

Internship report

Autor: Clément Rolinat, SPID - Robotique

Internship supervisor: Maël Le Gallic

2

Table of Contents

Abstract 3

Context 4

Goals & concerns 4

Internship realisation 5

I) Deliberative collision avoidance 5

A) Introduction 5

B) Collision detection 6

C) Detection of the crossing of the sailing zone borders 9

D) Path replanning 10

E) Perspectives of improvement 17

II) Preparation for the WRSC 18

Economic analysis 19

Conclusion 20

Acknowledgment 21

References 22

Appendix 23

3

Abstract

 This report describes my work during my internship in the Åland Sailing Robots

research team of the Åland University of Applied Science.

 The main goal of this internship was to design a deliberative collision avoidance

algorithm. This algorithm should avoid the collision with the other boats, and avoid our boat

to cross the borders of a given sailing zone. It uses an interval analysis method. It is divided in

two main steps. The detection step check if there is any risk of collision or risk of crossing a

border of the sailing zone. If there is, the path replanning step start. It aims to choose a new

path, which avoid every obstacle, and in the same time assure that the boat doesn’t cross the

border of the sailing zone.

 The end of my internship matched with the participation of the team to the World

Robotic Sailing Championship. I also took part in the preparation of this competition.

4

Context

 My internship took place in the Åland Sailing Robots research team of the Åland

University of Applied Science. The goal of this research team is to develop an autonomous

sailboat, in order to develop Åland islands’ competency and innovation regarding unmanned

and autonomous shipping and green technology.

 They are currently working on the ASPire project, which aims to develop a marine

research platform. This platform takes the shape of a 4 meters sailboat, with a free rotating

wingsail, which consists of a mainwing and a tailwing, instead of a classic soft sail. The goal of

this platform is to carry out some long survey missions in the Baltic sea, in order to gather

data on the water composition. This project has currently funding for three years, and at the

time of my internship the project was at the half of its development.

Figure 1: ASPire on her christening on July 2017

Goals & concerns

 The main goal of my internship was to design a deliberative collision avoidance

algorithm. Indeed, during her missions, ASPire could meet some other boats, such as ferries,

containers ships, or pleasure boats. In order to assure her own safety and the safety of the

5

other boats, she has to be able to avoid them somehow. She also must stay in a defined sailing

zone, in order to avoid coasts and shallow waters.

 A reactive collision avoidance algorithm has already been implemented. It is based on

a voter's system, which decide at a given frequency toward which direction the boat should

aim at. But this is most adapted for short range collision avoidance, because at long range this

algorithm can’t assure to reach the destination point in an efficient way.

 For long range collision avoidance, the idea is to use a deliberative algorithm. It must

take into account all the information about every obstacle and allowed sailing zones, and

decide if it can follow the current path or if it has to change it. Currently, it is still at a prototype

and simulation stage, and it isn’t linked to the boat control system yet.

 The end of my internship matched with our participation in the World Robotics Sailing

Championship (WRSC) in Horten, Norway. In order to prepare this competition, I contributed

to the development of the control system of the vessel and of its simulator. I was also involved

in the on-sea tests of this control system, before and during this competition.

Internship realisation

I) Deliberative collision avoidance

A) Introduction
 The control system of ASPire is organized on several levels. First, the lower level

controller has for inputs the desired course and the current course, and sends to the rudder

actuator and the tailwing actuator a command. Above that, we have currently two

possibilities available. The first option is a line following algorithm that takes for inputs two

waypoints, and sends to the lower level controller the desired course in order to follow the

line between the two waypoints. It considers the wind direction in order to allow the boat to

tack when needed. The other option is the reactive collision avoidance based on a voter’s

system. It considers the wind, the detected obstacles, and the next waypoint to determine a

target course. The list of every waypoints is stored in a database as a list of coordinates. A

waypoint manager checks when the next waypoint is reached, and if so, sends the new

waypoint to the line following algorithm.

