
Preliminary Design and Control of a Sailing Robot

Yoann Sola

Supervisor: Jian Wan
Tutor: Luc Jaulin

Address: University of Pymouth, School of Marine Science, England.

October 10, 2016

2

Abstract

English Version
Sailing robots or autonomous sailboats are among the latest developments of marine

robotics. The report of this internship in the University of Plymouth is divided in two parts.
The first part deals with a feasibility study concerning the prototype of an autonomous

sailboat. The architecture of this prototype and the calibration methods of all its sensors will
be described.

The second part deals with the construction of two simulations about the control of a
sailing robot : the first one in order to make it follow a path, and the second one in order to
make it stay inside a zone and avoid obstacles.

Key Words : sailboat ; robotics ; calibration ; path following ; obstacle avoidance ; virtual
anchoring.

French Version
Les robots voiliers ou voiliers autonomes sont parmi les derniers développements de la

robotique marine. Le compte-rendu de ce stage à l’Université de Plymouth est divisé en deux
parties.

La première partie traite d’une étude de faisabilité concernant le prototype d’un voilier
autonome. L’architecture de ce prototype ainsi que les méthodes de calibration de tous ses
capteurs seront décrits.

La seconde partie traite de la construction de deux simulations à propos du contrôle d’un
robot voilier : la première afin de lui faire suivre un chemin, et la seconde afin de le faire rester
dans une zone et éviter des obstacles.

Mots Clés : voilier ; robotique ; calibration ; suivi de chemin ; évitement obstacle ; ancrage
virtuelle.

3

4

Contents

1 Introduction 7
1.1 The Need of Autonomous Sailboat . 7
1.2 The University of Plymouth . 8

2 Building a Prototype of a Sailboat Robot 9
2.1 The Body of the Buggy . 10

2.1.1 The Chassis . 11
2.1.2 The Microcontroller . 11
2.1.3 The Motor Shield . 12
2.1.4 Power Supply . 13

2.2 LCD Screen . 13
2.3 Ultrasonic Ranging Module . 14
2.4 GPS Module . 16
2.5 Electronic Compass . 18

2.5.1 Principle of the Sensor . 18
2.5.2 The Aerospace Coordinate System . 19
2.5.3 Calibration of the Accelerometer . 20
2.5.4 Calibration of the Magnetometer . 21
2.5.5 Computation of the Heading . 23
2.5.6 Components Involved . 26

2.6 Wind Sensor . 27
2.6.1 The Rotary Encoder . 27
2.6.2 The Wind Vane . 28

3 Simulation of an autonomous sailboat 31
3.1 Modelling an autonomous sailboat . 31
3.2 A Line-Following Algorithm . 33

3.2.1 Principle of the Algorithm . 33
3.2.2 Detailled Algorithm . 34

3.3 Anchoring Zone and Obstacle Avoidance . 36
3.3.1 Principle of the Simulation . 37
3.3.2 Voronoi Diagrams algorithm . 38

5

6 CONTENTS

3.3.3 Anchoring Algorithm . 41

4 Conclusion 47

5 Annex 49

Chapter 1

Introduction

1.1 The Need of Autonomous Sailboat

Marine robotics : a world to explore

Compared to the latest technical and scientific advances in ground robotics (autonomous
cars, humanoid robots, etc) and aerial robotics (autonomous plane, quadcopter, etc), the sector
of marine robotics is yet to be explored further. Indeed, the two-thirds of the Earth is covered
by oceans, seas and lakes, but the general public is mainly focused on space exploration or
lands applications of robotics.

But since the beginning of the twenty first century, we have observed a huge development of
marine robotics. Indeed, more and more universities and companies, associated with the field
of marine sciences, are developing and using autonomous marine systems in various projects. In
this way, Autonomous Underwater Vehicle (AUV) and Unmanned Surface Vehicle (USV) can
be used alone or in flleet in various context : during scientific explorations, for the protection
of the ocean resources, during environmental disaster, ...

Why autonomous sailboat are needed ?

One of the latest type of autonomous marine system to appear is the autonomous sail-
boat. Over the past few years, there have been growing interests in sailing robotics, with the
apparition of major events such as the World Robotic Sailing Championship (WRSC) or the
International Robotic Sailing Conference (IRSC).

Autonomous sailboats offer strong advantages such as its low-cost design or its ecological
functioning, and can be used in a variety of activities : during ecological studies of oceans
without electromagnetic interference, for supplying equipments in remote islands or regions,
for generating energy thanks to its low consumption of electricity and the use of solar panels
or windmills, ...

