Fabrication d'un banc de test automatique pour les armoires de contrôles des moteurs électriques pour pompes anti-incendie

Rapport de stage 2A

« Mohamad Mezher »

SPID – Robotique

Promotion CI 2018

Superviseur : Selim Loeb

Organisation d'accueil : TornaTech

Wavre, Belgique

30 septembre 2017

Remerciement

Je tiens d'abord à remercier Selim Loeb, ingénieur TornaTech, qui a été mon premier interlocutoire dans l'entreprise.

Je tiens également à remercier Corentin, ouvrier responsable de fabrication des armoires APSAD pour m'avoir accueilli sur son site.

Je remercie particulièrement Georgy, dirigeant de l'entreprise, qui m'a guidé tout au long de mon stage, ainsi que tous les membres de l'équipes TornaTech, pour leurs explications sur les différents actes de fabrication des armoires APSAD, et pour l'expérience enrichissante, tant humainement que techniquement, qu'ils m'ont fait vivre pendant ces neuves semaines de stage.

Résumé

Au cours des révolution technologiques, on a bien remarqué l'importance de l'informatique industrielle qui développe des interfaces entre l'informatique et les appareils industriels par l'intermédiaire des automates programmables. Depuis des dizaines des années les automates programmables ont bien simplifié l'automatisation des installation électriques et la communication machine-humain.

J'ai choisi d'effectuer mon stage dans l'entreprise TornaTech situé en Belgique, afin de pouvoir juger des différentes difficultés du travail avec les automates, les armoires électriques et l'importance de suivre des procédures bien déterminée dans la fabrication de ces armoires.

Mon stage s'est devisé en plusieurs parties. J'ai tout d'abord assisté à la fabrication d'une armoire APSAD dans le but de comprendre le fonctionnement de ces armoires. Ensuite, j'ai assisté dans des tests réalisés sur ces armoires pour vérifier leurs fonctionnements et comprendre les étapes du test. Ensuite, j'ai assisté à la réalisation des chemins électriques du banc de test afin de créer une version ProfiCad des chemins. Il a ensuite fallu fabriquer le banc de test et réaliser le câblage. La partie programmation était la partie la plus importante dans ce projet, ou il fallait programmée un automate dans le but d'avoir un banc de test qui va réaliser le test des armoires automatiquement.

Enfin, ce stage m'a permis d'apprendre beaucoup sur les relations humaines au sein des entreprises notamment sur les rapports cadres-operateurs et operateurs entre eux.

Abstract

During the technological revolution, we have seen the importance of industrial computing, which develops interfaces between computers and industrial devices through PLC's. For decades, programmable controllers have simplified the automation of electrical installations and the communication between machine and human. I chose to do my training at the TornaTech company located in Belgium, to be able to judge the different difficulties of working with PLC, electrical cabinets and the importance of following well determined procedures in the manufacture of these cabinets.

My training has come up in several parts. I first attended the manufacture of an APSAD cabinet to understand the role of these cabinets. Then, I assisted in carrying out a test on this cabinet to check its operation and understand the steps of the test. Then I attended the realization of the electrical paths of the test bench to create a ProfiCad version of the paths. It was then necessary to manufacture the test bench and carry out the wiring. The programming part was the most important part in this project, where a PLC had to be programmed to have a test bench that will carry out the test of the cabinets automatically. Finally, this internship allowed me to learn a lot about human relations within companies, particularly on the framework-operator and operator relationships between them.

Table des matières

Remerciement	2
Résumé	3
Abstract	4
Introduction	7
1.Atelier TornaTech	8
1.1 Equipe Electrique	8
1.2 Equipe Diesel	9
1.3 Les tests	9
1.4 Equipe de production	9
2. Description du thème	
3. Armoire de commande	
3.1 Certification APSAD	
3.2 Certification AP2	
3.3 Armoire de commande de la pompe source A	
3.3.1 Composants de l'armoire	
3.3.1.1 Partie Platine	
3.3.1.2 Partie Porte	14
3.3.2 Cartes électroniques	
3.3.2.1 CE1 : Carte signalisation	
3.3.2.2 CE2 : Carte principale	
3.4 Armoire de commande Pompe Jockey	
3.5 Réalisation d'un test	
3.5.1 Pré-test	
3.5.2 Pressostat 1 & 2	
3.5.3 Option CPI	
3.5.4 Pompe Jockey	
3.5.5 Alarmes	20
3.5.6 Post-Test	21
3.5.7 Problèmes rencontrés durant les testes	21
3.7. Réalisation d'un banc de test	22
3.7.1 Les composants	23
3.7.2 Monitoring Relay	24
3.7.3 Automates	26
3.7.4 Afficheur « Modicon TMH2GDB »	27
3.8. Programmation Grafcet/Ladder	27

4. Analyse de l'organisation	
Conclusion	32
Annexes	33
A. Entrés/Sorties du contrôleur	33
B. Câblage du contrôleur	36
Fiche d'évaluation de stage	41
Table des figures	43
Bibliographie	44

Introduction

Dans le cadre de mon cursus a l'ENSTA Bretagne, j'ai eu la chance d'effectuer un stage de 9 semaines en tant qu'assistant ingénieur. Ce stage permet aux étudiants d'appliquer les connaissances acquises pendant les années scolaires à la réalité du monde industriel. Les tâches assignées devront être celles d'un ingénieur adjoint, c'est-à-dire qu'il devrait avoir l'opportunité d'aider un ingénieur expérimenté. De plus, le secteur dans lequel le stage sera effectuée doit être idéalement identique à la spécialisation de l'année dernière de l'élevé ou à la zone dans laquelle il espère travailler après l'obtention du diplôme.

J'ai effectué mon stage a TornaTech Belgique, pour poursuivre un projet qui a était déjà commencé par un autre stagiaire. Il a travaillé sur la majorité de la partie théorique du projet qui consiste à réaliser un banc test pour les armoires APSAD, fabriqué chez TornaTech selon la norme française AP2.

Dans le but de finaliser la partie automatique du projet, j'ai profité des expériences acquissent durant ma formation vue que la réalisation d'un tel projet faisant appel à des connaissances dans de nombreux domaines comme l'automatique, l'électrique et l'informatique.

Dans une première partie, nous verrons les différentes missions du TornaTech, Belgique. Puis, nous verrons dans quel cadre s'inscrit notre projet. Ensuite, une description de l'activité ainsi que les résultats obtenus durant ce stage. De plus, il sera bien important de faire quelques notions de base nécessaires pour avoir une bonne compréhension du stage. Enfin, nous ferons une analyse de l'organisation.

1. Atelier TornaTech

Figure 1: Système Anti-Incendie

Un système anti-incendie selon la norme A2P, est constitué de deux sources : Source A (électrique), Source B(diesel). Le source A est cela de l'armoire électrique qui commande la première pompe, et une deuxième armoire « Source B » qui contrôle la deuxième pompe. Une troisième pompe est ajoutée au système qui a comme rôle de maintenir la pression de l'eau dans le cas où la pression des pompes A et B est insuffisantes. Le système, selon la norme A2P doit être équiper de deux pressostats, pour plus d'assurance. Au cas d'incendie, le source A se démarre, et si la pompe source A tombe en panne, la pompe diesel se démarre.

