à l’aide des odomètres, d’un gyroscope et d’un compas, ou d’un GPS, via un observateur de

marche aveugle ou de filtre de Kalman. Le cap du robot est obtenu via une fusion des données du

gyroscope et du compas. Le rover est guidé par un algorithme de potentiel artificiel lui permettant

également d’éviter les obstacles vus par des capteurs à ultrasons. Puis un contrôleur doté de deux

commandes proportionnelles - intégrales – dérivées (PID) permet l’exécution du guidage.

Tandis que le suivi de ligne n’as été abordé qu’avec des capteurs infrarouges placés sous le robot. Des

commandes spécifiques sont alors déduites des données capteurs.

Des tests ont été effectués en intérieur pour vérifier le fonctionnement de chaque système. Seule la

localisation a nécessité des tests en extérieur et une comparaison entre différents algorithmes en

fonction de la situation. Les tests sont menés à l’aide de vidéos traitées ou non par le logiciel Tracker

et de l’enregistrement des données via une carte SD.

Dans les deux situations, l’étude montre qu’il est faisable de faire un robot qui est capable d’atteindre

une cible dans des conditions simples tout en évitant des obstacles assez espacés à l’aide de capteurs

à faible coût. Cependant, pour que ce soit exécuté avec sécurité, il est important de prendre des cap-

teurs à plus haut cout. En effet, cela permettrait d’augmenter l’échantillonnage et d’exécuter les al-

gorithmes plus régulièrement pour augmenter la réactivité de robot.

Le suivi de ligne s’effectue correctement mais dans des circuits complexes avec de fort tournant le

2 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

robot quittera longtemps la ligne avant de la retrouver tant bien que mal, c’est pourquoi il serait inté-

ressant de faire varier les commandes de manière plus intelligente en fonction du temps d’absence

de ligne.

Table of contents

ABSTRACT .. 1

ENGLISH .. 1
FRANÇAIS .. 1

INTRODUCTION ... 3

I. HARDWARE PART .. 4

I.A. THE GLOBAL SYSTEM ... 4
I. B. SENSORS AND COMPONENTS USED ... 4

II. MODEL AND SIMULATION ... 11

II.A. DESCRIPTION ... 11
II.B. RECORD DATA & TESTS .. 20

III. AUTONOMOUS ALGORITHM TO REACH A TARGET. ... 24

III.A. CONTROLLER .. 24
III.B. OBSERVER.. 26
III.C. GUIDANCE ... 30
III.D. SUM UP .. 34

IV. AUTONOMOUS ALGORITHM TO FOLLOW A LINE. ... 37

IV.A. EXPLANATION... 37
IV.B. RESULTS AND ENHANCEMENT .. 38

CONCLUSION ... 42

ANNEX – COMPONENTS DETAILS ... 43

ANNEXE - MODEL ... 46

ANNEX - CONTROLLER ... 52

ANNEX - OBSERVER ... 53

ANNEX - LINE FOLLOWING ... 56

ANNEX - ARDUINO CODE ... 57

ANNEX – ASSESSMENT REPORT ... 59

BIBLIOGRAPHY ... 61

3 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

Introduction

The autonomous car is a current challenge of the society. This challenge is made to improve

the road safety, contribute to more fluid traffic and to enhance the user comfort. The main point is to

enhance the road safety thanks to an automation of the system.

The aim of this feasibility study, completed at the Plymouth University, was to make a rover which can

either follow a line only thanks to infrared sensors or reach a target with an obstacle avoidance. For

this, a frame, some low-cost sensors and Arduino components were provided. Another student

worked on this project – Nicolas VEYLON -, but only the work I done is explained in this report.

This report is composed of four parts, the first one is a presentation of the hardware used with

each used components and sensors. Then, the model chosen for a simulation. After, the first mode of

the rover is described through the controller, the observer and the guidance used. And finally, the

second mode –the follower line- is described.

4 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

I. Hardware part

I.A. The global system

The rover needs not only infrared sensors to follow a line but also:

1. A GPS Module to localise itself,

2. Encoders to compute its velocity,

3. A compass and a gyroscope to measure its heading and the derivate of the heading,

4. Ultrasonic sensors to avoid obstacles.

Data from sensors must be recorded. For this a MicroSD broad is used. An Arduino Mega board wired

with the sensors collects data and sends some of them to another Arduino Mega board. This last pro-

cesses data and feeds the motor controller. This system is described in the following figure with sen-

sors in orange, the SD card in grey, both Arduino Mega are in blue, the battery, the motor controller

and the motors are in green.

Figure 1: Components and sensors used in the robot

I. B. Sensors and components used

Each sensor had been studied with a task repartition. So, only some sensors had been deeply stud-

ied. In this part, there are sensors allocated to me. Data are recorded thanks to an SD card1 , and

some data can be plotted thanks to an I2C LCD2.

1 See Annex – Components details, Micro SD board.
2 See Annex – Components details, I2C LCD.

5 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

I.B.1. Microcontroller [1]

The microcontroller used is the ATMega256 on the Arduino Mega 2560. This microcontroller

board allows the fusion of a lot of sensors thanks to 54 digital input (but also output) pins operating

at 5Volts, and 16 analogue input pins which provide a 10 bits resolution. Moreover, 15 pins can deliver

8-bits PWM signals, 6 can be used to interrupt functions3. Serial communications through UARTs (Uni-

versal asynchronous receiver/transmitter) and I2C (Inter-Integrated Circuit) communications are al-

lowed by 8 pins and 2pins respectively4.

The input voltage recommended for this microcontroller board is between 7V and 12V, and the input

voltage limit is between 6V and 20V. Two modes of power can be used: power by USB connection,

and external power supply (wall-wart adapter or battery).

Key:

There are 256 KB of flash memory for storing the code. The C++ source

code is compiled and then uploaded thanks to an IDE (Integrated Development

Environment) provided by Arduino.

3 See Annex – Components details, Arduino board, Interrupt pins
4 See Annex – Components details, Arduino board, Communication

ICSP

GND pins

Power PWM

Serial communica-

tions
I2C

Analogue inputs

Digital inputs/out-

puts

1

2

3

4

5

 Analogue inputs

1 2 3

4

5

Photo 1: An Arduino Mega board

Photo 2: The IDE

6 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

I.B.2. Motor Shield

I.B.2.a Description [2]

The shield used is composed of two servomotor interfaces, and can control four DC motors or two

stepper motors. The voltage recommended for a DC motor is between 4.5V and 36V. Some pull down

resistors deactivate motors during the power up. The power is distributed for the motor – high power

– and for the logical part – low power – if the jumper is putted. It uses two motor drivers5 (L293D) and

one shift register for its functions (74HC595).

 Photo 3: The motor shield

I.B.2.b. Arduino Function

The library used is AFMotor by Adafruit [4]. Motors are “AF_ DCMOTOR” objects and speeds

are defined by a number between 0 and 255.

 The objects relatives to motor are used in the different functions of motion: turnLeft, turn-

Right, goForward, goBackward, defineVelocity, defineVelocityRight and defineVelocityLeft are the cre-

ated functions6.

 In this functions v is the command for the linear velocity, delta is the half of the rotation com-

mand, motor.run() takes in argument FORWARD or BACKWARD and makes motors run, way is the

direction of wheels’ rotation (Forward or Backward). It depends on the command sign: if it is negative

the wheels go backward, else they go forward.

5 See Annex – Components details, Motor driver functioning.
6 See them in the page 53-57 of the Project Code.

1

1

1

1

2

1 Motor port

2

Servomotor

port

Motor driver chips

 Shift register

GND pins

Power pins

7 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

I.B.3. Encoders

I.B.3.a. Description

The FC-02 rotary encoder is used to measure the speed of the robot. It is an optical sensor

using an index wheel linked to the motor shaft. This index wheel is composed of many holes.

An IR light is emitted by a LED, and if the light goes through a hole, it reaches the receiver (HIGH

output). However, if the light is intercepted by the wheel the receiver detects nothing (LOW output).

I.B.3.b. Velocity Computing and Accuracy

In t seconds, the angle travelled is α(t) =
𝑛(𝑡)∙2𝜋

𝑁
, so the distance travelled is 𝑑(𝑡) = α(t) ∙

R =
𝑛(𝑡)∙2𝜋∙𝑅

𝑁
. Moreover 𝑣 =

𝑑(𝑡)

𝑡
. Finally, 𝒗 =

𝒏(𝒕)∙𝟐𝝅∙𝑹

𝑵∙𝒕
. (I.1)

To measure the instantaneous velocity, we must compute with a small t. To have more accuracy, each

edge is considered and the number n(t) – now the number of edge detected – is divided by 2 in the

equation.

As there are 20 holes, there is an edge each
2𝜋

40
≈ 0.16𝑟𝑎𝑑.

 So, Δd ≈
2𝜋

40
∙ R ≈

2𝜋

40
∙ 3.4 ≈ 0.534 cm .

 But 𝑣 =
𝑑

𝑡
,

So, for a time step of 150ms v is known ± 3.3𝑐𝑚/𝑠, whereas for 500ms it is known ± 1𝑐𝑚/𝑠 and for

1s it is known ± 0.5𝑐𝑚/𝑠. A huge step increases the accuracy of the mean velocities but hide the

acceleration.

N: holes in the index wheel,

R: radius of the robot wheel.

t: duration of the travel,

n: holes detected during the travel,

α: angle travelled,

d: distance travelled,

v: velocity.

Index wheel

Motor

Wheel

Index wheel

N holes

R

Figure 2: Encoders principle

8 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

Each velocity side is computed thanks to an encoder, and the velocity of the car is got by the mean of

these velocities. Indeed, when the car is turning, the situation is the following:

After some tests, it seems that the sensor has switch bounces. That is why edges are not considered

during one millisecond after an edge.

I.B.3.c. Arduino code to compute rover velocity

The car is moving and, in the same time, the velocity is computed using interruption. Functions cre-

ated and used for computing velocity are the following:

• countL and countR are called when a change is detected in the OUTPUT of encoders.

They count the number of holes detected by the left and right encoders7.

• computeVelocity which computes the velocity of the right and left side of the vehicle8.

I.B.4. Ultrasonic modules [7]

I.B.4.a. Description

An ultrasonic ranging module allows to measure distance to object,

from 2cm to 4m and with a measuring angle of 30°. It must be ali-

mented with a voltage of 5V DC, and its working current is about 15mA.

It is composed of one ultrasonic transmitter and one ultrasonic re-

ceiver.

When the module receives a 5Volts pulse for at least 10µs, 8 periods

of a 40kHz wave will be transmitted. When the receiver detects this

ultrasound, the Echo pin is set to 5V during a time proportional to the distance.

7 See page 19, lines 28-64 of the Arduino Project Code.
8 See page 20, lines 66-85 of the Arduino Project Code. These functions are called in the main program in the
page 9 at the lines 213-219 for the initialisation, and in the page 10 at the lines 278 -283 for the processing.

Figure 3: The velocity of the robot

Photo 4: Ultrasonic sensor

9 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

I.B.4.b. The position computing9

The situation is the following:

The wave takes time (µs) to travel from the transmitter to the receiver, but it takes 𝑡𝑖𝑚𝑒/2 to travel

from the transmitter to the reflecting object. Therefore, we have the following equation:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑡𝑖𝑚𝑒 ∙ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

2

With:

- time (µs), the time between the transmission and the reception,

- velocity (cm.s-1), the velocity of ultrasound in air, i.e. 340m.s-1,

- distance (cm), the distance from the robot to the object.

Finally, 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 = 𝒕𝒊𝒎𝒆 ∙
𝟎.𝟎𝟑𝟒

𝟐
 . The Arduino code computes the distance of obstacles in three

directions. That is why three ultrasonic sensors are used in front of the rover as following:

9 Functions made are in the pages 22 – 25 of the Arduino Project Code. These functions are called in the main
program in the page 10 at the lines 255-252 for the initialisation. And in the page 11 at the lines 299-300 for
the reading and processing.