7

8 CHAPTER 1. INTRODUCTION

1.2 The University of Plymouth

Presentation of the University of Plymouth
In order to complete my second year of engineering school, I made a three months internship

in the University of Plymouth, in England. The university was divided in different schools, each
one of them operating in a different field of activity.

My internship took place in the School of Marine Science and Engineering, and my supervi-
sor was Dr Jian WAN, lecturer in Control Systems Engineering and member of the Autonomous
Marine Systems (AMS) research group.

The goal of my internship was doing a feasibility study concerning the sensors used by
autonomous sailboats and trying to explore new control algorithms for obstacle avoidance,
anchoring and path following..

The Mayflower Autonomous Research Ship
The University of Plymouth is currently involved in a pioneering project of sailing robotics

: the Mayflower Autonomous Research Ship (MARS) project. This project is made in collabo-
ration with two british companies, MSubs and Shuttleworth Design, and its goal is to build a
big autonomous sailboat (over 100 feet in length) in order to entirely cross the Atlantic ocean,
without any human assistance. The autonomous sailboat will carry on board several aerial
drones in oder to make experimentations during the journey.

The crossing is planned to be done in 2020, in order to celebrate the 400th anniversary of
the original Mayflower sailings from Plymouth, England to Plymouth, Massachusetts, USA.

3D models of the future sailboat can be seen on Figure 1.1.

Figure 1.1: The Mayflower Autonomous Research Ship project

My internship was made in the context of the preparation of the MARS project, and I met
some representatives of the company MSubs during my stay in Plymouth.

Chapter 2

Building a Prototype of a Sailboat
Robot

The first part of my internship consisted in building a preliminary prototype of an au-
tonomous sailboat. Once finished, the prototype had not to be fully operational, since the
aim of my internship was doing a feasibility study. Indeed, the robot had to be cheap and
all parts had to be reusable for future student projects, which means that solderings were not
allowed (except in some cases such as the power supply coming from the Motor Shield or the
I2C module of the LCD Screen) : the whole device could not be resistant enough to face the
harsh environment of the ocean, so experimentations in water were not planned during this
internship.

In order to test easily the calibration of sensors, I built a fully equiped buggy (or a ground
robotic platform) with all sensors and electronic cards required for an autonomous sailboat.
Indeed it is easier to test a small buggy than a sailboat, because we just have to put the buggy
outdoor, wherever we want, whereas a sailboat has to be put in an aquatic environment, like
in a pool for example.

In this section, I’m going to describe chronologically the construction of this prototype, part
by part. Moreover, in order to help potential builders who would be interested in building this
kind of robot, I will explain the knowledge I acquired at each step of the construction in detail,
including the theoretical background, calibration methods, useful tools or even just practical
advices.

The final version of the buggy can be seen on Figure 2.1, and its electronic architecture is
shown on the Figure 2.2.

9

10 CHAPTER 2. BUILDING A PROTOTYPE OF A SAILBOAT ROBOT

Figure 2.1: Final version of the buggy

Figure 2.2: Electronic architecture of the buggy

2.1 The Body of the Buggy

Firstly, I’m going to talk about the body of the buggy, which includes the chassis, the
microcontroller and motors.

2.1. THE BODY OF THE BUGGY 11

2.1.1 The Chassis

The whole architecture of the buggy is based on a four-wheel drive chassis (a 4WD chassis
or 4x4 chassis), which can be seen on the left part of the Figure 2.3. The chassis is made of
acrylic material and is equiped with four gear motors, each one directly connected with a wheel,
as shown on the right part of the Figure 2.3.

Gear motors have a power supply range from 3V to 12V, and a nominal voltage of 6V. Their
speed and their direction of rotation can easily be controlled with a Pulse-Width Modulation
signal (PWM).

Figure 2.3: The chassis of the buggy

2.1.2 The Microcontroller

The microcontroller board which was choosen in order to read sensors, host programs and
operate actuators is an Arduino Mega 2560 (see Figure 2.4, left part).

This PCB (Printed Circuit Board) is based on an ATmega2560 microcontroller and is de-
signed for project involving a large numbers of sensors and actuators, since it includes 54 digital
Input/Output Pins (of which 15 can deliver PWM signals, 6 can be used for Interrupt functions,
8 can allow serial communications through UARTs and 2 can allow I2C communications) and
16 analog Input pins. Digital output pins deliver an operating voltage of 5V, but the board
needs a power supply that lies between 7V and 12V in order to work correctly.