6

Figure 2: simplified diagram of the control system of ASPire

 The idea of the deliberative collision avoidance is to read the list of waypoints, and

check if there is any collision with another boat or if the boat crosses the border of a given

sailing zone. If so, it should modify this list, that is, modify the position of one or several

waypoints, or even add a new waypoint, in order to avoid this collision. We have some

information about the surrounding vessels thanks to the AIS (Automatic Identification

System). This device receives some information about the other boats, such as their GPS

position, speed and course.

B) Collision detection
 The main idea is extracted from the last part of the article A Simple Controller for Line

Following of Sailboats [2], which propose a collision detection algorithm based on interval

analysis.

 The assumptions of this algorithm are the following. We assume that the earth is

approximated by a plane, with a fixed cartesian frame Oxy. We consider that our boat detects

m other boats at the time t = 0. We assume that we measure the speed, the course and the

position of these boats with a known accuracy thanks to the AIS. The speed is considered as

constant. The position !(") of the #th detected boat is assumed to satisfy:

 $(") = &$. " + '$, # ∈ {1, … -}

Where &$ and '$ are vectors of ℝ² which correspond to the speed vector and the initial

position of the #th boat. The AIS doesn’t return the speed vector, but a projection allows

us to switch from the speed and course to the speed vector. As we know those two

quantities with a known accuracy, we have two boxes [&$] and ['$] which enclose &$ and '$ respectively. The information about all the obstacles are stored in a list.

High level
collision

avoidance

Waypoint
manager &
database

Line following
or voter’s

system

Low level
controller

Waypoints list

Waypoints list & sailing zone

Next waypoint target course

7

 Concerning our boat, we assume that its trajectory is the following:

 0(") = &0. " + '0

The two vectors &0 and '0 depend on the line to be followed by our boat, so on the

position of the two waypoints that we want to link, on the speed of our boat, and on its

initial position. In a first approximation, we will assume that the initial position of the

boat is on the 1st waypoint. We also assume that the waypoints coordinates are expressed

in our fixed cartesian frame. We assume that we know the progression speed of the boat

on the followed line. In many case, it will correspond to the GPS speed projected on the

course, but when she tacks it won’t be the case. however, it will be possible to make an

estimation. Again, we can easily switch from the course and speed to the speed vector

with a projection. Here again, we will consider that we have two boxes [&0] and ['0]

which enclose &0 and '0.

 In reality, the initial position of the boat may not be on the 1st waypoint. So, some

adjustment should be made in the current algorithm, for example create a waypoint on

the current position of the boat in the initialization of the algorithm. In any case, for the

good working of the method, we need to make sure that our boat is always somewhere

on the line between the two waypoints.

 Then the article proposes a method based on Interval Analysis. It aims to prove that the robot’s trajectory is safe. The idea is to check in a time interval [0, tmax] if there is

a collision. There is a collision in our trajectory if:

∃# ∈ {1, … -}, ∃" ∈ [0, "456], $(") = 0(")

That is if the following system has a solution:

7 89: − 9!<. " + >: − >! = 0," ∈ [0, "456], # ∈ [1, … -]9: ∈ [9:], 9! ∈ ?9!@, >: ∈ [>:], >! ∈ [>!]
By projecting this equation on x and y, and by combining the two equations obtained in a

3rd one, we get:

8

⎩⎪⎪
⎨
⎪⎪⎧

896: − 96! <. " + >6: − >6! = 0,89F: − 9F! <. " + >F: − >F! = 0,89F: − 9F! <8>6: − >6! < − 896: − 96! <8>F: − >F! < = 0," ∈ [0, "456], # ∈ [1, … -]96: ∈ [96:], 96! ∈ ?96! @, >6: ∈ [>6:], >6! ∈ [>6!]9F: ∈ ?9F:@, 9F! ∈ ?9F! @, >F: ∈ ?>F:@, >F! ∈ [>F!]