𝑡 = 0

𝑡 = 𝑡𝑖𝑚𝑒
𝑡 =

 𝑡𝑖𝑚𝑒

2

Transmitter

Receiver

distance

11cm

2.5cm

𝜋

6

Figure 4: The ultrasonic sensor principle

Figure 5: The ultrasonic sensor position on the robot

10 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

So, to have the position [
𝑥𝑜𝑏𝑠
𝑦𝑜𝑏𝑠

] of each obstacle in the local map (map centred in the initial position

of the rover, its axes are toward the East and the North) the processing is the following:

[
𝑥𝑜𝑏𝑠
𝑦𝑜𝑏𝑠

] = [
𝑥
𝑦] + [

cos (𝜑) −sin (𝜑)
sin (𝜑) cos (𝜑)

] [
𝑥𝑠𝑜𝑛𝑎𝑟
𝑦𝑠𝑜𝑛𝑎𝑟

] ∙ +𝑑 ∙ [
cos (𝜑 + 𝛾)
sin (𝜑 + 𝛾)

]

With:

- [
𝑥
𝑦] the rover position in the local map,

- 𝜑 the absolute heading of the rover,

- [
𝑥𝑠𝑜𝑛𝑎𝑟
𝑦𝑠𝑜𝑛𝑎𝑟

] the sonar position relative to middle of the

rover,

- 𝛾 the heading of the sonar relative to the rover

- 𝑑 the distance of the obstacle.

For example, for an obstacle at the left of the rover 𝛾 =
𝜋

6
 and [

𝑥𝑠𝑜𝑛𝑎𝑟
𝑦𝑠𝑜𝑛𝑎𝑟

] = [
11
2.5
].

I.B.5. Infrared modules

Infrared modules are used to detect the line that a robot must follow. There are four infrared

(IR) modules brought together. Each one is composed of one IR LED, one IR receiver, one display LED

which glows when an obstacle is detected, and one potentiometer to adjust manually the detection

distance which is between 1mm and 60cm.

There are six pins, four outputs which are low when something is detected, one ground, and one

power supply pin.

IR Receiver

IR Emitter LED

Potentiometer

LED

Output

Rover position

in the local map

Sensor position

from the rover

Obstacle distance

from sensor used

Photo 5: IR sensor

11 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

II. Model and Simulation

II.A. Description

To have a great control robot, a dynamic model of the robot must be found and the simulation

must be performed. A complete model was found in this research: [9]. It considers the friction and the

shear stress.

To validate this dynamic model [10], some motion tests (to go forward with half power, to break…)

had been done. During each test, encoders and gyroscope data had been collected. Each test had been

recorded to compute the x,y coordinates of the vehicle thanks to a software called Tracker. Each test

was compared to the simulation data.

 II.A.1 Context
The vehicle is releasing a circular motion about an instantaneous centre of rotation. There are

contacts between the road and the wheels, these patches are featured by a grey rectangle in the figure

6. The motion is assumed in a plan (no altitude difference). The following reasoning is for a turn to the

left.

II.A.2. Variables
Here are the variables used:

Letter Meaning Value or Expression Source

B Vehicle width: from a wheel middle to a

wheel middle

13.1 cm Rough measured

L Vehicle length 25.0 cm measured

B Wheel width 2.5 cm measured

R Wheel radius 3.4 cm measured

L Distance between the beginning of a patch

and the end of the patch of the same vehi-

cle side.

12.5 cm Rough measured

C Distance between the end of a patch and

the beginning of the patch of the same ve-

hicle side.

11.5 cm Rough measured

m Vehicle mass 500g Estimated

B

L C

b

r

l

Figure 6: Dimensional constant name

12 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

I Moment of Inertia 𝐼 =
𝑚

12
(𝑙2 + (𝐵 − 𝑏)2) Computed in this

part

M Mass matrix, links the coordinates of the

vehicle with its kinetic energy [11].

𝑀

=

(

𝑚𝑟2

4
+
𝑟2𝐼

𝛼𝐵2
𝑚𝑟2

4
−
𝑟2𝐼

𝛼𝐵2

𝑚𝑟2

4
−
𝑟2𝐼

𝛼𝐵2
𝑚𝑟2

4
+
𝑟2𝐼

𝛼𝐵2)

Computed

Table 1: Dimensional constants

CG = Centre of gravity

Letter Meaning Value Source

α Terrain-dependant parameter α = 1.9,

Computed with data

recording

R Radius of curvature Computed in this

part

φ Angle of the vehicle

vy Velocity in the longitudinal direction It should be noted that vx is as-

sumed null.

ωl, ωr Velocity of the left and right wheels

�̇� [ωl, ωr] velocities of wheels

C(q,�̇�) Resistance term, featured the ground and

wheels interactions. 𝐶 = (
𝑟 ∙ (𝐹𝑙 + 𝑓𝑙)

𝑟 ∙ (𝐹𝑟 + 𝑓𝑟)
)

Computed

G(q) Gravitational term Null because of the 2D motion

Letter Meaning Value Source

Fr,Fl The sliding longitudinal sliding

friction of the right wheels and

of the left wheels.

 Computed

Figure 7: Another constant name
X

Y

C

ϕ

x

y

13 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

fr,fl The rolling resistance of the

right wheels and of the left

wheels

𝑓𝑙 = 𝑓𝑟 =
𝑚𝑔

2
∙ µ𝑟

Computed

µ𝒓 Dimensionless coefficient of the

rolling friction.

0.015 [12]

µ Friction coefficient between tire

and regular floor

0.5 [13]

P Normal pressure
𝑝 =

𝑓𝑜𝑟𝑐𝑒

𝑠𝑢𝑟𝑓𝑎𝑐𝑒
=

𝑚𝑔

2𝑏(𝐿 − 𝐶)

Computed

τss The shear stress
𝜏𝑠𝑠 = 𝑝µ ∙ (1 − 𝑒

−
𝑗
𝐾)

jrr,jfr,jrl,jfl The shear displacement for each

wheel 𝑗𝑋1𝑋2 = ∫ 𝑣𝑋1𝑋2_𝑋

𝑡

0

𝑑𝑡

(xrr, yrr) (xfr,yfr)

(xrl, yrl) (xfl,yfl)

The coordinates of a point in

patch of the rear right wheel,

front right wheel, rear left

wheel, and front left wheel.

𝜸𝒓𝒓,𝜸𝒇𝒓,𝜸𝒓𝒍,,𝜸𝒇𝒍 The angle of the sliding velocity

vector for each wheel
𝛾𝑋1𝑋2 = arctan2 (

𝑣𝑋1𝑋2_𝑌

𝑣𝑋1𝑋2_𝑋
)

𝒗𝒓𝒓,𝒗𝒇𝒓, 𝒗𝒓𝒍,𝒗𝒇𝒍 Sliding velocity vectors 𝑣𝑋1𝑋2

= (
−𝑦𝑋1𝑋2 ∙ �̇�

(𝑅 ±
𝐵
 2
 + 𝑥𝑋1𝑋2) ∙ �̇� − 𝑟𝜔𝑟

)

K The shear deformation modulus 5.1 x 10-4

Table 2: Other constants

Some properties of motors are used:

Letter Meaning Value Source

τ [τl, τr], torque of the left and right mo-

tors. τ = (
𝜏𝑠𝑙
𝜏𝑠𝑟
) − (

𝜏𝑠𝑙
𝜔𝑛𝑙⁄ 0

0
𝜏𝑠𝑟

𝜔𝑛𝑟⁄
)

∙ q̇

τs [τsl ,τsr] The stall torque of the motors

left and right.

It is the torque needed to stop a mo-

tor for a voltage V. It is propor-

tional to the voltage. Here τsl = τsr

because same motors are used for

right side and left side.

Coefficient of pro-

portionality was es-

timated and then

adapted to follow

the real vehicle re-

actions.

ωn [ωnl , ωnr]The no-load speed of the

motors left and right.

It is the unloaded motor velocity for

a voltage V. It is proportional to the

voltage.

ωnl = ωnr because same motors are

used for right side and left side.

Coefficient of pro-

portionality was es-

timated and then

adapted to follow

the real vehicle re-

actions.
Table 3: Motor constants

II.A.3. Global view

14 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

The motor shield takes two values between 0 and 255 as inputs. These values are turned into

voltage for the motors left and right. Then, these voltages are converted into a torque by motors. This

torque begets the rotations of wheels. Some phenomena of friction and shear are considered here.

II.A.4. Equations [9]
II.A.4.a. Motor Controller

To be able to convert each PWM command into a voltage, a function had been experimentally

estimated. Indeed, the input motor voltage had been measured with a voltmeter for each command

between 0 and 240 with a step of 20 and for the 255 commands. Then, the commands lower than 60

are not considered because the motors need more than 3 Volt to be efficient.

Here is the curve obtained for commands higher than 60. Dotted curve is the polynomial approxima-

tion used in the simulation.

Graph 1: Voltage motor in function of the PWM command

y = -5,1382E-09x4 + 4,1460E-06x3 - 1,2393E-03x2 + 1,8591E-01x - 3,8293E+00
R² = 9,9926E-01

0
1
2
3
4
5
6
7
8
9

10
11

60 80 100 120 140 160 180 200 220 240

M
o

to
r

vo
lt

ag
e

(V
)

PWM command

The voltage in function of PWM command

Volt Poly. (Volt)

Motors Dynamic

Model
Velocities

equations

Volt τ q̇ �̇�,v

y
∫

x,y,ϕ

Motor con-

troller

PWM

Figure 8: The robot model

15 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

The polynomial degree is not a problem for the simulation because only two command values are

used per simulation step. Here the degree used is 4 to have an R-squared value at least equal to 0.999.

So, the simulation10 uses the following function to convert PWM command I into a voltage v (in Volt):

𝒗 = −5 ∙ 10−9 ∙ 𝑰𝟒 + 4 ∙ 10−6 ∙ 𝑰 − 1.2 ∙ 10−3 ∙ 𝑰𝟐 + 1.859 ∙ 10−1 ∙ 𝑰 − 3.8293

II.A.4.c. Motors

For the motors of the left side, the torque 𝝉𝒍 and the rotary speed 𝝎𝒍 are linked by the following

equation [9]:

𝝉𝒍

𝝉𝒔𝒍
+

𝝎𝒍

𝝎𝒏𝒍
= 1

 ⇒ 𝝉𝒍 = 𝝉𝒔𝒍 ∙ (1 −
𝝎𝒍

𝝎𝒏𝒍
)

The motors of the right side follow the same law, that is why the following equation is verified:

 ⇒ 𝝉 = (𝝉𝑙
𝝉𝑟
) = (𝝉𝒔𝒍

𝝉𝒔𝒓
) − (

𝝉𝒔𝒍
𝝎𝒏𝒍⁄ 0

0
𝝉𝒔𝒓

𝝎𝒏𝒓⁄
) ∙ �̇�

With �̇� = (𝝎𝒍
𝝎𝒓
) the rotary speed of the wheels.

II.A.4.c. Dynamic Model

The dynamic model is given by the following equation in the local frame x-y [9] where M is the

mass matrix, C is the resistance term and G is the gravitational term.

𝑀�̇� + 𝐶(𝑞, �̇�) + 𝐺(𝑞) = 𝜏

i. The gravitational term G(q)

The motion of the vehicle is assumed in a 2D surface, that is why the gravitational term is null.

∀𝑞, 𝐺(𝑞) = 0

ii. The mass matrix M

The mass matrix is given by [9]:

𝑀 =

(

𝑚𝑟2

4
+
𝑟2𝐼

𝛼𝐵2
𝑚𝑟2

4
−
𝑟2𝐼

𝛼𝐵2

𝑚𝑟2

4
−
𝑟2𝐼

𝛼𝐵2
𝑚𝑟2

4
+
𝑟2𝐼

𝛼𝐵2)

10 See in Annexe - Model, the orange box

16 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

With I the moment of inertia computing for a rectangle as the adjacent figure, the inertia matrix

is computed as following –with 𝜎 the mass per unit area–

I = ∫(𝑦2 + 𝑥2)𝑑𝑚

 = 𝜎 ∙ ∫ ∫ (𝑦2 + 𝑥2)𝑑𝑦 𝑑𝑥
𝑙
2⁄

−𝑙
2⁄

(𝐵−𝑏)
2⁄

−(𝐵−𝑏)
2⁄

 = 𝜎 ∙ ∫ (
𝑙3

12
+ 𝑥2 ∙ 𝑙) 𝑑𝑥

(𝐵−𝑏)
2⁄

−(𝐵−𝑏)
2⁄

 =
𝜎∙𝑙∙(𝐵−𝑏)

12
(𝑙2 + (𝐵 − 𝑏)2)

But 𝑚 = 𝜎 ∙ 𝑙 ∙ (𝐵 − 𝑏), that is why:

 𝐼 =
𝑚

12
(𝑙2 + (𝐵 − 𝑏)2)

iii. The resistance term 𝐶(𝑞, �̇�)

C is not only due to the rolling resistance f of the wheels but also to the sliding friction F. So, C is

equal to the torque resistance of the wheels of the right or left side called τl_res and τr_res . So, C is

given by [9]:

𝐶 = (
τl_res
τr_res

) = (
𝑟 ∙ (𝐹𝑙 + 𝑓𝑙)

𝑟 ∙ (𝐹𝑟 + 𝑓𝑟)
)

- The rolling resistance

The rolling resistance: “is its resistance to movement caused by friction between it and the sur-

face it is rolling on.” (Collins dictionary) Rolling resistance factors are for example elastic defor-

mations or surface irregularities [12] [14]. It is given by

𝑓 = 𝑁 ∙ µ𝑟

Where N is the normal force (perpendicular to the

road) and µ𝑟 is the dimensionless coefficient of the

rolling friction.