Moreover, thanks to the open-source Integrated Development Environment (IDE) provided
by Arduino (see Figure 2.4, right part), this microcontroller board is easy to program with
the use of language C++ and various useful libraries. Arduino has also a huge community
of “Makers” using these kind of boards in various open-source projects and developping new
unofficial libraries. I will enumerate all libraries I used in each of the following sections of this
report.

12 CHAPTER 2. BUILDING A PROTOTYPE OF A SAILBOAT ROBOT

Figure 2.4: The Arduino Mega 2560 board (left) and Arduino IDE (right)

2.1.3 The Motor Shield

There are different ways of controling DC motors or gear motors : by using PWM pins of
the Arduino Mega 2560, or with an H-bridge motor driver integrated circuit such as the L293D
or even by using additional electronic boards. I chose the last option.

Indeed, I used a “clone version” of the Adafruit Motor Shield (see Figure 2.5, left part). In
the vocabulary associated with Arduino boards, a “shield” means an additional card that can
be directly connected on the main Arduino board, as shown on the right part of the Figure 2.5.
This way of connecting boards one on top of the other allows to gain a lot of space, adds all new
features to the main board and no soldering is needed (except power supply pins provided by
the main Arduino card, in order to use them with other electronic components in the future).

The Adafruit Motor Shield is able to controll simultaneously several configurations of mo-
tors, depending on their type : 4 DC or gear motors + 2 servomotors, or 2 stepper motors + 2
servomotors, or even 2 DC or gear motors + 1 stepper motor + 2 servomotors. Moreover, the
company Adafruit provides a library called “AFMotor” which adds all the functions needed for
the use of this shield.

I used this Motor Shield in order to simultaneously controll the four gear motors of the
previous chassis, which allows me to adjust their respective speed and to change their direction
of rotation.

Finally, this Motor Shield can also be used in order to controll the future autonomous
sailboat. Indeed, it is able to simultaneously controll the two servomotors used in that system
: one in order to adjust the rudder and the other to regulate the length of the sheet (which will
allow to adjust the sail).

2.2. LCD SCREEN 13

Figure 2.5: The Adafruit Motor Shield board (left)

2.1.4 Power Supply
Concerning the power supply, we need two sources of power : one which lies between 7V

and 12V for the main Arduino board (the microcontroller board), and an other one of 6V for
the four gear motors of the chassis.

Concerning the microcontroller board, I chose a 12V Li-ion battery, which is rechargeable
and has a good capacity of 6800 mAh. For gear motors, I chose a battery pack made of four
AA battery. Given that each AA battery is able to provide 1.5V, the battery pack manages to
provide the nominal voltage of the gear motors (6V).

2.2 LCD Screen
In order to have an instant and direct feedback from the buggy, I decided to add a LCD

screen to the structure. Indeed it helps a lot to have a display like that when you have to
calibrate sensors, test an algorithm or debug the software part of your project.

The problem is that such a device possesses 16 digital pins, and at least 12 of them are
necessary in order to display anything on the screen. An electrical circuit based on a LCD
screen uses a lot of wires and space, as seen on the left part of the Figure 2.6.

So in order to save space and to reduce electrical connections, I decided to use an I2C
module in order to easily control the LCD screen. Indeed, once this module is soldered to the
LCD screen (see Figure 2.6, right part), the whole device possesses only 4 digital pins, instead
of 16, while offering the same possibilities as before.

This module use the I2C (Inter-Integrated Circuit) communication technology in order to
control the screen. It is a multi-master, multi-slave, single-ended, serial computer bus which
could be used for making several microcontrollers comunicate with each other, or like here for
sending and receiving information from sensors or actuators. Some electronic components also
needs to be configured through this way before being used.

An I2C communication is composed of two pins : the SCL (Serial Clock Line) pin for
synchronizing the communication and the SDA (Serial Data Line) pin for exchanging data.

14 CHAPTER 2. BUILDING A PROTOTYPE OF A SAILBOAT ROBOT

With only one I2C bus, a microcontroller is able to communicate with a great number of
components, since each device involved in an I2C communication has a unique 7-bit adress.
Moreover, “ground” pins of all devices involved in the I2C bus have to be connected all together.

In order to being able to control the LCD screen and its I2C module, I needed to use a
library called “New LiquidCrystal”,which is based upon the official “LiquidCrystal” Arduino
library and adds new types of connections for the use of LCD screens.