Then, if we express this system using intervals, we get that if:

∃# ∈ {1, … -}, G 0 ∈ 8[96:] − ?96! @< ∗ [0, "456] + [>6:] − ?>6! @ 9JK0 ∈ 8?9F:@ − ?9F! @< ∗ [0, "456] + ?>F:@ − ?>F! @ 9JK0 ∈ 8?9F:@ − ?9F! @< ∗ 8[>6:] − ?>6! @< − 8[96:] − ?96! @< ∗ 8?>F:@ − ?>F! @<

Then our boat will have a collision in the time interval [0, "456].

 In order to check for collision between the two waypoints, we should take "456 so

that our boat reach the 2nd waypoint at "456. We can estimate "456, as we assume we

know the progression speed of the boat on the line between the two waypoints.

 In case we have several waypoints, we can repeat this collision detection for each

segment of the trajectory. We assume that all the waypoints are stored in a list, and that

the last waypoint in the list is a checkpoint, that is we will have to reach it somehow and

we cannot modify it. It will be important for the path replanning step. In case we have

several waypoints, we must update the variables which represent the boat and obstacles

initial positions, so that they correspond to the value they should have at the beginning

of this new trajectory segment. We can calculate them because we consider that the speed

is constant, and that each trajectory is a line.

 In case we detect a collision, we start the path replanning step, which will be

described later in the chapter D.

9

Figure 3: processing of the waypoint list and collision detection

C) Detection of the crossing of the sailing zone borders
 We decided to model the sailing zone as a list of polygons of which the boat shouldn’t

cross the sides. Each polygon is modelled by the list of the coordinates of its vertices. We

assume that those coordinates are expressed in a fixed cartesian frame. The crossing

conditions are inspired by the example presented in the article Path planning using intervals

and graphs [1].

 We are in the same case than for the collision detection, that is the trajectory of our

boat is a segment between two waypoints. We can handle a case with several waypoints by

proceeding in the same way than in the collision detection. We consider that we have two

boxes A and B. The box A is the initial position of the boat, and the box B is the final position

of the boat. We denote by L! the #th vertex of a polygon. We assume that [M, N] denote the

set of all the segments with an endpoint in A and an endpoint in B. For each polygon of the

sailing zone, we need to check if:

∀#, ∀P ∈ [M, N], [L!, L!QR] ∩ P = ∅

If it’s true for all sides of all polygons, the boat never crosses the sailing zone border.

 But it’s difficult to implement this relation. To avoid this issue, we will consider the

contrapositive and use these equivalent relations:

∃#, 7 ∃P ∈ [M, N], (L! , L!QR) ∩ P ≠ ∅ 9JK∃X ∈ (M, N), [L! , L!QR] ∩ X ≠ ∅ 9JK[L! ∪ L!QR] ∩ [M ∪ N] ≠ ∅

10

We assume that (M, N) denote the set of all the lines supported by a point in A and a point in

B, (L!, L!QR) the line supported by L! and L!QR, [L!, L!QR] the segment linking L! and L!QR, and [M ∪ N] and [L! ∪ L!QR] the smallest box including A and B or L! and L!QR respectively.

 The last condition is important for a special case, where all the points are aligned. In

that case, the two first conditions will be true event if the trajectory doesn’t intersect the

polygon side.

 We can’t implement directly the two first conditions, so we will use the following

equivalence in the code instead:

∃#, GKZ"8L\N^̂ ^̂ ^⃗ , L\M^̂^̂ ^⃗ < ∗ KZ"8L\QRN^̂^̂ ^̂ ^̂ ^̂ ^⃗ , L\QRM^̂^̂^̂ ^̂ ^̂ ^⃗ < ≤ 0 9JKKZ"8L\QRL\^̂ ^̂ ^̂ ^̂ ^̂ ^⃗ , L\M^̂^̂ ^⃗ < ∗ KZ"8L\QRL\^̂ ^̂ ^̂ ^̂ ^̂ ^⃗ , L\N^̂ ^̂ ^⃗ < ≤ 0 9JK[L! ∪ L!QR] ∩ [M ∪ N] ≠ ∅

If it’s true for one of the polygon of the sailing zone, then the boat trajectory is crossing this

polygon.