1.1 Equipe Electrique

Cet équipe est composé de trois membres, deux techniciens et un testeur. Ils s'occupent de la partie électrique du systèmes anti-incendie. Les membres de cette équipe travaillent sur la fabrication des armoires de commande de différents types :

- AA : armoire pour câbler les pompes source A en direct.
- AY : armoire pour câbler les pompes source A en étoile/triangle.
- JP : les armoires des pompes jockey.

Après terminer le câblage de ces armoires, un test manuel aura lieu pour vérifier le câblage et le bon fonctionnement de l'armoire.

1.2 Equipe Diesel

Cet équipe est composé de quatre membres, trois techniciens et un testeur. Ils s'occupent de la partie diesel du systèmes anti-incendie. Les membres de ces équipes travaillent sur la fabrication des armoires de commande pour la pompe source B.

1.3 Les tests

Deux testeurs se trouvent dans l'atelier, le premier testeur appartient à l'équipe électrique, qui effectue des tests manuels sur les armoires fabriquées dans la branche électrique de l'atelier. Le deuxième testeur appartient à l'équipe diesel. Ce dernier utilise un banc test automatique fabriqué au TornaTech Canada. Finalement, ces testeurs sont chargés de livrer un rapport décrivant les erreurs trouvées dans les produits.

1.4 Equipe de production

L'équipe de production est composée du directeur général, le responsable de production, le secrétaire et le responsable du service après-vente. Le directeur général définit et pilote la stratégie de l'entreprise en supervisant son exécution. Le responsable de production qui est en charge de tout

la production, il amène à manager l'ensemble des flux et domaines connexes à la production (achats, logistique, qualité, méthodes, expéditions). De plus, il définit le planning de production, supervise les stagiaires et gère l'atelier. Le secrétaire qui est en charge de la gestion du bureau, des

Figure 2: Equipe de production

tâches administratives, de contacter les clients et de prise de rendez-vous. Enfin, le responsable du service après-vente est chargé de répondre aux attentes de la clientèle, de résoudre les problèmes d'installation et il organise l'activité du service après-vente.

2. Description du thème

L'automatisation est la science quasi « magique », avec des options presque illimitées, qui représente la révolution industrielle. Cependant, il est déjà certain que l'automatisation joue un rôle majeur dans l'industrie de demain. Les bancs tests automatiques sont une des résultats de l'automatisation, faite pour vérifier le bon fonctionnement des fabricants industriels.

Les systèmes de détection incendie SDI, ou systèmes anti-incendie sont des outils nécessaires dans les établissements industriels ou commerciaux pour sécuriser les ateliers et les branches de fabrication. Mais pour créer un système d'anti-incendie robuste et bien contrôlée, il est bien important de fabriquer des armoires de commandes à haut niveau et selon des normes mondiales.

TornaTech est une entreprise mondial basé à Montréal, au Canada, se spécialise dans la conception et la fabrication de contrôleurs de pompes à incendie conforme aux normes mondiaux. Dans le but de rassurer que les armoires fabriquées chez TornaTech fonctionnement selon les normes, il était nécessaire d'effectuer des tests sur les différents types des armoires. Auparavant, tous les tests au sein de l'entreprise étaient des tests manuels, effectuées par des testeurs de l'équipe TornaTech avec des outils de test fabriquées au sein de l'entreprise qui seront connectées directement à la carte principale de l'armoire (voire Figure 3), mais depuis quelques années, un banc de test automatique a été importé de la branche canadienne du TornaTech, fabriqué par les ingénieurs TornaTech, pour tester les armoires des pompes source B « DIESEL ». D'où l'idée, de fabriquer un banc de test surplace,

Figure 3: Outils utilisée en test manuel

pour tester automatiquement les armoires des pompes de source A « ELECTRIQUE » dites APSAD, vue l'importance d'un tel banc test dans les procédures du test et le gain du temps au niveau du production et l'expédition des fabricants.

Cette idée semblait pour eux un projet faisable et important pour le développement de l'entreprise. Mais avant de lancer le sujet il faut s'assurer de sa faisabilité.

Donc, le développement de ce projet a commencé depuis un an avec un stagiaire et l'ancien directeur de l'entreprise pour vérifier la faisabilité d'un tel système et trouver les matériaux dont ils ont besoin pour la réalisation. Et après des études profonds et caractérisation des performances des matériaux, ils ont réussi à créer les chemins électriques du banc test et avoir tous les matériaux nécessaires pour rendre ce projet faisable. Alors, monsieur LOEB m'a proposée de finaliser ce projet, en programmant l'automate et fabriquant le banc test.

Donc l'idée de ce stage était de commencer par comprendre le fonctionnement d'une armoire APSAD en fabricant une armoire au sein de l'atelier, puis comprendre les schémas électriques réalisées pour le banc test dans le but de programmer et de réaliser le projet. En effet, les difficultés de réalisation d'un banc de test pour les armoires APSAD et l'utilité de ce système dans d'autres domaines que l'automatisation m'a encouragé pour travailler dans ce domaine technologique. C'est pourquoi, ce stage m'a paru intéressant comme étant une expérience au sein d'une entreprise mondial et une application des connaissances acquissent pendant mes années en cycle ingénieur. De plus, ce stage m'a permis de découvrir et d'acquérir de l'expérience dans le domaine électrique et d'informatique industriel et de rendre ce projet faisable.

De même, les bancs de test pour les armoires de contrôles des moteurs électriques pour pompes anti-incendie selon la norme française A2P, est embarqué dans l'un des matériaux utilisés à TornaTech Belgique dans le département APSAD et JP, donc on avait la chance d'avoir un système réel fabriquée par des experts dans ce domaine et d'étudier son comportement sur les armoires APSAD.

Tous les matériaux dont on a besoin existaient dans l'atelier de l'entreprise (boites, relais, automates, écran, câble, connecteurs...). Mais a certain moment, on avait besoin d'autres matériaux (comme les extensions des automates, câbles).

11

3. Armoire de commande

3.1 Certification APSAD

APSAD ou Assemblée Pentière des Sociétés d'Assurances Dommages est une certification délivrée par le Centre National de Prevention et de Protection (CNPP). Elle définit les normes à respecter par tous les professionnels fournissant des prestations permettant de réduire les risques de malveillance et d'incendie, et seule les entreprises certifiées APSAD peuvent utilisée cette marque.

3.2 Certification AP2

La norme A2P (Assurance Prevention Protection) créée en 1984 et contient trois niveaux A2P 1, A2P 2 et A2P 3. Cette certification est délivrée via le CNPP à la suite de tests permettant d'évaluer la résistance des matériels de protection.

3.3 Armoire de commande de la pompe source A

C'est une armoire de commande de contrôle de groupe électropompe fabrique selon les normes APSAD et A2P. Cette armoire a comme rôle de commander la pompe de source A, d'où la partie électrique du système anti-incendie.

Crée dans l'atelier TornaTech, selon plusieurs modelés et la demande des clients, cet armoire est conforme aux directives de compatibilité électromagnétique/2004 et matériels électrique/2006. De plus, ce produit respect plusieurs normes tel EN 61439-1, EN 61439-2 et EN 60529.

Ces armoires présentent différents modèles, soit en câblage (direct ou Etoile/Triangle), soit sans ou avec pompe jockey ... Tous ces choix dépendent de la charge.

Par exemple, il est recommandé d'utiliser une câblage étoile/triangle pour diminuer les risques du démarrage direct, où l'intensité du courant au démarrage en direct est très importante ce qui peut entrainer des surcharges sur les lignes d'alimentation et les appareils de protection et de commande.