Per the Newton’s second law the normal force is

given by:

𝑁 = 𝑃 =
𝑚𝑔

2

(
𝐵 − 𝑏

2
,
𝑙

2
)

y

(−
𝐵 − 𝑏

2
,
𝑙

2
)

x

(−
𝐵 − 𝑏

2
,−
𝑙

2
) (

𝐵 − 𝑏

2
,−
𝑙

2
)

𝑃ሬԦ

NሬሬԦ

fԦ

Figure 9: The rectangle corresponding to the rover

Figure 10: The forces on the wheel

https://www.collinsdictionary.com/dictionary/english/friction

17 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

There is a ½ factor because the system is relative to one side of the vehicle (composed of two

wheels). In this way, the rolling resistances are given by:

𝑓𝑙 = 𝑓𝑟 =
𝑚𝑔

2
∙ µ𝑟

- The sliding friction

The sliding friction: The sliding friction is the integration of the shear stress on the patch (i.e.

every contact point between the wheel and the road). The shear stress is given by [9]:

𝜏𝑠𝑠 = 𝑝µ ∙ (1 − 𝑒
−
𝑗
𝐾)

Where p is the normal pressure, µ is the coefficient of friction, j is the shear displacement and K is

the shear deformation modulus.

In this case, the sliding velocities for the wheel of the front right side (fr) is given by [9]:

𝑣𝑓𝑟 = (
−𝑦𝑓𝑟∙�̇�

(𝑅 +
𝐵

 2
 + 𝑥𝑓𝑟)∙�̇�−𝑟𝜔𝑟

) in the x,y spatial system.

It is the same equation for 𝑣𝑟𝑟 . But in the sliding velocities

equations for the wheels of the left side, the coefficient 𝑅 +
𝐵

 2
 +

 𝑥𝑓𝑟 becomes 𝑅 −
𝐵

 2
 + 𝑥𝑓𝑟.

j is the timing integration of the sliding velocities. Here is the

equation to compute each term of j like in [9]:

𝑗𝑓𝑟𝑋 = ∫ 𝑣𝑓𝑟𝑋
𝑡

0
𝑑𝑡 = ∫ (𝑣𝑓𝑟𝑥 ∙ cos(𝜑) −

𝐿

2
𝑦𝑓𝑟

𝑣𝑓𝑟𝑦 ∙ sin (φ))
1

𝑟𝜔𝑟
𝑑𝑦𝑟

Because
𝑑𝑦

𝑑𝑡
= 𝑟𝜔𝑟 and so 𝑡 = ∫

1

𝑟𝜔𝑟
𝑑𝑦𝑓𝑟

𝐿
2⁄

𝑦𝑓𝑟

But ∫
1

𝑟𝜔𝑟
𝑑𝑦𝑓𝑟

𝐿

2
𝑦𝑓𝑟

=
𝐿
2⁄ − 𝑦𝑓𝑟

𝑟𝜔𝑟
 and 𝜑 = �̇� ∙ 𝑡

 So, 𝜑 = �̇� ∙
𝐿
2⁄ − 𝑦𝑓𝑟

𝑟𝜔𝑟

 𝑗𝑓𝑟𝑋 = ∫ [−𝑦𝑓𝑟 ∙ �̇� ∙ cos (�̇� ∙
𝐿
2⁄ − 𝑦𝑓𝑟

𝑟𝜔𝑟
) − [(𝑅 +

𝐵

2
+ 𝑥𝑓𝑟) ∙ �̇� − 𝑟𝜔𝑟] ∙ sin (�̇� ∙

𝐿
2⁄ − 𝑦𝑓𝑟

𝑟𝜔𝑟
)]
𝑑𝑦𝑓𝑟

𝑟𝜔𝑟

𝐿

2
𝑦𝑓𝑟

That is why, 𝑗𝑓𝑟_𝑋 = (𝑅 +
𝐵

2
+ 𝑥𝑓𝑟) [cos (�̇� ∙

𝐿
2⁄ − 𝑦𝑓𝑟

𝑟𝜔𝑟
) − 1] −𝑦𝑓𝑟 ∙ sin (�̇� ∙

𝐿
2⁄ − 𝑦𝑓𝑟

𝑟𝜔𝑟
)

In the same way 𝑗𝑓𝑟_𝑌 = (𝑅 +
𝐵

2
+ 𝑥𝑓𝑟) ∙ 𝐬𝐢𝐧 (�̇� ∙

𝐿
2⁄ − 𝑦𝑓𝑟

𝑟𝜔𝑟
) −

𝑳

𝟐
 + 𝑦𝑓𝑟 ∙ 𝐜𝐨𝐬 (�̇� ∙

𝐿
2⁄ − 𝑦𝑓𝑟

𝑟𝜔𝑟
)

The shear displacement 𝑗𝑟.. of one rear wheel follows the same equation than 𝑗𝑓.. but

the length L must be replaced by the value of –C (cf schema of the vehicle dimensions).

The shear displacement 𝑗..𝑙 of one left wheel follows the same equation than 𝑗..𝑟 but the

term 𝑅 +
𝐵

2
+ 𝑥..𝑟 must be replaced by 𝑅 −

𝐵

2
+ 𝑥..𝑙(cf schema of the vehicle dimensions).

X

Y

C

ϕ

x
y

X

Y

x

y

ϕ

Figure 11: Some constants name

18 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

With the shear displacement the sliding friction can be computed thanks to the integration of

the sheer stress on each patch. The sliding friction of the right side is given by:

𝐹𝑟 = ∫ ∫𝑝µ(1 − 𝑒−
𝑗𝑓𝑟

𝐾
⁄

𝑏
2

−
𝑏
2

𝐿
2

𝐶
2

) ∙ sin(𝜋 + 𝛾𝑓𝑟) 𝑑𝑥𝑟𝑑𝑦𝑟

 +∫ ∫𝑝µ(1 − 𝑒−
𝑗𝑟𝑟

𝐾⁄

𝑏
2

−
𝑏
2

𝐿
2

𝐶
2

) ∙ sin(𝜋 + 𝛾𝑟𝑟) 𝑑𝑥𝑟𝑑𝑦𝑟

It is the same equation for the sliding friction of the left side but the length L must be re-

placed by –C.

With 𝑗𝑓𝑟 = √𝑗𝑓𝑟_𝑋
2 + 𝑗𝑓𝑟_𝑌

2 ,and 𝛾𝑓𝑟 the angle of the resultant sliding velocity 𝑣𝑓𝑟 like in the

following picture.

𝛾..𝑟 = 𝜋 + arctan (
𝑣..𝑟_𝑌

𝑣..𝑟_𝑋
)

 and 𝛾..𝑙 = arctan (
𝑣..𝑙_𝑌

𝑣..𝑙_𝑋
)

In this way, 𝑀�̇� + 𝐶(𝑞, �̇�) + 𝐺(𝑞) = 𝜏 is an equation between �̈� and �̇�.

We have �̈� = 𝑀−1 [(𝝉𝒔𝒍
𝝉𝒔𝒓
) − (

𝝉𝒔𝒍
𝝎𝒔𝒍⁄ 0

0
𝝉𝒔𝒓

𝝎𝒔𝒓⁄
) ∙ �̇� − 𝐶(𝑞, �̇�)].

In the simulation11 �̇� is gotten by a runge-kunta 4 equation.

II.A.2.d velocities equations

Thanks to the dynamic model �̇� = (𝝎𝒍
𝝎𝒓
) is known. The linear velocity and the rotary velocity

are given by [9]:

11 See in Annexe - Model: in the purple box for the Dynamic Model, in the blue box for the shear displacement
j, in the green box for the angle γ, in the yellow box for the sliding friction.

xr

yr

vfr
vrl vrr

vfl
xl

yl

𝛾𝑓𝑟

𝛾𝑓𝑙

𝛾𝑟𝑙

𝛾𝑟𝑟

Figure 12: The angles of the resulting sliding velocity

19 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

(
𝑣𝑦
�̇�
) =

𝑟

𝛼𝐵
(
𝛼𝐵

2

𝛼𝐵

2
−1 1

) ∙ (
𝜔𝑙
𝜔𝑟
)

So, the linear velocity is the mean of the rotary velocities multiplied by the wheel radius,

whereas the rotary velocity of the vehicle depends on a terrain-dependent parameter 𝛼. This

term is got by adaptation with the actual results.

Then, others variables like x,y, φ is computed thanks to Euler equations12.

II.A.2.c Generalisation

The previous equations are for a turn to the left. The adaptation of the equations for a turn to

the right is explained.

12 See in Annex – Model, in the grey box.

xr

yr

vfr
vrl vrr

vfl
xl

yl xl

yl

vfl
vrr

l
vrl

vfr
xr

yr

Symmetry

𝒋 → −𝒋

xl

yl

vfl
vrr

l
vrl

vfr

xr

yr

Change of basis

𝒙 → −𝒙

Turn to the Left Turn to the right

Figure 13: Generalisation of the formula

20 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

The both situations are symmetric. So, j for the first case becomes –j. Then, we don’t

use the symmetric base so basis must be change with x -> -x. To conclude, j(x) becomes –j(-

x). To generalize equations for a forward motion, we use an infinite curve radius R.

See the simulation Python code in Annex - Model.

II.B. Record data & tests

II.B.1. The functioning

The dynamic model uses a lot of computing time, that is why the simulation was modified

to use a 2D-cubic regression of the sliding friction 𝐹 depending on the heading 𝜑 and on the

velocity. It is a legitimate approximation because the determination coefficient is about 0.993.

The test is made by this way:

Sensors/compo-

nent used

Data

Arduino clock Time since the

powering of the

Arduino

encoders Velocity of the

left rear wheel

encoders Velocity of the

right rear wheel

Compass Heading

Gyroscope Heading

MicroSD board Recorded file

Table 4: Sensors and Components used to collect and record data

The both Arduino boards are powered by a 12V battery. So, they are initialised in the

same time.

The Arduino called “Arduino sensors” is wired with encoders, compass, MicroSD board and

with the “Arduino Motors” via I2C (SDA and SCL).

The number of holes detected by encoders are computed thanks to Interruption (counter is in-

cremented each time there is a change in the signal). Every 500ms the linear velocities of each

vehicle side are computed and send to the “Arduino Motor” via I2C communication thanks to

the Wire library. This long time of 500ms is to have more accuracy values of mean velocity

but also to appreciate a little the acceleration. For more details about it see the Encoders section.

Other sensors data are collecting and recording in the SD card every 50ms.

“Arduino Motor” executes a proportional-integral-derivative controller using the inverse ki-

netic model. Then, it sends the PWM command to the shield motor. See the Project Code to

watch the Arduino programs13.

13 The recoding part is between the line 359 and the line 415 at the pages 12 - 13.

Arduino Sensors

Collecting and re-

cording

Shield Motor

Encod-

ers

Compass

and

Gyroscope

SD

card

Arduino Motors

Velocities

PWM command

Data

Figure 14: Principle used to test

21 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

II.B.2. Data processing and results

The video processing

Each test is recorded and the video is processed by Tracker [15]. For each video a cal-

ibration stick, and an offset origin is put as reference for axis. Then a point of the vehicle

is used like a point mass for an auto-tracking. This auto-tracking allows us to have the x,y

coordinates in function of the time. Thanks to these data an approximation of the instanta-

neous speed is computed.

Photo 8: The used Tracker tools

The data processing

 Each data is collected in an Excel page and velocity are computed:

- The mean of the speed during the last 500ms thanks to encoders,

- The “instantaneous speed” thanks to Trackers data.