As A and B are boxes, the coordinates of the vectors are some intervals, and the result of the

determinants are intervals too. So, in fact we manipulate a set of vectors and a set of

determinants. The mathematical notations may be inappropriate, but in practice it gives some

good results. We make this test just after the collision detection. If we detect that the boat

will cross the sailing zone border, we call the path replanning method.

Figure 4: detection of the crossing of the sailing zone borders

D) Path replanning
The second part, that is the modification of the list of waypoints, is a path planning

problem with dynamic obstacles. Some path planning problems, with static obstacles, can be

solved easily and efficiently with interval analysis method and graphs [1]. But the dynamic

obstacles make this approach much more difficult, because it also depends on time, and it’s

harder to define the configuration space.

11

The issue of dynamic path planning is not trivial, and the solution often chosen is to

consider that the obstacles are static, and make the calculation at a high frequency in order

to take into account the fact that the obstacles are moving. This solution is simple on the

theoretical level, and easy to implement, but it is not efficient, and it can be unsafe in some

situations. Some solution for the dynamic path planning had been developed recently. But

often, the papers describing those solutions aren’t freely available. And when they are, those

solutions are complex on the theoretical level, and we were not sure to have the skill and the

time required to adapt it to our situation and to implement it.

As the detection step uses some interval analysis, we choose to use the same

approach for the path replanning step. The general idea is to compute the set of all the speed

vectors that allow our boat to avoid a collision and that allow it to stay in the sailing zone.

For that, we use the separator algebra. We build a separator corresponding to the

collision condition of each obstacles, and to the crossing condition of each side of each

polygon of the sailing zone. Then, we compute the union of all these separators. Finally, we

can compute with a paving method the set of all the feasible speed vectors, that is the set

which avoid collisions and which avoid crossing the sailing zone borders. Then, we choose the

speed vector which is the closest to our initial speed vector.

We keep this speed vector during the same amount of time as it would take to our

boat to reach the waypoint with its previous speed vector. This assumption allows us to

compute a new waypoint, and to replace the former one by this one. For the last waypoint of

the list, we assume it is a checkpoint, so we shouldn’t modify it. In that case, we add a new

waypoint before the last one, instead of directly modifying it. However, if we are close enough

to the last waypoint, that is if the last waypoint is inside the final position uncertainty box of

the boat, we replace the last waypoint. It allows us to avoid some bugs link to the size of the

uncertainty box. If we compute a very long path, at the end the uncertainty box is so huge

that it could be impossible for the center of the box to reach the waypoint without a part of

the box collide with something or cross a border.

Collision separators

To build the collision separators, we use the same conditions than in the detection

part. We build one intermediary separator for each condition, then compute the intersection.

12

Then this separator, which correspond to one obstacle, goes in a list. This list aims to store all

the separators in order to make the union when we have built them all.

However, there is an issue with these conditions. Indeed, the inside of the set they

produce is empty. It produces a lot of boxes during the paving process and it can lead to a

very long execution time. In order to bypass this issue, we needed to rephrase these

constraints. We also needed to use the separators associated to the projection of the set

defined by the separator built with these constraints. Indeed, the dimension of the separators

is too high to allow them to have a non-empty inside. The projection allows us to decrease

this dimension. We rephrased the constraints as follow:

∃# ∈ {1, … -},
⎩⎪⎨
⎪⎧ ?>6! @ − [>6:] ∈ 8[96:] − ?96! @< ∗ [0, "456] 9JK?>F! @ − ?>F:@ ∈ 8?9F:@ − ?9F! @< ∗ [0, "456] 9JK

8?>F! @ − ?>F:@< ∈ 8?9F:@ − ?9F! @<8[96:] − ?96! @< ∗ 8?>6! @ − [>6:]<
After building the separators linked with these constraints, we build the separators of

their projection. Then, we make the intersection of these three separators of projection.