Les modèles de l'armoire APSAD ou A2P se présente par :

Ax+JP – a/b + c / d / 50

Α	Modèle	Source A
Х	Type de démarrage	-A : démarrage direct
		-Y : démarrage Etoile triangle
JP	Pompe Jockey	(Optionnelle)
а		-220 Volts
	Tension nominale (en volts)	-400 Volts
		-690 Volts
b	Puissance du moteur de la pompe A	-3kw jusqu'à 110kw
С	Puissance du moteur de la JP	-1.5kw jusqu'à 7.5kw
d		-1 : Monophasée
	Nombre de phase(s)	-3 : Triphasé
		-3+N : Triphasé + neutre
50	Fréquence (en HZ)	

Figure 4 : Tableau des differents modeles de l'armoire APSAD

3.3.1 Composants de l'armoire

3.3.1.1 Partie Platine

Cette armoire possède une forme standard présente par la Figure 5. Elle comporte deux autotransformateur TP1 et TP2 qui permettent de transformer une tension de 400 V AC en 24 V AC dans le but d'alimenter les cartes électroniques présentent dans l'armoire.

De plus, un sectionneur Q1 qui est un appareil mécanique de connexion, qui permet d'alimenter ou isoler l'installation. F1, F2, F3, F4, F5, F6 sont dispositifs de sécurité qui protège contre les courtscircuits et les surcharge, appelé fusibles.TC1 est un transformateur de courant, qui permet de ramener la forte courant a des valeurs acceptables par la carte électronique. Les contacteurs K1 et K2, permettent d'établir ou interrompe le passage du courant vers la source A et la Jockey Pompe.

Figure 5: Partie Platine de l'armoire APSAD

3.3.1.2 Partie Porte

Sur la porte de l'armoire, se présentent des boutons passoires, des voyants, des sélectionneurs et une cloche. Les voyants et l'afficheur numérique sont constitués de LED alimentée par une faible tension. En cas de défectuosité d'une LED, il est nécessaire de remplacer la carte de signalisation au complet. Chaque voyant s'active dans un cas spécifique et signalise une fonction ou erreur bien précise.

Figure 6: Porte de l'armoire APSAD

3.3.2 Cartes électroniques

CE1 et CE2 sont deux cartes, de la marque TornaTech, développée par l'entreprise et programmée pour respecter les normes de fabrication APSAD et A2P.Ces deux cartes sont programmées en langage assembleur.

3.3.2.1 CE1 : Carte signalisation

C'est une carte contrôler par plusieurs buttons poussoirs et sélectionneurs fixés sur la porte de l'armoire. Les sélectionneurs SS1, SS2 et SS3 aident à déterminer le mode de fonctionnement des pressostats 1, 2 et 3 respectivement. De plus, BP1 et BP2 sont deux buttons poussoirs qui ont pour but de commander l'arrêt et le départ du Pompe Jockey et du pompe Source A respectivement. Finalement, BP3, BP4 et BP5 permettent d'effectuer un réarmement, un test de signalisation et un arrêt sonore respectivement. Cette carte se communique avec la carte CE2 via « RS-232 serial port ».

Figure 7: Carte de signalisation

Dans la figure ci-dessous, on présente les entrées et les sorties de la carte principale, ce sont les raccordements des signaux de signalisation.

Les entrées comportent , le PS1 ou pressostat numéro 1 est le contact du pressostat qui assure le départ de la pompe source A, et doit être connectée a TB4A-1 et TB4A-2, de même pour le pressostat numéro 2 qui doit être connectée à TB4A-3 et TB4A-4.De plus , le raccordement de la sonde de température moteur (Ipsotherme), qui doit être du type PTC et doit être connecte à TB4A-5 et TB4A-6.La valeur de la résistance varie fortement avec la température des enroulements moteur , et l'alarme s'active lorsque la résistance est supérieur à 3.3 KOhm. Mais l'activation de l'alarme Ipso n'arrête pas la marche de la pompe. De même, le contact du détecteur de débit qui se ferme lorsqu'un débit est détecter doit être connectée à TB3A-7 et TB4A-8. Puis, un contact optionnel qui est le contact du détecteur de niveau bas du bac d'amorçage, où la fermeture de ce contact indique un bas niveau du bac et provoquera le départ de la pompe source A. Il est connecté à TB4B-1 et TB4B-2. De plus, un contact pour le détecteur de niveau antigel connecté sur TB4B-5 et TB4B-6, qui indique un bas niveau de la réserve quand il ferme. Finalement, pour les entrées de la carte principale, on a le PS3, pressostat de départ ou d'arrêt de la pompe jockey qui doit être connecte à TB5-1 et TB5-2 en ajoutant un pont électrique entre TB5-3 et TB5-4, où l'ouverture du contact commandera le départ de la pompe et sa fermeture commandera l'arrêt de la pompe.

Figure 8: Les entrées de la carte principale

Pour les sorties de la carte principale, on a les raccordements des alarmes. Premièrement, le report d'alarme « Défaut JP », où le contact normalement ouvert et le contact normalement fermé se trouvent respectivement sur TB20-1/2 et TB20-3/4. Lorsque la pompe jockey est en défaut, le contact TB20-1/2 se ferme, le contact TB20-3/4 s'ouvre. Puis, le report d'alarme marche pompe source A, avec un contact normalement fermé et contact normalement ouvert qui se trouvent respectivement sur TB19-1/2 et TB19-3/4 et Lorsque la pompe de la source A est en marche, le contact TB19-1/2 s'ouvre, le contact TB19-3/4 se ferme. De plus, le report d'alarme « défauts Source A ». Ses contacts normalement fermés et ouvert se trouvent respectivement sur TB15-1/2 et TB15-3/4. En cas de défaut de la pompe source A, le contact TB15-1/2 s'ouvre, le contact TB15-3/4 se ferme.

Ensuite, le report d'alarme « Manque tension », où Le contact normalement fermé et le contact normalement ouvert se trouvent respectivement sur TB13-1/2 et TB13-3/4. En cas de manque de tension pour un temps supérieur à 20 secondes, le contact TB13-1/2 s'ouvre, le contact TB13-3/4 se ferme. Puis, les deux rapports d'alarmes « Non auto PS1 » et « Non auto PS2 », où le contact normalement fermé et le contact normalement ouvert de la première alarme se trouvent respectivement sur TB15-1/2 et TB15-3/4 et celle de la deuxième se trouvent sur TB18-1/2 et TB18-3/4. Lorsque le pressostat 1 est en position non auto, le contact TB16-1/2 se ferme, le contact TB16-3/4 s'ouvre et Lorsque le pressostat 1 est en position non auto, le contact TB18-1/2 se ferme, le contact TB18-3/4 s'ouvre. Finalement , les reports d'alarmes « Niveau bas bac d'amorçage » où le contact TB21-1/3 s'ouvre, le contact TB21-5/7 se ferme , en cas de détection de bas niveau du bac d'amorçage, « Niveau bas bac Antigel » pour la pompe jockey , où le contact TB23-2/4 s'ouvre, le contact TB23-5/7 se ferme En cas de détection de bas niveau de la réserve et «Niveau bas réserve glycol » pour la pompe source A , où le contact TB23-2/4 s'ouvre, le contact TB23-6/8 se ferme En cas de détection de bas niveau de la réserve et «Niveau bas réserve glycol » pour la pompe source A , où le contact TB23-2/4 s'ouvre, le contact

Figure 9: Les sorties de la carte principale

3.4 Armoire de commande Pompe Jockey

Ces armoires ont comme but de contrôler une pompe jockey qui sert à maintenir la pression d'eau dans un réseau anti-incendie. Ces contrôleurs sont fournis avec interface électronique, qui est fixée sur le devant du boitier donnant accès à tous les ajustements. Ce qui permet à l'opérateur d'ajuster les paramètres nécessaires. De plus, des indicateurs visuels a LED affichent la marche moteur pour départ manuel, la marche moteur pour départ automatique. De même que l'armoire de commande de la pompe source A, cette armoire peut se démarrer soit en mode direct soit en Etoile/triangle.