Both is plotted in a figure and then data simulated are created and some parameters are adapted

in the simulation like the terrain-dependent coefficient called alpha. For each test, the simulated

values (in grey), measured values with sensors (in bleu) and measured values with trackers (in

yellow) are plotted.

For the velocity:

The bleu values are computed with the encoders data. Indeed, the value of the mean

velocity at the discretised time i is computed with Excel and is given by 𝑣𝑖 =
𝑣𝑙𝑖 + 𝑣𝑟𝑖

2

The yellow curve is got with Tracker values. They are given by:

𝑣𝑖 =
√(𝑥𝑖+2 − 𝑥𝑖−2)2 + (𝑦𝑖+2 − 𝑦𝑖−2)2

𝑡𝑖+2 − 𝑡𝑖−2

For the heading:

Calibration Stick

Calibration Tape

Auto tracked Off-

set Origin

Axes

22 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

 The bleu values got with the relative heading (the fusion between the compass and the

gyroscope) and given by 𝜑𝑖 = 𝜑𝑖 − 𝜑0

The constant used in the dynamic model is got with constructor documentation and data re-

cording. Here there is one result for a command of 80 in each motor:

Graph 2: The velocity of the rover, measured by the encoder (blue), measured by Tracker (yellow) and simulated (grey) for a
test which a command of 80 in each motor.

We can observe that the simulated rover has a time of responses shorter and a response

higher than the actual rover. Indeed, the measured speed of convergence is about 52cm/s

(tracker and encoder) whereas the simulation’s one is 10cm/s more. The rover is over 95% of

its convergence speed after 1,17s whereas it is about 0.27s for the simulated rover, so 4 time

smaller. Now, let us study the heading for this experiment:

Graph 3: The heading of the rover, measured by the encoder (blue), and simulated (grey) for a test which a command of 80
in each motor.

0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Li
n

ea
r

ve
lo

ci
ty

 (
cm

/s
)

Time (ms)

The measured and simulated linear velocities

Encoders

Simulation

Tracker

-4

-3,5

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

0 1000 2000 3000 4000 5000

R
el

at
iv

e
h

ea
d

in
g

(d
eg

re
e)

Time (ms)

The measured and simulated heading

Compas/Gyroscope

Simulation

23 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

The rover slightly drifts. It is explained by a difference of voltage delivered by the motor shield.

The simulated rover does a straight line without drift because this issue is not considered. So,

after 4s the difference between the rover and the simulated one is about 0.95 degree.

See in annex for another test (for a command of 80 for left motors and 150 for the right one’s).

Whatever the value of each constant, the simulation and the rover data do not fit cor-

rectly. So, the simulation does not simulate the rover used for tests but another one. This is

maybe because it is a non-perfect rover which has some difficulties to be modelled with low-

cost sensors and substantial overlooked phenomena. Even that, every algorithm was tested at

first in the simulation.

II.B.3. Some issues encountered
II.B.3.a. Compass/Gyroscope

Firstly, heading was only given by the compass but the electro-magnetic field in the

working room is abnormal, so a gyroscope was added to have better measurements. Both com-

ponents are used to have a better heading for an indoor situation and an outdoor situation14:

1. The predicted heading is computed with gyroscope data and the last heading.

2. If the difference between the predicted value and the value of the compass is too

high, the new heading is the predicted.

3. Then, it is the compass value.

Moreover, a threshold on the gyroscope value was added to avoid a huge drift.

In this way, when the electromagnetic is disturbed, the heading computation15 uses the gyro-

scope value. But when the compass seems give a correct value, it uses this one. These functions

are called in the main program in the pages 9 at the lines 185-188 and pages 10 at the lines 277-

230 and 233-239 for the initialisation, and in the pages 12 at the lines 376-382 for the reading

and processing.

Secondly, gyroscope mpu6050 works if the voltage used is around 3,3V but the Arduino

I2C communication is a 5V. So, we needed to add a level shifter to down to 3,3V [16]. More-

over, it blocks sometimes and the Arduino board lock up.

II.B.3.b. I2C bus

Moreover, motors beget a lot of noise in the I2C bus. This noise has a significant neg-

ative impact in the buffer. When there are too many noise, the length of the buffer is considered

infinite by the TWI Arduino library and it beget an infinite loop when the TWI buffer is copied

to a variable. So, a security was added into this library to break the infinite loop and avoid that

the Arduino board locks up because of I2C communication.

14 The piece of code corresponding is in the page 17 and 18 of the Project Arduino Code, be-tween the line 116
and the line 153 (fuse function).
15 The code relatives to the heading is in the pages 11 – 18 of the Project Arduino Code.

24 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

III. Autonomous algorithm to reach a target.

III.A. Controller

One issue encountered was the non-identical response of the left side motors and of the

right-side motors. These responses begot a dysfunction in the straight-line motion. To solve

this, a double PID was created. The PID about velocity depends on the vehicle side.

A PID using the current heading and the desired was created to compute the rotary velocity

desired to have a better heading. Then the desired rotary velocity and the desired velocity are

used to compute the desired velocities of wheels which are used in the last PID using the current

velocities and computing the command for each vehicle side. The controller is featured as fol-

lowing:

With vl, vr the velocity of vehicle side, ϕ the heading, φd and vd respectively the desired

heading and the desired linear velocity of the vehicle, ωld and ωrd respectively the desired

rotary velocity16 of the left side and right side, ul and ur respectively the velocity command for

the left wheels and for right wheels17.

Here is the velocity resulted of a straight line at the initial heading followed by a straight line

with a Pi/6 heading added.

16 Equations are given in Annex - Controller.
17 See the Arduino code in the Project Code, at the page 48-52. The controller is called by the main code at the
page 36 line 327.

ωld, ωrd

Controller

φ̇d

Collecting

Data

Set points

PID PID

vl, vr

ϕ

 φd

 vd

ul, ur Motors
Inversed

Kinematic

Model

Figure 15: The controller functioning

25 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

Graph 4: The measured heading for a specific variable command

Graph 5: The measured linear velocity for a specific variable command

The velocity measured by encoder reach 95% of the desired value at 1.46s. We can see that

the change of desired heading begets a small velocity disturbance with a small oscillation be-

tween 62cm/s and 74cm/s. The convergence is at 70cm/s as desired.

 Here are the error curves for the heading:

310

320

330

340

350

360

0 1000 2000 3000 4000 5000 6000

A
b

so
lu

te
 H

ea
d

in
g

(d
eg

re
e)

Time (ms)

The measured Heading by the fusion Compass/Gyroscope

0

10

20

30

40

50

60

70

80

0 1000 2000 3000 4000 5000 6000

Li
n

ea
r

ve
lo

ci
ty

 (
cm

/s
)

Time (ms)

The measured linear velocity by the encoders

𝝋𝒅 = 𝝋𝑰𝒏𝒊𝒕 +
𝝅

𝟔
 𝝋𝒅 = 𝝋𝑰𝒏𝒊𝒕

𝒗𝒅 = 𝟕𝟎𝒄𝒎/𝒔 𝒗𝒅 = 𝟕𝟎𝒄𝒎/𝒔

26 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

Graph 4: The absolute difference between the measured heading and the desired one

We can observe that in the first part the heading error is under one degree. Then the

error increases because the desired value changes, after half a second the error down to

0.37 degree and then up to 3.7 degree. The second desired heading is followed with an

average error of 3 degree which is correct for a controller implemented every half second

because of low-cost encoders use. Do not forget that there is also the incertitude due to

sensors for the measured heading. However, a slightly increase of the integral term in the

first controller could improve the convergence value.

III.B. Observer

III.B.1. General Explanation [17]

An observatory is needed. The system made is the following:

With 𝑤𝑘 the velocities and heading desired and 𝑥𝑘 the predicted state.

0

5

10

15

20

25

30

0 1000 2000 3000 4000 5000 6000 7000 8000

Er
ro

r
(d

eg
re

e)

Time (ms)

The absolute value of the difference between the measured
heading and the desired heading

State

 and Measures

Observer

𝑢𝑘 𝑌𝑘

Regulator

(PID)

𝑥𝑘

𝑤𝑘

Figure 16: The system composed of the Observer and the Controller

27 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

III.B.2. Application on the system
III.B.2.a. Application

The first idea was to use an extended Kalman filter as observer (See in annex the explanation

of this observer). The fact that the rover used for test is difficult to model and that the dynamic

model used is not in accordance with the rover begets a real issue in this observer. Indeed, the

observer is based on a model, but if the model is wrong, the observer will be wrong too. So, here

is a significant issue on this project: the simulation works, but it is not a simulation of the rover

used for test because this rover is too unperfected (low cost sensors, low cost motors, room with

electro-magnetic noise…). The bad accuracy of the GPS is also an issue for this part.

To solve both of these issues three choice comes:

- Create a locator which computes the position [
𝑥
𝑦] of the rover with GPS data.

- Use a Kalman Filter on [
𝑥
𝑦] using the GPS data.

- Apply a dead reckoning.

These three solutions were tested, and the two first had been compared.

i. the “locator”

A locator was implanted to computes the position [
𝑥
𝑦] of the rover. The locator is a fuse of the GPS

data and a dead reckoning.

- The displacement 𝑑𝑛 of the rover from the initial position to the present time position 𝑝𝑛 =

[
𝑥𝑛
𝑦𝑛
] given by the GPS, (see in the following figure at the left)

- The mean of all the translated GPS data samples gives a better estimation for the initial posi-
tion.

- The estimation of the present time position �̂�𝑛 is given by the translation of the better esti-
mation of the initial position. (see in the following figure at the right)

−𝑑𝑛

GPS: 𝑝𝑛 = [
𝑥𝑛
𝑦𝑛
]

�̂�0 = mean(𝑝𝑖 − 𝑑𝑖)

+𝑑Ԧ𝑛

�̂�𝑛

Figure 17: The "Locator" principle

28 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

The function ComputeXY18 is used to update the coordinate of the vehicle in function of the GPS data

x,y and the value of 𝑣𝑙, 𝑣𝑟, φ – X – and of the time step dt. In this code x0 and y0 are the first coordi-

nate of the vehicle and is the total displacement of the vehicle.

This solution cannot be used if there are too many GPS disturbances. It is an accurate method if the

initial position is well known.

ii. Kalman filter

The third solution is a Kalman filter19 with:

�̇� = [
�̇�
�̇�
] = [

𝑢1
𝑢2
] = [

𝑣𝑙 + 𝑣𝑟
2

cos (𝜑)

𝑣𝑙 + 𝑣𝑟
2

sin (𝜑)
]

𝑌 = [
𝑥
𝑦]

A test has been made to compare this observer with the locator previously explained. The test has

been made in a wasteland to avoid reflexion due to building. The first position of the rover is given

thanks to google map data with:

{
𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 = 50.377799 ∙

𝜋

180

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 = −4.126823 ∙
𝜋

180

The rover is motionless and data computed by the Kalman filter, the locator and measured by the

GPS are recorded. So, if the first position is perfectly known the observers should converge at the

position (0,0). Here are data got:

18 See this function at the page 44, lines 237-262 of the Project Code. It can be called in the main code at the
page 35, lines 295.
19 See this observer at the page 42 – 43, lines 85 - 202 of the Project Code. It can be called in the main program
at the page 35 line 293

29 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

Graph 7-8: The comparison between the Locator result (blue), the Kalman Filter result (orange), and the GPS data (grey)

The GPS noise is not Gaussian despite the choice of a wasteland, so the Kalman filter choice is

not very relevant.

We can see that the locator is less disturbed by the GPS noise than the Kalman filter. The

locator converges toward a value whereas the Kalman oscillates around the value with an amplitude

depending of the GPS noise. For a motionless experiment the locator seemed be more accurate than

the Kalman filter. But the difference between both observers are not large: it is a difference less than

1 meter. At the end of the experimentation (i.e. after 12min20s) the locator gives the following value:

-5

-4

-3

-2

-1

0

1

2

3

0 200 400 600 800 1000 1200 1400 1600

p
o

si
ti

o
n

 o
n

 t
h

e
Y-

ax
is

 (
m

)

Numerous of data

Position on the Y-axis of the local map estimated by the locator or
the kalman filter, and the GPS data

Locator

Kalman Filter

GPS

-1

-0,5

0

0,5

1

1,5

2

2,5

3

0 200 400 600 800 1000 1200 1400 1600p
o

si
ti

o
n

 o
n

 t
h

e
X

-a
xi

s
(m

)

Numerous of data

Position on the X-axis of the local map estimated by the locator or the
kalman filter, and the GPS

Locator

Kalman Filter

GPS

30 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

{
𝑥 = 0.34 𝑐𝑚
𝑦 = −0.35 𝑐𝑚

These values are reached for the first time by the locator after 3min44s for the x value and 2min31s

for the y value. Whereas for the Kalman Filter it is 1min58 for the x value and 2min36 for the y value.