Finally, we can add them in the separator list, as previously.

 But the fact is that the projection operation is quite slow, so the execution time doesn’t improve as expected. Depending on the resolution of the paving and the number of obstacles, in some cases it’s faster to use projection, and in other cases, it’s faster
without using it. So, we decided to let the two version in the code, and to allow the user

to choose which version he wants to use. That way, it will be easy to make more tests, and

eventually decide later which version we should use.

Example

 On figure 5 & 6, you can see two paving made in the same conditions. There are

three obstacles, and the sailing zone is defined by a square around the evolution area of

our boat.

 The red boxes are inside the set of speed vectors that lead to a collision or to cross

a border of the sailing zone. The Yellow boxes are on the border of this set. Finally, the

light blue boxes are outside this set, so they represent the set of the feasible speed vectors.

The green box is the speed vector chosen by the algorithm.

13

Figure 5: result of the paving process without use of projection

The red boxes we can see on the edge of the image correspond to the speeds that lead to

cross the sailing zone border. At the center, the two triangle shaped yellow set (surrounded

in black here for more readability) correspond to the speeds that lead to a collision with one

of the obstacles.

14

Figure 6: result of the paving process with use of projection

Here we can see that the use of projection doesn’t modify the feasible speed set, and that

there are less yellow boxes in the set corresponding to the collision with an obstacle.

15

Figure 7: trajectories of the boats

 On figure 7 we can see the trajectories of the different boats. In red is displayed the

sailing zone borders. In yellow we can see the initially planned path of our boat. In black, there

are the paths of the other boats that we need to avoid. Finally, in blue is displayed the path

16

of our boat after the collision avoidance. We are not able to see it here, but at run time we

display the different uncertainty boxes moving on their paths.

Sailing zone border crossing separators

 For the sailing zone border crossing separators, we were not able to use the same

conditions than for the detection step. The two first conditions are usable, but the 3rd one

cause some troubles. As a reminder, the 3rd condition is the following:

∃#, [L! ∪ L!QR] ∩ [M ∪ N] ≠ ∅

See chapter C for more information. This condition is true if the two boxes are overlapping.

 Indeed, with the library we are using for interval computation, Ibex, we can’t use a

union or an intersection operator in the expression of a constraint defining a separator. This

is not allowed be the library, and we couldn’t find an easy way to bypass this issue. We were

forced to rephrase this constraint. The issue was to find a way to detect when two boxes are

overlapping, without using any union nor intersection operator. We will show the main idea

with a figure, because it’s easy to understand visually, but we won’t write the underlying

explicit mathematical expression in term upper and lower bounds of boxes, as it is in the code.

Indeed, it is very long and quite impenetrable, so it may be confusing. On figure 8, we show

an example of two overlapping boxes. Let say the blue one is [L! ∪ L!QR], and the red one is [M ∪ N] for example.

Figure 8: example of two overlapping boxes

The two boxes are overlapping if:

zmax(KR, XR) − max(|R, ~�) ≤ 0 9JKmax(K�, X�) − max(~R, |�) ≤ 0

l1

L1

l2

L2

D1 d1

D2

d2

17

 These conditions are used to build the separator, but the real expression is much more

complex. Indeed, all the variables depend on the relative position of the upper bounds or

lower bounds of the boxes A or B, and on the relative position of the two vertices.

 Then, the separator corresponding to one side of a polygon is added in the separator

list, in the same way as for the collision condition separators.

E) Perspectives of improvement
 The various tests we made allowed us to find some potential issues with the actual

algorithm that may cause some troubles when we will use this algorithm in real conditions.