3.5 Réalisation d'un test

3.5.1 Pré-test

Avant de commencer un test, il faut bien vérifier le câblage et la solidité des connections, le serrage des vis et la tenue des câbles. De plus, il est nécessaire de vérifier le placement des étiquettes, l'existence des résistances et les types des fusibles. Finalement, il est important de tester avec un multimètre la continuité des lignes de puissance. Puis, on déconnecte toutes les cartes électroniques et on isole les transformateurs pour régler l'appareil de rigidité diélectrique et faire les tests diélectriques entre la terre et chaque phase. Ensuite, on programme le CPU. Puis pour vérifie le bon fonctionnement les buttons poussoirs, les sélectionneurs et les voyant en appuyant sur le buttons signalisation qui effectue un test de signalisation. Finalement on vérifie le bon placement des ponts électriques.

3.5.2 Pressostat 1 & 2

On effectue le même test sur les deux pressostats 1 et 2 de la pompe source A. Le test consiste à mettre les pressostats en diffèrent mode de fonctionnement et vérifier si les alarmes et les voyants se fonctionne comme il faut dans les différents modes. On a 3 mode de fonctionnement des pressostats qu'on peut choisir avec les sélectionneurs présents sur la porte de l'armoire.

Le premier mode, on sélectionne le mode **AUTO PS1&2**, et on ferme le contact P1 (TB4A-1/2) qui simule l'activation de la pompe source A. Dans ce cas, il faut bien vérifier :

- L'activation du contacteur K1 (ou/et K2 en cas de démarrage Etoile/triangle)
- La présence de la tension entre les lignes (L1-L2, L2-L3, L1-L3)
- L'activation du voyant « MODE AUTO » PS1 ou PS2
- L'activation du relais « NON AUTO » PS1 ou PS2 (car on a utilisé un pont électrique)

Le deuxième mode, on sélectionne le mode **ARRET PS1&2**, et on ouvre le contact P1 (TB4A-1/2). Et on vérifie :

- La désactivation du contacteur K1 (ou/et K2 en cas de démarrage Etoile/triangle)
- La désactivation du relais « NON AUTO » PS1 ou PS2
- La désactivation du voyant « MODE AUTO » PS1 ou PS2
- L'activation du voyant « MODE NON AUTO » PS1 ou PS2

Le troisième mode, on sélectionne le mode MANU PS1&2, et on appuie sur le bouton poussoir START et on vérifie :

- L'activation du contacteur k1 (ou/et K2 en cas de démarrage Etoile/triangle)
- L'activation du voyant « Mode Non Auto » PS1 ou PS2

Puis, on appuie sur le bouton STOP PS1&2 et on vérifie :

- La désactivation du contacteur K1 (ou/et K2 en cas de démarrage Etoile/triangle)
- L'activation du voyant « Mode Non Auto » PS1 ou PS2

3.5.3 Option CPI

CPI ou contrôleur permanent d'isolement est un appareil électrique qui sert à détecter les défauts sur une installation de type IT (schéma de liaison à terre). Pour effectuer un test CPI, on sélectionne le mode ARRET de PS1 et PS2 et on met 4L1 a la masse, et on vérifie l'activation de l'alarme sur IM.

3.5.4 Pompe Jockey

C'est à peu près le même test effectue sur les pressostats 1&2, juste les alarmes qui se différents.

Le premier mode, on sélectionne le mode **AUTO PS3**, et on ferme le contact P3 (TB5-1/2) qui simule l'activation de la pompe jockey. Dans ce cas, il faut bien vérifier :

- L'activation du contacteur K3
- La présence de tension sur les lignes de tension.
- L'activation du voyant « AUTO » pour le pressostat de JP.
- La désactivation du relais « Défaut JP »

Le deuxième mode, on sélectionne le mode ARRET PS3, et on vérifie :

- La désactivation du contacteur K3
- L'activation de la LED « Non Auto »

Le troisième mode, on sélectionne le mode MANU PS3, en appuyant sur le bouton poussoirs START, et on vérifie :

- L'activation du contacteur K3
- L'activation du voyant « Marche »

Finalement, en restant dans le mode MANU, on appuie sur le bouton poussoirs STOP, et on vérifie :

La désactivation du contacteur K3

3.5.5 Alarmes

Dans le but de tester toutes les reports des alarmes, on commence par fermer le contact **Ipsotherme**, ce qui cause l'activation du voyant « Défaut Source A » et l'activation du relais « Défaut Source A ». Ensuite, on ferme le contacte « Niveau Bas Bac d'Amorçage », ce qui active le voyant « Niveau Bas Bac d'Amorçage », active le relais « Niveau bas du bac d'amorçage » et active le contacteur K1. Puis, on ferme le contact « Reserve Vide », qui active le voyant et le relais « Reserve Vide ». On continue le test en fermant le contact « Niveau bas réserve Glycol », ce qui active le voyant et le relais « Niveau bas réserve Glycol ». En effet, on effectue le même avec le contact « niveau bas bac antigel », ce qui active le voyant et le relais « niveau bas bac antigel » et désactive le contacteur K3.

Ensuite, on retire le fusible « F5 », en vérifiant l'activation de la LED « Défaut Système » et le voyant « Défaut Source », l'activation du relais « Alarme Manque Tension » après 20 secondes, ce qui est normale, parce que en retirant le fusible « F5 », nous coupons l'alimentation de la carte primaire.

Après remettre le fusible « F5 », on retire le fusible « F2 », et dans ce cas, une activation du relais « Alarme Manque Tension » aura lieu après 20 secondes et une extinction de toutes les LEDs excepté le voyant « Sous Tension », ce qui est normale, parce que on a coupé l'alimentation du TP1, « Transformateur 1 ».

On remit le fusible « F2 », puis on retire le fusible « F3 », ce qui cause l'activation des voyants « Défaut Système », « Défaut Source A », « Défaut Pompe Jockey » et relais « Alarme Manque Tension » après 20 secondes. Ensuite, en retirant le fusible « F4 », on aura une extinction du voyant verte « Sous-tension ». Finalement, en retirant le fusible « F6 » causera l'activation du voyant « Défaut Source A » et le relais « Alarme Manque Tension » après 20 seconde.

3.5.6 Post-Test

Après finir les étapes précédentes, il est bien nécessaire de vérifier le bon placement des dessin électriques, les manuels d'utilisation des armoires et le placement des ponts électriques pour remettre l'armoire à l'état initial.