In annex is the position given by these observers and the GPS data. We can easier see that the loca-

tor converges whereas the locator turns around the value.

iii. Dead Reckoning

Here is the fourth solution. It is a dead reckoning given by:

�̇� = [
�̇�
�̇�
] = [

𝑢1cos (𝑢2)
𝑢1sin (𝑢2)

]

{𝑢1 =
𝑣𝑙 + 𝑣𝑟
2

𝑢2 = 𝜑

The code was made using the MathsMatrix library. The function made for the dead reckoning

takes in arguments x,y –the last rover localisation- ,ϕ– the heading-, 𝑣𝑙, 𝑣𝑟- the velocities-, dt – the

sample time – and X the state vector which is computed. The function is named DeadReckoning20.

The result of the dead reckoning was written in the LCD screen. In annex are the result for

some tests with a desired velocity of 70cm/s. For the test, the local map was rotated of 𝜑𝐼𝑛𝑖𝑡 to be

able to check easily the result. The last position is computed by the dead reckoning (printed on the

LCD screen) and manually measured.

The difference between the dead reckoning result and the measures are less than 20cm for the x-axis

and 4cm for the y-axis. The major part of the error is due to the acceleration of the rover and the high

time sample (500ms). The change of heading begets velocity variation which disturb the dead reckon-

ing. Moreover, the more there are velocity variations the less this method is accurate and the more

the travel distance is long the less this method is accurate.

III.B.2.a. Conclusion

In an indoor situation, the best choice between the three solution is the dead reckoning be-

cause it does not use GPS data and works for small experiment.

For a low-cost GPS, the locator will be preferred in outdoor place where the noise is possibly

non-Gaussian.

III.C. Guidance

III.C.1. Explanation

The guidance is the algorithm which computes the desired velocity and desired heading to

feed the controller. It allows the rover to reach a target and to avoid obstacle.

The guidance made is based on the artificial potential method. The rover is like a charged particle in

a potential field, obstacles are same-sign-charged particle and target is a particle with an opposite

20 See the page 44 at the lines 206 – 233. This function is called by the main code at the page 35 line 294.

31 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

sign charge.

So each thing –target and obstacles- create a potential field. And the rover reacts to this field.

In this part the rover position in the local map is called 𝑝 = [
𝑥
𝑦], the target position in the local map

is called 𝑝𝑡and the position of the different obstacles are called 𝑞𝑖.

The resulted potential 𝑉(𝑝) is computed as the addition of each potential 𝑉𝑖(𝑝).

𝑉(𝑝) = ∑𝑉𝑖(𝑝)

Then, the resulted forced 𝑓Ԧ = [
𝑓𝑥
𝑓𝑦
]is given by:

𝑓Ԧ = −𝑔𝑟𝑎𝑑ሬሬሬሬሬሬሬሬሬሬԦ(𝑉(𝑝))

Finally, the desired velocity and the desired heading are given by:

{

𝑣𝑑 = ||𝑓Ԧ||

𝜑𝑑 = arctan (
𝑓𝑥
𝑓𝑦
)

Here is the force due to the target:

𝑓𝑡ሬሬሬԦ = 𝐾𝑡 ∙
𝑝 − 𝑝𝑡

||𝑝 − 𝑝𝑡 ||

Obstacles are detected with three ultrasonic sensors put in the front of the rover21. The obstacles

distances are converted into a coordinate in a local map thanks to the positioning of sensors in the

rover and to the localisation of the rover in the local map (see in annex). In this part the position of an

obstacle detected by the sensors left is called 𝑝𝑜𝑏𝑠_𝐿 = [
𝑥𝑜𝑏𝑠_𝐿
𝑦𝑜𝑏𝑠_𝐿

].

Here is the force due to obstacles detected at the left and right of the rover:

21 See I. Hardware part, Ultrasonic module, The position computing.

Figure 18: The artificial potential principle

Target Obstacles

32 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

𝑓𝑜𝑏𝑠_𝐿ሬሬሬሬሬሬሬሬሬሬሬԦ = 𝑓𝑜𝑏𝑠_𝑅ሬሬሬሬሬሬሬሬሬሬሬԦ = 𝐾𝑜𝑏𝑠𝐿𝑅 ∙
𝑝 − 𝑝𝑜𝑏𝑠_𝐿

||𝑝 − 𝑝𝑜𝑏𝑠_𝐿||
2

Here is the force due to the obstacle detected with the sensor at the middle:

𝑓𝑜𝑏𝑠_𝑀ሬሬሬሬሬሬሬሬሬሬሬሬԦ = 𝐾𝑜𝑏𝑠𝑀 ∙
𝑝 − 𝑝𝑜𝑏𝑠_𝑀

||𝑝 − 𝑝𝑜𝑏𝑠_𝑀||
3

𝐾𝑡, 𝐾𝑜𝑏𝑠𝐿𝑅 and 𝐾𝑜𝑏𝑠𝑀 are three constants experimentally found.

III.C.2. Improvement
III.C.2.a. Local Minimum

One issue had been encountered with this method: The potential field can

be equal to zero. It is a local minimum [18]. In this case the rover does not

move and it cannot reach the target. To solve this issue, a second behaviour

had been created.

If the potential field is under a threshold 𝑣𝑚𝑖𝑛, the local minimum is as-

sumed and the rover must try to move away from the nearest obstacle (left

or right). The decision given by:

{
𝑣𝑑 = 55 𝑐𝑚/𝑠
𝜑𝑑 = 𝜑 ± 𝐾𝛾 ∙ 𝛾

With γ the heading of the sensor used compare to the rover’s one 𝜑. Here 𝛾 =
𝜋

6
.

The coefficient 𝐾𝛾 to move away had been found experimentally.

III.C.2.b. Safety

To avoid overshooting the target, the rover is stopped near the target thanks to a threshold

𝑑𝑚𝑖𝑛. When the distance to the target is under this threshold the decisions is the following:

{
𝑣𝑑 = 0 𝑐𝑚/𝑠
𝜑𝑑 = 𝜑

This stops the rover. And while the target is unchanged the decision will be this last. To avoid having

too higher speed, the speed is limited with a second threshold 𝑣𝑚𝑎𝑥.

III.C.2. Application22

The constant experimentally found are the following:

Name Symbol Value

22 The Arduino code is in the Project Arduino Code pages 45 - 48. It is called by the main program at the page
36, line 319.

𝑓Ԧ, 𝑡𝑜𝑜 𝑠𝑚𝑎𝑙𝑙

𝑓Ԧ𝑡

𝑓Ԧ𝑜𝑏𝑠_𝐿

Figure 19: The Local Minimum
example

33 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

ATTRACTIVE_TARGET_COEF 𝐾𝑡 72

REPULSIVE_OBSTACLE_COEF 𝐾𝑜𝑏𝑠𝐿𝑅 4

 𝐾𝑜𝑏𝑠𝑀 0.8*𝐾𝑜𝑏𝑠𝐿𝑅

THRESHOLD_LOCAL_MINIMUM 𝑣𝑚𝑖𝑛 60

GAMMA_COEF 𝐾𝛾 3

OVERSHOOT_SECUTITY_DISTANCE 𝑑𝑚𝑖𝑛 30 (cm)

THRESHOLD_VELOCITY_SECURITY 𝑣𝑚𝑎𝑥 100 (cm/s)

Table 5: The constant used in the path planning and found experimentally

Here is a test performed at the end of the internship. The rover begins its test on the yellow cross

and its target is four meter further on the other yellow cross. An obstacle -here two cardboard

boxes- is placed between the two cross. The rover starts to go forward and after it avoids the obsta-

cle by the right and go to the target. It stops some centimetres before the target because of the

dead reckoning precision.

Photo 9 4-14: A test of a target reaching with obstacle avoidance

34 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

Easy situation is managed, but if the rover begins too near of an obstacle it often collides the

obstacle. Moreover, if the obstacle is a large wall the rover would have some difficulties to reach the

target and could collide the wall because the rover would be drawing near the wall and the sample

time is large. However, with a better sample time (i.e. better encoders) the obstacle avoidance

would be easier and better.

III.D. Sum up
Finally, the system made is the following, for an indoor situation:

For an outdoor situation:

With:

iv. 𝑢𝑙, 𝑢𝑟 the pwm command for the motors of the left and right side.

v. 𝑥, 𝑦 the position of the rover measured by the GPS

vi. 𝑣𝑙, 𝑣𝑟 the wheels’ velocity of the left and right side measured by encoders

State

 and Measures

Regulator

(PID)

[

𝑣𝑙
𝑣𝑟
𝜑
]

Observatory
(Dead Reckoning)

[
𝑣𝑑
𝜑𝑑
] [

𝑥
�̂�
] Guidance

(artificial potential)

[
𝑢𝑙
𝑢𝑟
]

State

 and Measures

Regulator

(PID)

ۏ
ێ
ێ
ێ
ۍ
𝑥
𝑦
𝑣𝑙
𝑣𝑟
𝜑ے
ۑ
ۑ
ۑ
ې

Observatory
(KF or Locator)

[
𝑣𝑑
𝜑𝑑
]

Guidance
(artificial potential)

[
𝑥
�̂�
]

[
𝑢𝑙
𝑢𝑟
]

Figure 20: The resulting system created for an indoor situation

Figure 21: The resulting system created for an outdoor situation

35 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

vii. 𝜑 the heading measured by the fusion of the compass and the Gyroscope

viii. 𝑥, �̂� the estimated position of the rover

ix. 𝑣𝑑, 𝜑𝑑 the desired velocity and the desired heading

To sum up, here is an organigram related to the Arduino program. In this organigram,

𝑡𝐿𝐶𝑉 is the time of the Last Computation Velocity which is also the time of the last sending data

to the Arduino Motor, and 𝑡𝐿𝑅𝐷 is the time of the Last recording data. Both Interruptions which

count the number of holes of encoders are not featured in this organigram, but do not forget

that for each encoder output change a function is called to counts in the Arduino Sensors board.

36 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

This part is done, works with difficulty due to low cost sensors like encoders and GPS which have a

very bad accuracy. A better system could be made and work better with more accurate sensors.

Setup Arduino SENSORS

Sensors initialisation, initiali-

sation of the communica-

tion.

Setup Arduino MOTORS

Initialisation motors, I2C

communication.

Loop ()

𝑡𝐿𝐶𝑉

> 500

ms

False

True

- Detach Interrupt

- Compute velocity, re-

set the number of

holes detected,

- Attach Interrupt,

- Look at obstacles,

- Sending data in an I2C

message.

On re-

ceive

Message

𝑡𝐿𝑅𝐷

> 50

ms

- Get raw data,

- Process data,

- Records data in SD

cards.

True

Receive data, Convert

data.

- PID to compute the heading velocity de-

sired,

- PID to computes PWM command.

Loop ()

Observer to localise the

rover

Guidance to compute the desired velocity and de-

sired heading to reach target and avoid obstacles

True

False

Figure 222: The principle of the Arduino program made

37 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

IV. Autonomous algorithm to follow a line.

IV.A. Explanation
In this feasibility study, 3 IR sensors are used to make a simple line

tracker. The layout of these sensors is described in the adjacent picture.

The sensors are aligned underneath the robot front in such a way that:

- The line is only detected by the central sensor if the

robot is centred on the line and parallel to the line.

- The line is detected by one or two sensors if the robot

follows incorrectly the line.

- A perpendicular line is detected by all sensors.

That is why, both extremities sensors are about one line’s width distant.

In the initial state, at least one of the sensors must detect the line.

During the line tracking:

1. If L (resp. R) detects the line, the robot must slightly turn at the left (resp. right).

2. If only M detects the line, the robot keeps driving.

3. If L, M and R detects the line, then the rover is a perpendicular line,

a. If the last state* was (1) ** or (2) it maybe not the line followed by the

rover so it keeps driving forward.

b. Else it rotates to 90 degrees.

4. If L, M and R detect nothing:

a. If the last state* was (1) the robot turns at extreme left (resp. right) to try

to join the line.

b. If the last state* was (2) it stops.

c. If the last state* was (3) it goes backward and rotates to 90 degrees.