 First, for now the algorithm assume that we can control the speed of our boat when

it chooses a new speed vector. Theoretically, it depends on the projection on the boat course

of the force applied on the wingsail, so on the wind speed and direction, on the heading of

the boat, and on the angle of attack of the wingsail. In theory, the angle of attack is controlled

thanks to the angle of the tailwing. So, it seemed to be possible to control the speed of the

boat. In practice, the on-sea tests we made show that it is very difficult to control the speed

of the boat because it depends on too many parameters. A simple way to bypass this issue

could be to choose a new speed vector which has the same norm as the actual speed vector.

Indeed, it will require more tests in real conditions, but it might be possible to assume that

our speed can remain constant, as soon as we process the collision avoidance on a reasonable

time interval, for example about few tens of minutes.

 There may be some issue when we choose a direction where the boat will have to tack.

Indeed, the progression speed of the boat on the segment will be slightly slower than when

it doesn’t need to tack. This case need to be checked, because fixing this issue will require to

complexify the algorithm. Indeed, if we can’t choose the same speed norm than the actual

speed for some directions, we will need to know somehow which are these directions, and

which speed norm we can have in these directions. For that, the choose of the speed vector

will have to take into account the wind direction.

 Another issue is linked to the uncertainty box corresponding to the position of our

boat. Actually, it doesn’t match the real uncertainty we have about the position of the boat.

Indeed, for each trajectory segment, we know that the boat will follow a line between the

two waypoints, and will stay in a given corridor around this line. So, the box shape doesn’t fit

with this knowledge. It causes some trouble when we process the collision avoidance on a

18

long amount of time. Indeed, the uncertainty box become huge, but it’s not consistent with

the reality, because we know that our boat will stay in a corridor around the line. The only

thing we don’t know is where exactly our boat is in this corridor, mainly because of the speed

uncertainty. It’s an issue, because if the uncertainty box is too large, it will detect some

collision whereas in reality there is no risk. In some cases when the box is very large, the set

of feasible speed vector can even become empty, and the algorithm will stop without finding

any path. So, we must choose carefully the amount of time on which we want to process the

collision avoidance, and make sure it isn’t too long. To avoid this issue, a simple solution would

be to consider that the speed isn’t an interval, but a fixed value. In that case the uncertainty

box corresponding to the position of our boat would have a fixed size. Of course, we would

lose partly the interest of the interval analysis, that allow us to take into account uncertainties.

It will require some tests in real conditions, because if in reality the speed of our boat doesn’t

vary a lot between two waypoints, the use of an interval to model it isn’t necessary.

II) Preparation for the WRSC

 The end of my internship matched with the participation of the ASPire project team

to the WRSC (World Robotic Sailing Championship). In order to prepare this competition, we

needed to have a working simulator, to test the control system before the on-sea tests.

 The simulator was reworked this summer and it wasn’t working properly yet. I was

assigned with fixing the remaining issue with this simulator. It is organised on a client-server

architecture. The server is the control system, and the client is the simulator and the display.

A lot of issues was linked to some conversion errors between two conventions. Indeed, the

control system use a north east down convention, and the simulator an east north up

convention. Moreover, in the simulator the angles are in the range [-180, 180], whereas in

the control system they are in the range [0, 360]. So, my main task was to check for each

variable that was sent from one side to another if it was in the right convention on both sides.

 But when all the convention issues were fixed, the simulated boat still had some

illogical behaviours. I was assigned with investigating these remaining issues. I finally found

out that there was something wrong with the calculation of the force on the wingsail. I

couldn’t find exactly what was wrong, but the value and the sign of the force seems

19

incoherent with the heading of the boat and the wind direction. So, some further

investigation should be made on this part of the code, and maybe the physics equations

should be checked too.