3.5.7 Problèmes rencontrés durant les testes

Durant le test d'une armoire électrique, plusieurs erreurs peuvent apparaitre, et parfois on aura aucun affichage des erreurs. J'ai la chance de rencontrer plusieurs erreurs pendant ma participation dans les tests des armoires qui seront présent dans le tableau suivant :

Problème	Cause Possible	Solution
La lumière « sous tension » est	Le fusible F2 du transformateur	Remplacer le fusible
allumée.	de signalisation est brulé	défectueux
La lumière « sous tension » est	Le fusible F4 de la lumière	Remplacer le fusible
éteinte. Les lumières LED	« Sous tension » est brulé	Défectueux
s'allument lorsque l'on appuie		
sur « Test signalisation »		
On appuie sur « Test	Lumières LED grillée	Remplacer la carte
signalisation », une où		Électronique LED
plusieurs lumières LED ne		
ne s'allume pas		
Défaut JP allumé	Disjoncteur Q2 de la pompe	Vérifier le moteur et la pompe
	jockey est déclenché	jockey
Appuyer sur « Test	Afficheur défectueux	Remplacer la carte
Signalisation », l'afficheur		électronique
n'indique pas 8.8.8.8		
Défaut source A allume	Fusible primaire F3 ou	Remplacer le(s) fusible(s)
Défaut système allume	secondaire F5 du transfo de	défectueux après vérification
Défaut JP allume	commande	du matériel

Figure 10: Tableau des erreurs

De plus, on peut connaitre toutes les alarmes qui sont apparues depuis le dernier réarmement en appuyant simultanément sur « Arrêt Sonore » et « Test Signalisation ». En appuyant simultanément sur ces deux voyants, l'écran affiche successivement les codes, pendant 3 secondes chacun.

3.7. Réalisation d'un banc de test

Figure 11: schéma électrique

3.7.1 Les composants

Notre banc de test est composé d'un autotransformateur TRF1, qui a comme rôle de transformer et livrer différentes tensions. Ce transformateur envoi 220V sur K2, 400V pour K3 et 690V pour K4 selon le choix effectué par l'utilisateur avec un sélectionneur fixé sur la porte du banc de test. Et selon le choix de l'utilisateur, l'automate envoie une commande pour le contacteur qui convient. Par exemple, si l'utilisateur va tester une armoire APSAD a une tension de 400V, il choisit 400V sur le sélectionneur, et l'automate va commander la bobine du contacteur K3 et ainsi de suite. De plus, un sélectionneur Q1 est installé dans le banc de test qui est un sectionneur d'isolement et le sectionneur d'alimentation générale du banc de test. Un contacteur K1, qui est responsable de l'arrêt d'urgence qui coupe l'alimentation de l'armoire.

Encore, on a 11 contacteur, dont quartes on a déjà parlé K1, K2, K3 et K4. Puis, les trois contacteurs, K5, K6 et K7 qui simulent une perte de phase, ou ils représentent les trois phase 1,2 et 3 respectivement. Or, ces contacteurs servent à tester l'alarme de coupure de phase. Leurs bobines sont directement commandées par l'automate. Ces contacteurs sont toujours commandes pour être fermer, sauf dans le cas où on effectue un test ou on coupe l'alimentation des bobines. En effet, trois autres contacteurs sont présents, K8, K9 et K10, sont les contacteurs responsables du test CPI. Et finalement, le contacteur K11 qui est le contacteur « injection courant ».

Ensuite, on remarque la présence des 3 fusibles, le premier est F1 qui assure une protection primaire pour l'autotransformateur. Tandis que le deuxième, F2 et F3, sont deux fusibles qui protègent l'automate.

Figure 12: Composants du banc de test

De plus, le banc de test doit comporter un automate programmable « PLC » qui est le cerveau de l'armoire avec 3 extensions Ext1, Ext2 et Ext3. Finalement, bornier IN et bornier Out sont les entrées de banc de test, alors les entrées de l'automate sont les sorties de la carte primaire de l'armoire APSAD, et les sorties de banc de test sont les sorties de l'automate, sont les entrées de la carte primaire.

Figure 13: Banc de test

A ce qui concerne la porte du banc de test, il contient un bouton poussoir BP1, qui est un arrêt d'urgence, liée directement sur la bobine de K1. C'est un contact normalement fermé, donc en appuyant sur BP1 l'alimentation du banc de test sera coupé. Trois LEDs, où chaque LED simule la présence de la tension en chaque phase. Finalement, il est bien évidement d'installer sur la porte un écran présentant la surface graphique du programme, qui peut être un HMI_STU ou firmware TMH2GDB.

3.7.2 Monitoring Relay

Les « Monotiring Relay » ou les « MR », sont des relais de surveillance qui offrent un maximum de protection pour les installations électriques. De plus, ces relais peuvent détectés et rectifiés les défauts de fonctionnement. Ensuite, ils surveillent les tensions continues ou alternatives dans la gamme de 40 à 500 Hertz et peuvent être régler pour avoir une tension maximale et une tension minimal. Puis, ces

modules contiennent des petits écrans, qui sert à programmée et surveillée le fonctionnement. En effet, on peut choisir le type de relais qu'on souhaite utiliser (NO ou NF).

Figure 14: Monitor Relay

Figure 15: Shéma électrique MR

Dans notre projet, on a choisi d'utiliser les « MR », dans le but de tester la continuité sur chaque ligne et pour que l'automate sache quel type d'armoire APSAD il test. Les « MR » sont directement connectés avec l'automates comme des entrés.

Figure 16: Cablage MR dans le banc de test

Alors les sorties 11 et 12 des MR sont connectés sur des différents entrés de notre automate, en indiquant la présence ou l'absence du tension. De plus, d'après les MR, on peut savoir l'armoire se fonctionne sous quel valeur de tension. Par exemple, pour un armoire APSAD de type AA on regarde les deux modules MR3 et MR4, MR3 est configuré pour avoir une tension max de 400V et une tension min de 220V, tandis que MR4 est configuré pour avoir une tension max de 690V et une tension min de 400V. D'où, pour une armoire APSAD en câblage direct en 220V, il faut que la sortie MR3-11/12 soit activer, en 400V, les sorties MR3-11/12 et MR4-11/12 seront activés, et finalement avec une

tension de 690V, MR4-11/12 sera activé. Tous les cas possibles seront présentés dans la figure suivante :

Cas 1 :	Source AA	A + JP			Cas 2 :	Source A	A			Cas 3 :	Source AY	(+ JP		
Module	MR	220V	400V	690V	Module	MR	220V	400V	690V	Module	MR	220V	400V	69
2	MR3	1112	1112		1	MR3	1112	1112		1	MR5	1112	1112	
	MR4		1112	1112		MR4		1112	1112		MR6		1112	11-
3	MR1	1112	1112				%M153	%M154	%M155	2	MR3	1112	1112	
	MR2	-	1112	1112							MR4		1112	11-
		%M150	%M151	%M152						3	MR1	1112	1112	
											MR2		1112	11
												%M156	%M157	%M1
Cas 4 :	Source AY	1			Cas 5 :	JP								
Module	MR	220V	400V	690V	Module	MR	220V	400V	690V	Srouce A				
1	MR5	1112	1112		3	MR1	1112	1112		Cas 1 : Te	st en dire	ct avec JP		
	MR6	-	1112	1112		MR2		1112	1112	Cas 2 : Te	st en dire	ct sans JP		
2	MR3	1112	1112				%M162	%M163	%M164	Cas 3 : Test en Etoile/Triangle avec JP				
	MR4		1112	1112						Cas 4 : Te	st en Etoil	e/Triangle	e sans JP	
		%M159	%M160	%M161						Jockey Po	mp			
										Cas 5 : Te	st du JP			

Figure 17: Tableau des MR

3.7.3 Automates

Pendant mon projet a TornaTech, j'ai travail sur l'automate « TM221CE40R », qui est un automate fabriqué par l'entreprise « Schneider Electric ». Ce contrôleur contient 24 entrées digital, 16 sorties, 1 serial port et un Ethernet port.