Situations (1), (2) and (4a) are featured in the following pictures.

With only three sensors, the rover cannot correctly follow every turn. Indeed, very large turn

needed a higher rotary velocity. But an improvement had been integrated: the perpendicular turn.

One line’s width

L M R

(1)

(1)

(2)

(2)

(2)

(1)

(4a)

Figure 24: The straight-line example

Figure 25: The turn example

Figure 233: The positioning of
the IR sensors under the rover

38 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

When there is a perpendicular line, all sensors detect the line. At this moment, the rover must go back

– against inertia- and rotate about 90 degrees.

However, if the rover is on a perpendicular line (i.e. all sensors detect the line) after being on a line

(situation 1 or 2) then it goes forward because it can be a X-crossing. After, if the line disappears it

must go back – against inertia- and rotate about 90 degrees.

The decisions are summarising in the following table with 1 for a sensor which detects the line:

 L M R Choice Old L* Old M* Old R*

(1) 0 0/1 1 Slightly turn at right

(2) 0 1 0 keep driving

(1) 1 0/1 0 Slightly turn at left

(3a)
**

1 1 1 keep driving 0 1 0

(3b)
**

1 1 1 Go backward and ro-
tate to 90degree

1 0/1 0

0 0/1 1

1 1 1

(4a) 0 0 0 turn at extreme left 1 0/1 0

(4a) 0 0 0 Turn at extreme right 0 0/1 1

(4b) 0 0 0 Stop 0 1 0

(4c) 0 0 0 Go backward and ro-
tate to 90degree

1 1 1

Table 6: The command chosen in function of the situation

*The last state (Old L, Old M, Old R) is not updated when the state is (0,0,0).

** See the improvement in the next part.

IV.B. Results and enhancement

The adhesive tape used for tests is black and around 5cm in width. So, sensors are separated by 2.5cm.

 For this simple method, velocities used are constant. It is significant to choose great rotary

velocities for small turns and big turns. Indeed, if there is a too high rotary speed, the rover could lose

(1)

(2)

(3b)

(1)

(2)

(2) (4c)

Figure 26: A perpendicular line example Figure 27: A T-crossing example

39 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

a straight line in the situation (1) or have huge oscillation. And if it is too small for consistent turn

(situation 4a), the rover will lose the line quickly and will be very far to the line. The more the rover

stay near the line, the more the system could work correctly.

The first tests are made in the following roads:

The code23 made for the follower line is structured like it (see the next illustration): the first

Arduino board collects measurements of IR sensors and creates a message depending on the situation.

This message is sent to the second Arduino board in a I2C communication. When the second Arduino

23 The code to follow a line is in the Project Arduino Code. The first part is in the pages 25-27 and second one is
in the pages 36-39.

5cm

2.5cm

1.5cm

Setup Arduino SENSORS

Initialisation of Sensors, I2C

communication.

Setup Arduino MOTORS

Initialisation of Motors, I2C

communication.

Loop ()

On re-

ceive

Message - Get raw data,

- Process data to create a message which sums up

the situation

- Receive data,

- Feed motors in func-

tion of the situation.

Loop ()

False

True

 Photo 16: the T-crossing test

Photo 15: The turn test

Figure 28: The test circuit

Figure 29: The principle of the Arduino program made

40 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

board receives the message, it collects it and feeds the motors in function of the situation translated

by the message.

• Straight line:

The rover manages correctly a straight line but with some small oscillations. The more the rover

begin aligned on the line, the less is the oscillations amplitude. During straight line tests the line was

never lost. However, after a too huge turn, when the rover finds against the line it would oscillate with

huge amplitude.

• The consistent turn:

After a too consistent turn (more than this one), The rover could fail to find against the line

because it would arrive on the line with an angle too high and not detect the line. To avoid it, the

sample time had been tune to be able to see the line in the worst moment (i.e. when the rover is

perpendicular to the line). Here is the computing of the maximum time between two measures:

𝑡𝑠 =
𝑙

𝑣𝑚𝑎𝑥

with 𝑡𝑠 the sample time (s), 𝑣𝑚𝑎𝑥 the maximum speed given to the rover (cm/s), 𝑙 the road

width (cm).

 Here 𝑣𝑚𝑎𝑥 corresponds to a 100 pwm command - 70 cm/s-, and 𝑙 is equal to 5 cm.

So 𝑡𝑠 ≈ 71 𝑚𝑠.

That is why the sample time chosen is 50ms.

• T-crossing:

Here is one result got for the T-crossing.

Photo 17: Situation (2), keep driving. Photo 58: Situation (3), keep driving.

Photo 19: Situation (4c), Step 2-3, turns at right Photo 206: Situation (4c), Step 4, keep turning at right.

1 2

3 4

IR sensors

positioning

41 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

Photo 21: Situation (1), Slightly rotate at right Photo 22: Situation (2), keep driving

We can see that the rover can manage this kind of situation without lose the line. But some

time the rover does not arrive perpendicular to the line in the second picture. So, the situation con-

sidered is not the situation (3) but the situation (1). At this moment, it loses the line and the situation

(4a) is running and it takes a long time to find again the line. That is why the situation (3) was become:

If L, M and R detects the line, then the rover is a perpendicular line,

- If the last state* was (2) (i.e. the rover is aligned on the line) it maybe not the line

followed by the rover so it keeps driving forward.

- Else it rotates to 90 degrees.

In this way, if the rover was not correctly aligned and that there is a X-crossing, the rover would turn

in the crossing.

With these improvements, if there are not very large turns, the rover can follow a line without

lose is a long time. At this end of the path or in a deadlock the rover stops. Some ideas of enhancement

would be to turn back and continue to follow the line after a deadlock and to manage a T-crossing

without a single direction choice (here there is only T-crossing with a right turn). But the works done

show that it is feasible to do a line following with a small low-cost rover and only three IR sensors.

5 6

42 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

Conclusion

This feasibility study is completely done and shows that an autonomous car could work with

simple components. But it is obvious that better sensors are, better the algorithm works. So, it could

be interesting to improve some sensors, particularly the encoders to have a smaller time sample.

 Moreover, the outdoor situation could be more tested to check its limits, and it could be in-

teresting to more fuse the two modes: “reach a target” and “follow a line”.

 This internship was stimulating, improving my autonomous and skill to solve issues. It

allows me to improve consequently my knowledge in Arduino programming and to have experienced

hardware issues.

43 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

Annex – Components details

Arduino Board

- ICSP

The 6 ICSP (in-circuit serial programming) pins can be used like a

boot-loading or a SPI communication as with a SD board. The ICSP

pins are described in the adjacent picture.

For more details about SPI and pin meaning: MicroSD card

datasheet.

- Interrupt pins

The Arduino Mega board has some interrupts pins associated to number. There are referenced in

this board:

Interrupt pin 2 3 18 19 20 21

Number 0 1 5 4 3 2

These interrupts pin are used to beget interruption in Arduino program. In this project, interrupts

are notably used for the measure of velocity.

- Communication

Communication can be:

- Through an I2C communication (“wire slave receiver”). For this the first and the most im-

portant step is to connect the ground of both Arduino boards. Then, the clock (SCL pin)

and data (SDA pin) must be connected.

- With a Serial communication. For this the ground of both Arduino board must be con-

nected. Then Rx and TX pins of one of the Arduino must be connected to the TX and Rx

pin of the other one.

To transfer data from sensor from one Arduino to the other one the way chosen was the I2C commu-

nication. For this it was needed to increase the length if the buffer because it was limited to 32 bytes

by a constant definition in the Twi and Wire library.

Motor driver functioning

L293D can control two DC motors. Its works with two H-bridges [3] which allow the voltage to

go through a motor in either direction. This change of direction begets a change on the rotation direc-

tion the motor.

MISO

CLK

RESET

VCC

MOSI

GND

44 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

Therefore, this motor shield can control 4 DC motor simultaneously, by adjusting their rotation speeds

and directions.

Micro SD board

Here is the MicroSD board use for the project. It is useful notably for data collecting to check the

dynamic modelling of the robot. This component uses the serial peripheral interface (SPI) to communi-

cate with the Arduino [5]. This kind of communication is between one master devices and some slaves.

Data transmission generated by the master is synchronized by the clock pulses.

The wires of the MicroSD board are the following for the Arduino Mega [6]:

MICROSD BOARD MEANING ARDUINO MEGA

CS Chip Select Digital 53
DI Master Output Slave Input (MOSI) Digital 51/ISCP pin

Data output from master
DO Master Input Slave Output (MISO) Digital 50/ISCP pin

Data output from slave
CLK Clock Digital 52/ISCP pin
GND GND
5V 5V

This board uses the SD library SPI and SD (Secure Digital). File system recommended for the SD card is

the FAT16 (File Allocation Table). This file system uses the 8.3 format for the file Naming, for instance,

filenames are composed of at the most 8 characters, following by an extension with a dot and com-

posed of at the most 3 characters.

I2C LCD [8]

The I2C LCD Display used is the first version of it. It is composed of a

YwRobot board and a LCD. The I2C (Inter-Integrated Circuit) commu-

nication uses two wires: Serial Data Line (SDA) and Serial Clock Line

(SCL). It is a multi-master bus (i.e. it uses multiple master bus) and

multi-slaves bus (i.e. it uses multiple slave buses). Masters generate

the clock and start communication with slaves, whereas slaves receive

the clock and reply to masters.

45 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

The library LiquidCrystal_V1.2.1 is used with the LCD I2C.

Potentiometer for contrast adjustment
Backlight jumper

YwRobot board

46 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

Annexe - Model

1. # -*- coding: utf-8 -*-

2.

3. """Simulation based on equation of the following researches:

4. Analysis and Experimental Verification for Dynamic

5. Modelling of A Skid-Steered Wheeled Vehicle

6. Wei Yu, Student Member, IEEE, Oscar Ylaya Chuy, Jr., Member, IEEE,

7. Emmanuel G. Collins, Jr., Senior Member, IEEE, and Patrick Hollis

8.

9. Dynamic modelling and experimental validation of a skid-steered

10. vehicle in the pivotal steering condition.

11. Jun Ni and Jibin Hu

12.

13. Dynamic Modelling and Motion Planning for Robotic Skid-Steered Vehicles

14. Nikhil Gupta

15.

16.

17. Simulation made by Sophie TUTON and Nicolas VEYLON"""

18.

19.

20. import numpy as np

21. import matplotlib.pyplot as plt

22. import scipy.integrate as integrate

23. import time

24.

25. coefStallTorque = 0.027/3 # stall-torque

26. coefNoLoadSpeed = (110/3)*2*np.pi/60 # no-Load speed

27. m = 0.500 #weight (kg)

28. r = 0.034 #wheel radius (m)

29. B = 0.131 #robot width (m)

30. b = 0.025 #wheel width (m)

31. l = 0.25 #robot length (m)

32. L = 0.125 #from the beginning of a rear patch to the end of the front patch

33. C = 0.115 #from the end of a rear patch to the beginnig of the front patch

34. p = m*9.8/(4*((L-C)*b/2)) #normal pressure (Pa)

35. I = m*(l**2 + (B-b)**2)/12 #Moment of inertia of a rectangle (kg.m2)

36. # mu = 1.1 #friction coefficient

37. mu = 0.5

38. Kr = 5.4e-4

39. f = (m/2)*9.8*0.03 #rolling resistance of the motor

40. # alpha = 3

41. alpha = 1.9

42. m1 = m*r**2/4

43. m2 = r**2*I/(alpha*B**2)

44. M = np.array([[m1+m2, m1-m2],

45. [m1-m2, m1+m2]])

46. Minv = np.linalg.inv(M)

47.

48. kinMat = r/(alpha*B) * np.array([[alpha*B/2, alpha*B/2],[-1,1]])

49. invKinMat = np.linalg.inv(kinMat)

50.

51.

52. def j(x,y,q_dot,Kin,sideX,sideY):

53. """Compute the shear displacement"""

54. sign = (1-2*(sideX == "l"))*np.sign(Kin[1,0]) # different signs between the in-

ner and the outer wheels

55. w = q_dot[int(sideX == "r"),0]

56. var = -C*(sideY == "r") + L*(sideY == "f")

57. if Kin[0,0] == 0:

58. R = 0

59. elif Kin[1,0] == 0:

60. R = 1e16

61. else:

62. R = abs(Kin[0,0]/Kin[1,0])

47 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

63. jX = np.sign(Kin[1,0])*((R+sign*B/2+np.sign(Kin[1,0])*x)*(np.cos((var/2-

y)*abs(Kin[1,0])/(r*w))-1) - y*np.sin((var/2-y)*abs(Kin[1,0])/(r*w)))

64. jY = (R+sign*B/2+np.sign(Kin[1,0])*x)*(np.sin((var/2-

y)*abs(Kin[1,0])/(r*w))) - var/2 + y*np.cos((var/2-y)*abs(Kin[1,0])/(r*w))

65. j = np.sqrt(jX**2 + jY**2)

66.