 I was also charged to develop a station keeping controller for the station keeping task

of the WRSC. The idea was to take advantage of the ability of our boat to go backward thanks

to the wingsail, to adjust our position as close as possible to the waypoint. Indeed, we could

stop on the waypoint, and if we start to drift forward, we could go back to the waypoint.

Likewise, if we drift backward, we could reach back to it. However, we haven’t any means to

know the direction of our speed at low speed. Indeed, we use the GPS speed, but at low speed

its direction is irrelevant. Without this knowledge, we can’t control correctly the rudder and

the tailwing, because obviously it won’t be the same control if we are going backward as if we

are going forward. Finally, we used the controller developed last year, which try to go back to

the waypoint when the boat passed it, using the line following controller. In practice, the boat

keeps turning around the waypoint.

 Finally, during the WRSC, I was involved in the on-sea tests, and in the trials

preparation.

Economic analysis

The ASPire project is financed for three years by the European Union, through the

European Regional Development Fund (50%) and the Åland government, through the Åland's

program for structural funds "Entrepreneurship and competency" (50%). They contributed up

to around 350 000€.

 Around 80% of this budget is dedicated to personnel costs. This include the project

leader wages for 3 years, 11.5 months of wages for a software developer, and 6.5 months of

wages for an electronic and mechanical engineer. A part of this budget is also dedicated to

some internships. Nevertheless, my internship wasn’t on this budget. Indeed, as it was an

Erasmus internship, I was paid by Erasmus.

About 9%, that is around 30 000€, of the total budget is allocated to the purchase of

services. For example, the seaworthiness calculation, some part of the construction of the

20

boat, the dimensioning and the construction of the wingsail, weren’t realised by the project

team, but were subcontracted.

Approximately the same part of the budget is dedicated to the purchase of materials

(electronic and mechanical) and tools, and the renting of machines and devices. However,

this budget is already almost entirely used whereas the project should still last for one year

and a half. Indeed, a great part of the construction wasn’t subcontracted, and some of the

building work that needed to be done was hardly predictable.

Finally, the remaining budget is allocated to travel expenses, such as travel allowances,

tickets, food & lodging, car costs… For example, this budget was used for attendance at HIPER

2017 and OCEANS 2017 conferences. Our trip to Norway for the WRSC and the expenses

made during our stay wasn’t on this budget, but on the budget of the Finnish Maritime

foundation.

Conclusion

 First, this internship was for me the opportunity to gain a lot of technical skill, in some

various fields. First, I was able to increase my knowledge about interval analysis. Then, As the

whole project is in C++, it allowed me to practice this language a lot, and more particularly

the interval library, Ibex. Moreover, I’m now familiar with the git workflow, as the project is

using it. It was also the occasion to work in an international team, and to practice the scrum,

a project management method. So, on the technical field this internship was very rewarding.

 It also allowed me to have an insight of the research world, as I was integrated in a

research team in the Åland University of Applied Science, and as my internship subject was

research oriented. This experience confirmed my wish to work in this sector.

 So, this internship was very interesting on many aspects, and I hope my work will be

useful for the future developments of the project.

21

Acknowledgment

I thank Anna Friebe, my project manager, for offering me the opportunity to make this

internship, and for being as available as she could to answer my questions, on technical or

practical concerns.

I also thank Luc Jaulin, my school internship supervisor and one of my teachers, for giving me

Anna’s contact for this internship, and for his advices and explanations about interval analysis.

Finally, I thank Maël Le Gallic, my internship supervisor, for making sure that I had all the

information to understand well the goal of my internship subject and the actual status of the

project in general. I also thank him for revising this report.

22

References

[1] Luc Jaulin, Path planning using intervals and graphs, Reliable Computing Journal, 2001,

7(1), pp.1-15

[2] Luc Jaulin, Fabrice Le Bars, A Simple Controller for Line Following of Sailboats, Robotic

Sailing 2012, p 117-129

23

Appendix