Figure 18: Automate « TM221CE40R »

Mais, c'est bien clair que pour un tel projet, j'aurai besoin plus que 24 entrées et 16 sorties, ce qui nous a amené à commander trois modules TM3DM24R/G et chacune de ces modules, présentent 8 sorties et 16 sorties.

3.7.4 Afficheur « Modicon TMH2GDB »

Pour la partie affichage, on a utilisé un afficheur graphique « Modicon TMH2GDB ». C'est une unité de contrôle local, utilise en association avec les contrôleurs Modicon M221 pour des activités de surveillance, de commande et de maintenance. Ce module, peut être connecte au contrôleur logique via la ligne série (Serial 1). Cet afficheur, possède des fonctions limitées et bien déterminée, il support à afficher juste 20 alarmes, et effectue des ON, OFF pour les actionneurs connectés sur le contrôleur. Le contrôleur et l'afficheur, seront programme par le même logiciel, « SomachineBasic ».

Figure 19: Afficheur « Modicon TMH2GDB »

3.8. Programmation Grafcet/Ladder

Notre contrôleur est programmé en langage Grafcet/Ladder par l'intermédiaire du logiciel « SomachineBasic » (Trouver le code dans le lien [10]), développé pour programmer les contrôleurs Schneider séries M221.En effet, on a dix modèles de l'armoire APSAD, et dans le but d'avoir un banc de test automatique qui peut tester tous les modèles des armoires APSAD et JP, il était nécessaire de prendre en compte tous les cas possibles. Par exemple, on pourrait avoir un armoire APSAD, avec ou sans pompe Jockey, avec ou sans un test CPI, et il faut bien différencier entre un démarrage Etoile/triangle ou démarrage direct, où dans le démarrage direct ou AA, on a besoin de commander un seul contacteur, tandis que dans le démarrage Etoile/triangle, on a besoin de commander deux contacteurs avec quelque seconde de retard entre les deux actions. D'où j'ai eu l'idée de créer un grafcet général, qui est le « Main » de mon programme, où le choix du test sera effectué par l'utilisateur par l'intermédiaire de l'afficheur « Modicon TMH2GDB ».

Etape_Initial Test_AA Test_AA Test_AA Test_AY											
Test_AA Test_AA Test_AA Test_AA Test_AA Test_AP Test_AP					Eta	pe_Initial					
Test_AA Test_AA Test_AA Test_AY Test_AY Test_AY Test_AY Test_AP Test_JP Test_CPI Test_P Test_CPI Test_CPI Test_CPI Test_CPI											
Test_JP Test_CPI Test_JP Test_CPI Test_CPI Test CPI Test CPI Test_CPI Test_CPI	Test_AA	Test_AA	Test_AA	Test_AA	Test_AY		Test_AY	Test_AY	Test_AY	Test_JP	Test_JP
Test CPI	Test_JP	Test_JP	Test_CPI		Test_JP		Test_JP	Test_CPI		Test_CPI	
	Test_CPI				Test_CPI						

Figure 20: Grafcet Général

Alors l'utilisateur a le droit de choisir un de ces cas présentée dans la figure ci-dessus. Après effectuer le choix, le programme va quitter le grafcet général ou maitre et passer vers un autre grafcet esclave selon le choix effectuer, d'où vers le grafcet_AA _AY ou grafcet_JP si c'était un pompe Jockey qu'on va tester. Après terminer sa boucle dans le grafcet esclaves, il revient au grafcet général, pour effectuer les étapes suivantes et etc.

Figure 21: Logique du programme

D'où, j'avais besoin de créer cinq grafcets. Le premier était le grafcet général commander directement par l'afficheur, le deuxième est celle des armoires de démarrage direct et étoile/triangle, parce que les étapes de test étaient les mêmes, avec un contacteur en plus avec le démarrage étoile/triangle. Troisièmes grafcets est le grafcet_JP, qui contient les étapes de test des armoires des pompes Jockey s'il sont présente un grafcet_CPI qui consiste à effectuer le test CPI si le contrôleur permanent d'isolement existe dans l'armoire. Puis, un petit grafcet_arret_sequence, qui nous permet d'arrêter le programme dans n'importe quelle étape de n'importe quel grafcet, et mettre le programme a l'étape initial.

Ensuite, dans le but que le programme soit capable de détecter les erreurs pendant les tests, en affichant un message présentant l'erreur, il était nécessaire de créer les Ladder « Conditions » et « Detecteur_Erreur ». Le ladder « Condition » contient les conditions initiales à chaque étape où il faut vérifier que tous les sorties de la carte principale sont à l'état initial sauf les sorties qui sont considérés comme transition pour passer à l'étape suivante. Puis le ladder « Detecteur_Erreur » qui va attendre qu'une des conditions initiales ne soit pas vrai pour afficher un message d'erreur en précisant quelle sortie de la carte principale n'est pas dans son état initial. Ce message sera affiché sur l'écran de l'afficheur.

Ensuite, dans la partie display du logiciel, et après configurer l'automate pour qu'il puisse communiquer avec l'afficheur, j'ai créé plusieurs pages dans le menu de l'afficheur. La première page est celle du choix de l'armoire, qui contient dix éléments équivalents à dix modèles APSAD.

	Variable:	Text when value is TRUE	Text when value is FALSE	Write access
Þ	%M100	AA + JP + CPI ====> ON	AA + JP + CPI ====> OFF	⊻
	%M101	AA + JP ====> ON	AA + JP ====> OFF4	\checkmark
	%M102	AA + CPI ===> ON	AA + CPI ===> OFF	\checkmark
	%M103	AA ===> ON	AA ===> OFF	\checkmark
	%M104	AY + JP +CPI ===> ON	AY + JP +CPI ===> OFF	
	%M105	AY + JP ===> ON	AY + JP ===> OFF	
	%M106	AY + CPI ===> ON	AY + CPI ===> OFF	
	%M107	AY ===> ON	AY ===> OFF	\checkmark
	%M108	JP + CPI ===> ON	JP + CPI ===> OFF	
	%M109	JP ===> ON	JP ===> OFF	\checkmark

On associe pour chaque élément une adresse dans la mémoire, et quand l'utilisateur appui sur ON l'adresse mémoire s'active et peut être utiliser comme une transition pour passer d'une étape a une autre dans les grafcets. La deuxième page est la page des alarmes, où on donne pour chaque alarme un adresse mémoire et dans le moment ou cet adresse sera activé au cours du programme un alarme sera afficher sur l'écran.

4. Analyse de l'organisation

Je m'intéresse maintenant à l'organisation de l'entreprise selon plusieurs modèles d'analyse sociologiques. Tout d'abord, je représente l'entreprise selon le modèle de Mintzberg. Dans TornaTech Belgique, le sommet stratégique est représenté par le directeur adjoint opérations industrielles et techniques. La ligne hiérarchique contient le directeur de site qui est en plus le responsable de production. De plus, les testeurs qui sont considérés comme des chefs d'équipe sont situées à la dois dans la ligne hiérarchique et dans le centre opérationnel, ou ils managent leur équipe et font le lien entre les opérateurs et l'ingénieur responsable de la production et ils participent dans les entretiens hebdomadaires. Le centre opérationnel est composé des employés qui s'occupent à la fabrication des armoires et le réceptionne. La technostructure apparait bien développée. Ensuite, les fonctions du support logistiques représentés par le service comptabilité et le service informatique. De plus, l'entreprise possède également une belle et bien présente idéologie.