67. return(j)

68.

69. def gamma(x,y,q_dot,Kin,sideX,sideY):

70. sign = (1-2*(sideX == "l"))*np.sign(Kin[1,0]) # different signs between the in-

ner and the outer wheels

71. w = q_dot[int(sideX =="r"),0]

72.

73. if Kin[0,0] == 0:

74. R = 0

75. elif Kin[1,0] == 0:

76. R = 1e16

77. else:

78. R = abs(Kin[0,0]/Kin[1,0])

79. gamma = np.arctan2((R+sign*B/2+np.sign(Kin[1,0])*x)*abs(Kin[1,0]) -r*w, -y*Kin[1,0])

80. return(gamma)

81.

82.

83. def F(q_dot,sideX):

84. functionF = lambda y,x : p*mu*(1-np.exp(-

j(x,y,q_dot,Kin,sideX,"f")/Kr))*np.sin(np.pi+gamma(x,y,q_dot,Kin,sideX,"f"))

85. functionR = lambda y,x : p*mu*(1-np.exp(-

j(x,y,q_dot,Kin,sideX,"r")/Kr))*np.sin(np.pi+gamma(x,y,q_dot,Kin,sideX,"r"))

86. a1 = integrate.dblquad(functionF,-b/2,b/2,lambda x:C/2,lambda x:L/2)[0]

87. a2 = integrate.dblquad(functionR,-b/2,b/2,lambda x:-L/2,lambda x: -C/2)[0]

88. F = (a1+a2)

89. return(F)

90.

91.

92. def DynMod(VL,VR,dt,q_dot):

93. #motors equations

94. stallTorqueR = VR*coefStallTorque

95. stallTorqueL = VL*coefStallTorque

96. noLoadSpeedR = VR*coefNoLoadSpeed

97. noLoadSpeedL = VL*coefNoLoadSpeed

98.

99. stallTorque = np.array([[stallTorqueL,stallTorqueR]]).T

100. if VL == 0 and VR == 0:

101. stallMatrix = np.array([[0,0],

102. [0,0]])

103. elif VL == 0:

104. stallMatrix = np.array([[0,0],

105. [0,stallTorqueR/noLoadSpeedR]])

106. elif VR ==0:

107. stallMatrix = np.array([[stallTorqueL/noLoadSpeedL,0],

108. [0,0]])

109. else :

110. stallMatrix = np.array([[stallTorqueL/noLoadSpeedL,0],

111. [0,stallTorqueR/noLoadSpeedR]])

112.

113. if abs(q_dot[0,0] - q_dot[1,0]) < 0.001 or True:

114. C = np.array([[r*np.sign(Kin[0,0])*f,r*np.sign(Kin[0,0])*f]]).T

115. else:

116. C = np.ar-

ray([[r*(F(q_dot,"l")+np.sign(Kin[0,0])*f),r*(F(q_dot,"r")+np.sign(Kin[0,0])*f)]]).T

117.

118. #RK4

119. k1 = np.dot(Minv, 2*(stallTorque - np.dot(stallMatrix,q_dot)) - C)

120. k2 = np.dot(Minv, 2*(stallTorque - np.dot(stallMatrix,q_dot + dt*k1/2)) - C)

121. k3 = np.dot(Minv, 2*(stallTorque - np.dot(stallMatrix,q_dot + dt*k2/2)) - C)

122. k4 = np.dot(Minv, 2*(stallTorque - np.dot(stallMatrix,q_dot + dt*k3)) - C)

48 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

123.

124.

125. return(q_dot + dt*(k1 + 2*k2 + 2*k3 +k4)/6)

126.

127. def KinMod(X,dt,q_dot):

128. vL, vR = q_dot[0,0]*r, q_dot[1,0]*r

129. Kin = kinMat.dot(q_dot)

130. X = X + dt*np.array([[Kin[0,0]*np.cos(X[2,0])],

131. [Kin[0,0]*np.sin(X[2,0])],

132. [Kin[1,0]]])

133. return(X, vL, vR, Kin)

134.

135. def Input2Volt(i):

136. """Convert the command (0 -> 255) into a voltage"""

137. if i < 55:

138. v = 0

139. else:

140. v = -5.138236173E-09*i**4 + 4.146027104E-

06*i**3 - 0.001239302393*i**2 + 0.1859126277*i - 3.829291658

141. return(v)

142.

143.

144. if __name__ == "__main__":

145. q_dot = np.array([[0.0000000001,0.00000000001]]).T

146. X = np.array([[0,0,0]]).T

147. tmin = 0

148. tmax = 3

149. dt = 0.001

150. T = np.arange(tmin,tmax,dt)

151. uL = [80]*len(T)

152. uR = [80]*len(T)

153. i = 0

154.

155. records = [] #records x,y,phi,vL,vR

156.

157. X,vL,vR,Kin = KinMod(X,dt,q_dot) #X = x,y,phi ; Kin = v, phidot

158. V = []

159. for t in T:

160. VL,VR = Input2Volt(uL[i]), Input2Volt(uR[i])

161. #dynamic

162. q_dot = DynMod(VL,VR,dt,q_dot)

163. #kinematic

164. X,vL,vR,Kin = KinMod(X,dt,q_dot) #X = x,y,phi ; Kin = v, phidot

165. V.append(Kin[0,0])

166. records.append([t, vL, vR, X[2,0], X[0,0], X[1,0])

167. i+=1

168.

169. #recording in file

170. file = open("simu_forward_speed_70.txt",'w')

171. file.write("t(ms)\tvL(cm/s)\tvR(cm/s)\tphi(°)\tX(m)\tY(m)\n")

172. for i in range(0, len(records), 33):

173. rec = records[i]

174. file.write("{0}\t{1}\t{2}\t{3}\t{4}\t{5}\n".format(rec[0]*1000, rec[1]*100, rec[2]*

 100, rec[3]*180/np.pi, rec[4], rec[5]).replace('.',','))

175. file.close()

176.

177. records = np.array(records).T

178.

179. v80 = records[1,-1]

180.

181. v_exp = 0.58215*(1-np.exp(-T/0.350))

182.

183. #plot data

184. plt.figure(1)

185. plt.subplot(221)

186. plt.plot(T,records[1,:],label = "vL")

49 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

187. plt.plot(T,records[2,:],label = "vR")

188. plt.plot(T,V,label = "v")

189.

190. plt.grid()

191. plt.legend()

192. plt.xlabel("Time (s)")

193. plt.ylabel("Velocity (ms^{-1})")

194.

195.

196.

197. plt.subplot(222)

198. plt.plot(T,records[3,:],label = "ϕ")

199. plt.grid()

200. plt.legend()

201. plt.xlabel("Time (s)")

202. plt.ylabel("ϕ (rad)")

203.

204.

205. plt.subplot(223)

206. plt.plot(T,records[4,:], label = "X")

207. plt.grid()

208. plt.legend()

209. plt.xlabel("Time (s)")

210. plt.ylabel("X (m)")

211.

212. plt.subplot(224)

213. plt.plot(T,records[5,:], label = "Y")

214. plt.xlabel("Time (s)")

215. plt.ylabel("Velocity (ms^{-1})")

216. plt.grid()

217. plt.legend()

218. plt.xlabel("Time (s)")

219. plt.ylabel("Y (m)")

220.

221.

222. plt.show()

223.

224.

Here there is one result for a command of 80 for left motors and 150 for the right one’s:

0

10

20

30

40

50

60

70

80

90

0 500 1000 1500 2000 2500 3000 3500 4000

Li
n

ea
r

ve
lo

ci
ty

 (
cm

/s
)

Time (ms)

The measured and simulated linear velocities

Encoders

Tracker

Simulation

50 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

The velocity of the rover, measured by the encoder (blue), measured by Tracker (yellow) and simulated (grey) for a test which
a command of 80 in left motors and 150 in rights motors.

In this test, we can observe that the convergence speed is nearer with a difference about 4cm/s.

Moreover, the time for the first value at 95% of this value is about 600ms for the rover of test

however the simulated one is about 300ms.

The heading of the rover, measured by the encoder (blue), and simulated (grey) for a test which a command of 80 in left
motors and 150 in right motors.

The heading is increasing in both case but the simulated evolution is quicker that the current

rover. Indeed, the heading values are identical for the first half second, but after the difference

is about 5t with t the time in seconds. Indeed, the error of heading is about 5 degrees at 1second,

and 10 degrees at 2second, about 20degree at 4s…

-5

5

15

25

35

45

55

0 500 1000 1500 2000 2500 3000 3500 4000

re
la

ti
ve

 h
ea

d
in

g
(d

eg
rr

e)

Time(ms)

The measured and simulated heading

Compass/Gyroscope

Simulation

-80

-70

-60

-50

-40

-30

-20

-10

0

10

-250 -200 -150 -100 -50 0

y
(c

m
)

x (cm)

Measured and simulated trajectory

Tracker

Simulation

51 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

We can see that the trajectory of the simulated rover -the grey curve- and of the current rover -the

yellow curve-are similar at the begin until one meter of travel in the X-axis. Then, the current rover

turns slighter than the simulated one.

52 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

Annex - Controller

- Equation of the controller

Equations are the followings:

 φ̇d = 𝐾𝑝 ∙ 𝑒𝜑 + 𝐾𝑖 ∙ ∫ 𝑒𝜑𝑑𝑡 + 𝐾𝑑 ∙
𝑑𝑒𝜑

𝑑𝑡

 𝜔𝑙𝑑 =
1

𝑟
(𝑣𝑑 + φ̇d ∙ 𝛼 ∙

𝐵

2
)

 𝜔𝑟𝑑 =
1

𝑟
(𝑣𝑑 − φ̇d ∙ 𝛼 ∙

𝐵

2
)

 ul = 𝐾
′
𝑝 ∙ 𝑒𝜔𝑙 + 𝐾

′
𝑖 ∙ ∫ 𝑒𝜔𝑙𝑑𝑡 + 𝐾

′
𝑑 ∙
𝑑𝑒𝜔𝑙
𝑑𝑡

 u𝑟 = 𝐾′𝑝 ∙ 𝑒𝜔𝑟 + 𝐾′𝑖 ∙ ∫ 𝑒𝜔𝑟𝑑𝑡 + 𝐾′𝑑 ∙
𝑑𝑒𝜔𝑟
𝑑𝑡

Errors are given by:

𝑒𝜔𝑙 = 𝜔𝑙𝑑 −
𝑣𝑙
𝑟

𝑒𝜔𝑟 = 𝜔𝑟𝑑 −
𝑣𝑟
𝑟

With
(𝐾𝑝, 𝐾𝑖, 𝐾𝑑) = (2, 6, −0.1)

 (𝐾′𝑝, 𝐾′𝑖, 𝐾′𝑑) = (3, 0.3, 1.2)

And 𝑒𝜑 the error in heading,

 𝑒𝜔𝑙 and 𝑒𝑣𝑟 the error in velocity.

 𝑖𝑓 |𝜑𝑑 − 𝜑| < 𝜋 (Case 1)

 𝑒𝑙𝑠𝑒 (Case 2)

𝜑𝑑

𝜑

𝑐𝑎𝑠𝑒 2

𝜑𝑑 𝜑

𝑐𝑎𝑠𝑒 1

and 𝑒𝜑 = {

𝜑𝑑−𝜑
𝜑−𝜑𝑑
|𝜑𝑑−𝜑|

∙ (360 − |𝜑𝑑−𝜑|)

53 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

Annex - Observer
- Equation of the EKF

To simplify the context of the explanation is the one featured in the following illustration. As we can

see, the Extended Kalman Filter use the command 𝑢𝑘 and the measures 𝑌𝑘 to compute a prediction

of the next state 𝑋𝑘+1|𝑘̂ and the next covariance matrix Г𝑘+1|𝑘.

It is composed of two step: the correction and the prediction. The extended Kalman Filter is having

the advantage to be nonlinear whereas the Kalman Filter is linear. However, if the first value of the

state is not correctly known, the filter may diverge.

The system is described by these following equations:

𝑋𝑘+1 = 𝑓(𝑋𝑘 , 𝑢𝑘)

 𝑌𝑘 = 𝑔(𝑋𝑘)

With 𝑋𝑘+1 the state vector at the discretized time k+1, 𝑢𝑘 the command and 𝑌𝑘 the measures at the

time k. The state vector is not perfectly known, that is why there is a non-zero covariance matrix Г𝑘

corresponding to the incertitude on 𝑋𝑘.

Let us linearize 𝑋𝑘+1 and 𝑌𝑘 around 𝑋�̂� :

𝑋𝑘+1 = 𝑓(𝑋�̂� , 𝑢𝑘) +
𝜕𝑓

𝜕𝑋𝑘
(𝑋�̂� , 𝑢𝑘) ∙ (𝑋𝑘 − 𝑋�̂�) + 𝛼𝑘

𝑌𝑘 = 𝑔(𝑋�̂�) +
𝑑𝑔

𝑑𝑋𝑘
(𝑋�̂�) ∙ (𝑋𝑘 − 𝑋�̂�) + 𝛽𝑘

With 𝛼𝑘 and 𝛽𝑘 errors of linearization which correspond to Gaussian noise white in time. Thanks to

these equations we can compute the expectation 𝑋𝑘+1|𝑘̂ . Before, let us use these following nota-

tion: 𝐴𝑘 =
𝜕𝑓

𝜕𝑋
(𝑋�̂� , 𝑢𝑘) and 𝐶𝑘 =

𝑑𝑔

𝑑𝑋
(𝑋�̂�).

𝑋𝑘+1 = 𝐴𝑘 ∙ 𝑋𝑘 + 𝑓(𝑋�̂� , 𝑢𝑘) − 𝐴𝑘 ∙ 𝑋�̂� + 𝛼𝑘

𝑌𝑘 − 𝑔(𝑋�̂�) + 𝐶𝑘 ∙ 𝑋𝑘|�̂� = 𝐶𝑘 ∙ 𝑋𝑘 + 𝛽𝑘

𝑿𝒌+𝟏 = 𝒇(𝑿𝒌, 𝒖𝒌)

𝒀𝒌 = 𝒈(𝑿𝒌)

𝑬𝑲𝑭

𝑢𝑘 𝑌𝑘

𝑋𝑘+1|𝑘̂

 Г𝑘+1|𝑘

Like the command in a non-extended Kalman Filter

Like the innovation in a non-extended Kalman Filter

54 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

That is why, EKF equation are the followings:

- Estimated positions given by the locator and the

Kalman Filter based on GPS data

-5

-4

-3

-2

-1

0

1

2

3

-1 -0,5 0 0,5 1 1,5 2 2,5 3

P
o

si
ti

o
n

 o
n

 t
h

e
Y-

ax
is

 o
n

 t
h

e
lo

ca
l m

ap
 (

m
)

Position on the X-axis of the local map (m)

Estimated position given by the locator and the Kalamn Filter based
on the GPS data.

Locator

kalman Filter

GPS

Initial point

𝑋𝑘|𝑘 ̂ = 𝑋𝑘|𝑘−1̂ +𝐾𝑘 ∙ 𝑌𝑘෩ → 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛

Г𝑘|𝑘 = (𝐼 − 𝐾𝑘 ∙ 𝐶𝑘) ∙ Г𝑘|𝑘−1 → 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑌𝑘෩ = 𝑌𝑘 − 𝑔(𝑋�̂�) → 𝑡ℎ𝑒 𝑖𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛

𝑆𝑘 = 𝐶𝑘 ∙ Г𝑘|𝑘−1 ∙ 𝐶𝑘
𝑇 + Г𝛽𝑘 → 𝑡ℎ𝑒 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛

𝐾𝑘 = Г𝑘|𝑘−1 ∙ 𝐶𝑘
𝑇 ∙ 𝑆𝑘

−1 → 𝑡ℎ𝑒 𝐾𝑎𝑙𝑚𝑎𝑛 𝑔𝑎𝑖𝑛

Г𝑘|𝑘 = 𝐴𝑘 ∙ Г𝑘|𝑘 ∙ 𝐴𝑘
𝑇 + Г𝛼𝑘 → 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛

𝑋𝑘+1|𝑘̂ = 𝑓(𝑋�̂� , 𝑢𝑘) → 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑌𝑘෩ 𝐶𝑘 Г𝛽𝑘

𝑋𝑘|�̂�

Г𝑘|𝑘

Г𝑘|𝑘−1 𝑋𝑘|𝑘−1̂

Г𝑘+1|𝑘 𝑋𝑘+1|𝑘̂

CORRECTION

PREDICTION

55 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

We can observe the GPS noise in grey cross. After few time, it seemed centred on the rover positioning

(0,0). But it begins at the position (2.45, -2.66). That is why the Locator and the Kalman Filter begins

the estimate a position around (2.45, -2.66). and which go forward (0,0). But they not converge at

(0,0): the Kalman filter turns around (0.5,0) whereas the locator converges at (0.5,0).

- The dead reckoning result

Test 1: Straight Line at the initial heading (2s)

The last point computed with the dead reckoning is {
𝑥 = 1.158 𝑚
𝑦 = 0.011 𝑚

 , whereas the last point

got is {
𝑥 = 1.176 𝑚
𝑦 = 0.01 𝑚

. So, there is a difference of less than 2cm in the x-axis, and of less than 1cm on

the y-axis.

Test 2: Straight Line at the initial heading (6s)

The last point computed with the dead reckoning is {
𝑥 = 3.82 𝑚
𝑦 = 0 𝑚

 , whereas the last point got

is {
𝑥 = 3.91 𝑚
𝑦 = 0.04 𝑚

. So, there is a difference of less than 10cm in the x-axis, and of 4cm on the y-axis.

Test 3: Straight Line at the initial heading (12s)

The last point computed with the dead reckoning is {
𝑥 = 8.20 𝑚
𝑦 = −0.022 𝑚

 , whereas the last point

got is {
𝑥 = 8.05 𝑚
𝑦 = −0.08 𝑚

. So, there is a difference of 15cm in the x-axis, and about 6cm on the y-axis.

Test 4: Step 1(4s): Straight Line at the initial heading

 Step 2(2s): Straight Line at PI/6 of the initial heading

The last point computed with the dead reckoning is {
𝑥 = 3.57 𝑚
𝑦 = 1.13 𝑚

 , whereas the last point got

is {
𝑥 = 3.74 𝑚
𝑦 = 1.09 𝑚

. So, there is a difference of 17cm in the x-axis, and of 4cm on the y-axis.

56 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

Annex - Line following

Here is one result got for the turn.

 Situation (2), keep driving forward Situation (1), Slightly rotate at left

Situation (4a), turn at left

Situation (4a), turn at left

 Situation (1), Slightly turn at left Situation (2), keep driving forward

IR sensors

positioning

3 4

5 6

7 8

1 2

57 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

Annex - Arduino Code

The Arduino code is in the Project Arduino Code pdf. The code made manage some different mode like

“The Line following” and “The target reaching”. But in “The target reaching” mode it is needed to

choose between the indoor mode and the outdoor mode. And then in the outdoor mode it can choose

between “GPS target coordinates” and “relative target coordinates.” To choose the mode follow these

instructions:

TO FOLLOW A LINE:

1. In both "Constant.h" file, uncomment the definition of LINE_FOLLOWER.

(about l.26 for MainSensorsBoard and l.23 for MainMotorsBoard)

 2. Then upload programs

TO REACH A TARGET:

1. In both "Constant.h" file, comment the definition of LINE_FOLLOWER.

(about l.26 for MainSensorsBoard and l.23 for MainMotorsBoard)

 2. INDOOR/OUTDOOR:

 FOR INDOOR SITUATION:

2a. Comment each line which refers to the GPS in the MainSensorsBoard.cpp

and MainMotorsBoard.cpp where there is a comment.

For this, Ctrl + F --> GPS and read comments.

2b. In MainMotorsBoard.cpp choose the DeadReckoning observer

(about l.293)

 FOR OUTDOOR SITUATION:

2a. Uncomment each line which refers to the GPS in the MainSensors-

Board.cpp and MainMotorsBoard.cpp where there is a comment.

For this, Ctrl + F --> GPS and read comments.

2b. In MainMotorsBoard.cpp choose the KalmanFilter or the ComputeXY

(locator) observer (about l.293)

2c. In MainMotorsBoard.cpp adapt the initial state to the observer choose

(about l.154) and the covariance matrix if the observer is the Kalman Filter.

 3. TARGET COORDINATE:

 FOR GPS COORDINATE (ONLY IF GPS IS USED):

3a. Uncomment each line which refers to the the target position in the Main-

SensorsBoard.cpp and MainMotorsBoard.cpp where there is a comment.

For this, Ctrl + F --> GPS and read comments.

 WARNING: Comment two lines in the MainMotorsBoard.cpp (about l.258)

 FOR RELATIVE COORDINATE:

58 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

3a. Comment each line which refers to the the target position in the Main-

SensorsBoard.cpp and MainMotorsBoard.cpp where there is a comment.

For this, Ctrl + F --> GPS and read comments.

WARNING: Uncomment two lines in the MainMotorsBoard.cpp (about l.258)

 3b. Write the relative coordinate in the lines uncommented (about l.258)

4. Then upload programs

59 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

Annex – ASSESSMENT REPORT

60 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

61 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

Bibliography

[1] Robotshop, “Arduino Mega 2560 Datasheet,”

http://www.robotshop.com/media/files/PDF/ArduinoMega2560Datasheet.pdf.

[2] Tiptopboards, “Controleur de moteurs L293D pour Arduino,” http://tiptopboards.com/89-

controleur-de-moteurs-l293d-pour-arduino.html.

[3] Adafruit-Industries, “Adafruit Motor Shield,” https://cdn-

learn.adafruit.com/downloads/pdf/adafruit-motor-shield.pdf, 2015.

[4] Cytron-Technologies-Sdn.Bhd, “Product User’s Manual – HC-SR04 Ultrasonic Sensor,”

https://docs.google.com/document/d/1Y-yZnNhMYy7rwhAgyL_pfa39RsB-

x2qR4vP8saG73rE/edit, 2013.

[5] Wei Yu, Student Member, IEEE, Oscar Ylaya Chuy, Jr., Member, IEEE,, “Analysis and

Experimental Verification for Dynamic,” 2010.

[6] Kevin J Worrall and Euan W McGookin, “A MATHEMATICAL MODEL OF A LEGO, DIFFERENTIAL

DRIVE ROBOT,” International Control Conference, 2006.

[7] “Mass matrix,” https://en.wikipedia.org/wiki/Mass_matrix, 2017.

[8] Ron Kurtus, "Rolling Friction / Rolling Resistance," http://www.school-for-

champions.com/science/friction_rolling.htm#.WaaXarpFyUl, 2016.

[9] IUT Lyon1, “Dimensionnement Des Structures”.

[10] The Engineering ToolBox, “Rolling friction and rolling resistance,”

http://www.engineeringtoolbox.com/rolling-friction-resistance-d_1303.html.

[11] Tracker, “Video Analysis and Modeling Tool,” http://physlets.org/tracker/index.html.

[12] Sparkfun, “Using the Logic Level Converter,” https://learn.sparkfun.com/tutorials/using-the-

logic-level-converter.

[13] L. Jaulin, “Mobile Robotics,” 2015.

[14] Fethi MATOUI, Boumedyen BOUSSAID, Mohamed Naceur ABDELKRIM, “Local minimum

solution for the potential field method in multiple robot motion planning task,”

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7505223&tag=1, Monastir,Tunisia,

2015.

[15] Ron Robotics, rakeshmondal.info, “L293D Motor Driver IC,”

http://www.rakeshmondal.info/L293D-Motor-Driver, 2013.

[16] Arduino-Reference, “SPI,” https://www.arduino.cc/en/Reference/SPI.

[17] Arduino-Tutorial, “Card Info,” https://www.arduino.cc/en/Tutorial/CardInfo.

62 Sophie TUTON – Student at ENSTA Bretagne – Internship Report at the University of Plymouth

[18] Henry's-Bench, “YWRobot LCM1602 IIC V1 LCD Arduino Tutorial,”

http://henrysbench.capnfatz.com/henrys-bench/arduino-displays/ywrobot-lcm1602-iic-v1-lcd-

arduino-tutorial/.