En effet, TornaTech, et grâce au niveau technologique important présent, possède beaucoup des caractéristiques industrielles qui s'efforce de progresser. De même, chaque personne au sein de TornaTech a ce souci de l'excellence et de respect des protocoles du travail au sein de l'entreprise. Finalement, chaque opérateur a un rôle spécifique et reste sur une chaine précise durant toute la période du travail. Donc, et après l'analyse effectue selon le modèle Mintzberg, il est bien clair que l'entreprise suivait une organisation mécaniste.

Figure 23: Modèle Mintzberg

Je m'intéresse maintenant au modèle d'Adizès pour évaluer l'âge de l'entreprise. Lors de mon stage, j'ai bien vu que la production est importante, d'où la fonction produire est fortement présentée. De même, la fonction entreprendre et administrer étaient présentés, car TornaTech innove et instaure de nouvelles normes et protocoles. J'ai donc pu conclure et après l'identification des trois fonctions : produire, entreprendre et administrer que TornaTech est une entreprise jeune.

Figure 24: Modèle Adizès

Conclusion

J'ai eu la chance dans ce stage de mettre en pratique des connaissances techniques dans les différents domaines technologiques comme l'électricité, l'électronique, l'informatique industriel et la mécanique. De plus, j'ai pu travailler sur l'étude, la caractérisation et la réalisation d'un système complet.

L'objectif de mon stage était de réaliser et fabriquer un banc de test pour les armoires de contrôles des moteurs électriques pour pompes anti-incendie selon la norme française A2P.Dans la partie théorique, la compréhension de fonctionnement de l'armoire APSAD et des schémas de banc de test a pu être faite. En même temps, j'ai eu la chance de suivre une formation sur les automates Schneider utilisées dans ce projet.

La partie pratique consistait a fabriqué ce banc de test selon les schémas crée par l'ancien stagiaire, où un automate programmable a été installé dans le but de programmer ce banc de test, mais avant de commencer la fabrication, j'ai passé un moi dans l'atelier du l'entreprise, où j'ai fabriqué une armoire APSAD et assister dans le test réalisé dans le but de vérifier le bon fonctionnement de cet armoire.

Finalement, ce stage m'a donné l'opportunité de m'intégrer au sein d'un équipe dans un atelier d'une entreprise présent sur la marche mondiale, et qui travaille dans le domaine électrique. En effet, ce stage m'a bien préparé pour mes projets professionnels et surtout celui de troisième année. De plus, j'ai bien découvert l'importance de l'échange entre les stagiaire et les travailleurs dans ce domaine, où j'ai pu profiter de leur expérience et connaissance dans ce domaine. Et le plus intéressant est que le but final est presque achevé et le projet est presque près pour être utiliser au sein de l'entreprise.

Annexes

A. Entrés/Sorties du contrôleur

Dans le but de programmer notre contrôleur, il était bien nécessaire de préciser et de définir des entrées « %I » de l'automates qui seront les transitons entre les étapes dans nos grafcet, et les sorties « %Q » de l'automate qui seront considérés comme des actionneurs. Ensuite, il est conseillé de donner chacune des entrées et des sorties une adresse mémoire « %M » pour faciliter la correction des erreurs. Par exemple, si on a eu une erreur au niveau de la sortie **%Q0.0**, qui sera utilisé dans plusieurs étapes de notre programme, on peut juste changer la sortie au niveau de la mémoire au lieu de chercher %Q0.0 dans tous les étapes. C'est un peu comme la fonction « Search and replace ».

Dans les tableaux ci-dessous, on représente les différentes entrées et sorties de notre programme avec l'adresse mémoire associées.

NOM_ENTRES	ADDRESSE_AUTOMATE	ADDRESSE_MEMOIRE
DEFAUT_JP_NO	%10.0	%M0
DEFAUT_JP_NF	%10.1	%M1
MARCHE_SOURCEA_NF	%10.2	%M2
MARCHE_SOURCEA_NO	%10.3	%M3
DEFAUT_SOURCEA_NF	%10.4	%M4
DEFAUT_SOURCEA_NO	%10.5	%M5
MANQUE_TENSION_NF	%10.6	%M6
MANQUE_TENSION_NO	%10.7	%M7
NON_AUTO_PS2_NO	%10.8	%M8
NON_AUTO_PS2_NF	%10.9	%M9
NON_AUTO_PS1_NF	%10.10	%M10
NON_AUTO_PS1_NO	%10.11	%M11
NIV_BAS_BAC_AMOR_NF	%10.12	%M12
NIV_BAS_RESERVE_GLYCOL_NF	%I0.13	%M13
NIV_BAS_BAC_AMORC_NO	%10.14	%M14
NIV_BAS_RES_GLYCOL_NO	%10.15	%M15
RESERVE_VIDE_NF	%10.16	%M16
NIV_BAS_BAC_ANTIGEL_NF	%10.17	%M17
RESERVE_VIDE_NO	%10.18	%M18
NIV_BAS_BAC_ANTIGEL_NO	%I0.19	%M19
СРІ	%10.20	%M20
CLOCHE	%10.21	%M21
MR1-12	%10.22	%M22
MR2-12	%10.23	%M23

MR3-12	%11.14	%M24
MR4-12	%11.13	%M25
MR5-12	% 1.11	%M26
MR6-12	%11.10	%M27
ARRET_SEQUENCE	%11.8	%M28
SELECTEUR_690V	%11.7	%M29
SELECTEUR_220V	%11.6	%M30

Figure 25: tableau des entrées

NOM_SORTIES	ADDRESSE_AUTOMATE	ADDRESSE_MEMOIRE
AUTO_PS1	%Q0.0	%M50
AUTO_PS2	%Q0.1	%M51
AMORCAGE	%Q0.2	%M52
RESERVE_VIDE	%Q0.3	%M53
IPSO	%Q0.4	%M54
J_DEBIT	%Q0.5	%M55
GLYCOL	%Q0.6	%M56
ANTIGEL	%Q0.7	%M57
PS3_DEP/ARRET	%Q0.8	%M58
PS3_ARRET	%Q0.9	%M59
INV_PHASE	%Q0.12	%M60
BUZZER	%Q0.13	%M61
K2_A2	%Q0.14	%M62
K3_A2	%Q0.15	%M63
K4_A2	%Q1.7	%M64
K5_A2	%Q1.6	%M65
K6_A2	%Q1.5	%M66
K7_A2	%Q1.4	%M67
K8_A2	%Q1.3	%M68
K9_A2	%Q1.2	%M69
K10_A2	%Q1.1	%M70
K11_A2	%Q1.0	%M71
BP5_SILENCE	%Q2.7	%M72
BP4_SIGNALISATION	%Q2.6	%M73
BP3_REAREMENT	%Q2.5	%M74
SS3_AUTO	%Q2.4	%M75
SS3_MANU	%Q2.3	%M76
JP_DEP	%Q2.2	%M77
JP_ARRET	%Q2.1	%M78
SS1_AUTO	%Q2.0	%M79

SS1_MANU	%Q3.7	%M80
SS2_Auto	%Q3.6	%M81
SS2_MANU	%Q3.5	%M82
BP2_DEP_A	%Q3.4	%M83
BP2_ARRET_A	%Q3.3	%M84

Figure 26: Tableau des sorties

B. Câblage du contrôleur

Figure 27 : Inputs PLC 1

Figure 28: Outuputs PLC 1

Figure 29: Outputs PLC 2

Figure 30 : Inputs PLC 2

Figure 31 : Inputs PLC 3

Fiche d'évaluation de stage

RAPPORT D'EVALUATION ASSESSMENT REPORT

Merci de retourner ce rapport en fin du stage à : Please return this report at the end of the internship to :

ENSTA Brotagno – Bureau des stages - 2 rue François Verny - 29806 BREST cedex 9 – FRANCE **1** 00.33 (0) 2.98.34.87.70 - Fax 00.33 (0) 2.98.38.87.90 - <u>stages@ensta-bretagne.fr</u>

I-ORGANISME / HOST ORGANISATION NOM / Name
Adresse / Address AV. VESALE 32 4, 1300 WAVRE, BELGIOVE
Tél / Phone (including country and area code)_0032_1_10844001
Fax / Fax (including country and area code) 00321 10247505
Nom du superviseur / Name of placement supervisor
Fonction / Function PRODUCTION PLANNER & SUPERVISOR
Adresse e-mail / E-mail address <u>SELIML (D TORWATECH</u> . OM
Nom du stagiaire accueilli / Name of trainee

II - EVALUATION / ASSESSMENT

Veuillez attribuer une note, en encerclant la lettre appropriée, pour chacune des caractéristiques suivantes. Cette note devra se situer entre A (très bien) et F (très faible) Please attribute a mark from A (very good) to F (very weak).

MISSION / TASK

- La mission de départ a-t-elle été remplie ? Was the initial contract carried out to your satisfaction?
- Manquait-il au stagiaire des connaissances ? Was the trainee lacking skills?

Sioui, lesquelles?/Ifso, which skills? <u>ViJEO DESIGNER</u> ELECTRIC HMI

ESPRIT D'EQUIPE / TEAM SPIRIT

Le stagiaire s'est-il bien intégré dans l'organisme d'accueil (disponible, sérieux, s'est adapté au travail en groupe) / Did the trainee easily integrate the host organisation? (flexible, conscientious, adapted to team work)

oui/yes

ABCDEF

B/CDEF

FOR SCHNEIDER

non/no

Souhaitez-vous nous faire part d'observations ou suggestions ? / If you wish to comment or make a suggestion, please do so here

boume 12 Obrohon Tich tou Nenberl 9 0 Cousiques des Version du 03/05/2017

COMPORTEMENT AU TRAVAIL / BEHAVIOUR TOWARDS WORK

Le comportement du stagiaire était-il conforme à vos attentes (Ponctuel, ordonné, respectueux,

soucieux de participer et d'acquérir de nouvelles connaissances)? Did the trainee live up to expectations? (Punctual, methodical, responsive to management instructions, attentive to quality, concerned with acquiring new skills)? ABCDEF

Souhaitez-vous nous faire part d'observations ou suggestions ? / If you wish to comment or make a suggestion, please do so here

This poulliel of prisent, nois of when is
le proprité et jo la puplité du manail
INITIATIVE - AUTONOMIE / INITIATIVE - AUTONOMY
Le stagiaire s'est –il rapidement adapté à de nouvelles situations ? (ABCDEF (Proposition de solutions aux problèmes rencontrés, autonomie dans le travail, etc.)
Did the trainee adapt well to new situations? (eg. suggested solutions to problems encountered, demonstrated autonomy in his/her job, etc.)
Souhaitez-vous nous faire part d'observations ou suggestions? / If you wish to comment or make a suggestion, please do so here
CULTUREL - COMMUNICATION / CULTURAL - COMMUNICATION
Le stagiaire était-il ouvert, d'une manière générale, à la communication ? [ABCDEF Was the trainee open to listening and expressing himself /herself?
Souhaitez-vous nous faire part d'observations ou suggestions? / If you wish to comment or make a suggestion, please do so here \overrightarrow{Fb} d $nous pure particulients$
A Least State in the state in the
Evaluate the technical skills of the trainee:
III - PARTENARIAT FUTUR / FUTURE PARTNERSHIP
Etes-vous prêt à accueillir un autre stagiaire l'an prochain ? /
Would you be willing to host another trainee next year? 🚺 oui/yes 🔲 non/no
Fait à <u>WAURE</u> , le <u>409/14</u> In, on Signature Entreprise <u>elli esta signature stagiaire</u>
Company stamp Trainee's signature
TornaTech Europe Spri Rue Vésale, 32A 1300 Wavre BelgiumTel : +32 (0) 10 84 40 01 Fax : +32 (0) 10 24 75 05 Tva : BE 0830 139 856 Iban : BE53 1430 7932 1853Merci pour votre coopération We thank you very much for your cooperation

Version du 03/05/2017

10

Table des figures

Figure 1: Système Anti-Incendie	8
Figure 2: Equipe de production	9
Figure 3: Outils utilisée en test manuel	10
Figure 4 : Tableau des differents modeles de l'armoire APSAD	13
Figure 5: Partie Platine de l'armoire APSAD	14
Figure 6: Porte de l'armoire APSAD	14
Figure 7: Carte de signalisation	15
Figure 8: Les entrées de la carte principale	16
Figure 9: Les sorties de la carte principale	17
Figure 10: Tableau des erreurs	21
Figure 11: schéma électrique	22
Figure 12: Composants du banc de test	23
Figure 13: Banc de test	24
Figure 14: Monitor Relay	25
Figure 15: Shéma électrique MR	25
Figure 16: Cablage MR dans le banc de test	25
Figure 17: Tableau des MR	26
Figure 18: Automate « TM221CE40R »	26
Figure 19: Afficheur « Modicon TMH2GDB »	27
Figure 20: Grafcet Général	28
Figure 21: Logique du programme	28
Figure 22 : Eléments de la page "choix"	29
Figure 23: Modèle Mintzberg	
Figure 24: Modèle Adizès	31
Figure 25: tableau des entrées	34
Figure 26: Tableau des sorties	35
Figure 27 : Inputs PLC 1	
Figure 28: Outuputs PLC 1	
Figure 29: Outputs PLC 2	
Figure 30 : Inputs PLC 2	
Figure 31 : Inputs PLC 3	40

Bibliographie

- [1] https://www.monde-diplomatique.fr/1956/10/LEMOYNE/21943
- [2] https://www.tornatech.com/fr/a-propos-de-nous/qui-nous-sommes/

[3] http://www.positron-libre.com/cours/electrotechnique/demarrage-moteur/schema-demarrage-etoile-triangle.php

- [4] http://www.blog-alarme.com/norme-a2p-definition-utilite-alternative/
- [5] https://www.securitasdirect.fr/APSAD
- [6] http://geea.org.pagesperso-orange.fr/gererenergie/sectionneur.htm
- [7] http://eauetfeu.fr/
- [8] http://www.electrosup.com/controleur_permanent_d_isolement.php
- [9] https://www.tme.eu/fr/details/3ug4614-1br20/modules-de-controle/siemens/
- [10] https://www.dropbox.com/s/4rnsv8qvsqdfcco/PROGRAMME_FINAL.pdf?dl=0
- [11] https://www.dropbox.com/s/35szjt41oi3giag/PROGRAMME_FINAL.smbp?dl=0