Figure 2.6: The LCD screen before (left) and after (right) the use of the I2C module

2.3 Ultrasonic Ranging Module

An ultrasonic ranging module (or ultrasonic distance sensor) is not necessary within an
autonomous sailboat, but it could bring more security. Indeed it allows the future sailboat
robot to detect and avoid obstacles that could suddenly appear and which were not expected
during the planning of the mission. In this way, I decided to add two of these sensors to my
project, one for the left side of the buggy, and the other one for its right side.

I chose the Ultrasonic Ranging Module HC-SR04 (see Figure 2.7), which has a working
voltage of 5V (compatible with the Arduino Mega board). This sensor is very easy to use and
is able to detect obstacles with a range from 5cm to 3m, thanks to ultrasonic waves.

Indeed, the sensor have an ultrasonic wave transmitter and a receiver that is able to detect
ultrasonic wave beams. This sensor is going to emit ultrasonic wave beams and will return the
time taken by these waves for being reflected by an obstacle and returning to the sensor. Once
this time is measured, we can easily find the distance between the ultrasonic ranging module
and the obstacle.

2.3. ULTRASONIC RANGING MODULE 15

Figure 2.7: The Ultrasonic Ranging Module HC-SR04

The speed of an ultrasonic (and even sonic) wave in a perfect gas is given by the formula :

v =
√
γRsT (2.1)

where v is the speed of the ultrasonic wave in m/s, γ is the heat capacity ratio or adia-
batic index of the perfect gas, Rs is the specific gas constant of the perfect gas, and T is the
temperature of the perfect gas in Kelvin.

We know that in the air : γ = 1.4 and R = 287 J.kg−1.K−1 .
According to 2.1, we are able to compute that the speed of ultrasonic waves in the air is :

v = 343 m.s−1 for T = 20°C and v = 346 m.s−1 for T = 25°C.
Since the variation of the speed is very weak in regards to the variation of the temperature
(less than 1% here), the Ultrasonic Ranging Module HC-SR04 has an intern value for the
speed of ultrasonic waves in the air set to 340 m/s.

Knowing that, we are now able to compute the distance between the sensor and the obstacle.
Indeed, we have :

t = 2d
v

(2.2)

where t is the time between the emission and the reception of the reflected ultrasonic wave
(which is measured by the sensor) in seconds, d is the distance between the sensor and the
obstacle in meters, and v is the speed of the ultrasonic wave in the air in m/s.

Since the speed v is known (340 m/s) and the time t is returned by the ultrasonic ranging
module, we can now compute the distance d as follows :

d = vt

2 (2.3)

The obstacle is now detected and its distance with respect to the robot is measured.

Moreover, some limitations have to be taken into account with the use of ultrasonic distance
sensors :

16 CHAPTER 2. BUILDING A PROTOTYPE OF A SAILBOAT ROBOT

- The sensor can only detect obstacles that are within a 30° cone angle. This is why I took
two sensors in my project, one for each side of the robot.

- The sensor has a “blind zone” which makes that no obstacle can be detected within the
first 5cm. The reason for this is that the receiver of the sensor is disabled during approximately
100 microseconds after the emission of an ultrasonic wave. Indeed since the transmitter and
the receiver are very close (on the PCB of the sensor), if the receiver were not disabled after
the emission of an ultrasonic wave, the wave would be instantly detected by the receiver as
an “echo” before reaching any obstacles, and the robot would detect an obstacle that does not
exist.

- The range of detection of the sensor can vary depending of the shape and the material of
the obstacle. Indeed, these two factors can modify the way ultrasonic waves will be reflected
by the obstacle. For exemple, a plane surface is able to reflect more waves than a round
surface. Moreover, some materials tend to absorb waves rather than reflect them.

All these limitations are not influential in the context of our present project, since obstacles
such as rocks or other boats are easy to detect for an ultrasonic range module.

Additional recommandations or characteristics can easily be found in the data sheet of the
HC-SR04 module, made by ElecFreaks.

2.4 GPS Module

The GPS Module is only used in order to know the position of the robot, so in our project
we are not interested in other information such a device could provide, such as the date, the
altitude or the speed of the robot for example.

I used a cheap version of a Ublox NEO-6M GPS Module (see Figure 2.8). This device is
suitable for my feasibility study, but it would not be accurate enough for a real robot, since its
measuring errors concerning the GPS position can reach up to 20 meters.

2.4. GPS MODULE 17

Figure 2.8: The Ublox NEO-6M GPS Module

This module is able to detect GPS satellite signals thanks to its built-in GPS antenna and
to transmit data in the form of NMEA sentences thanks to a serial communication (UART).

NMEA 0183 is a both electrical and data specification used in navigation by many
instruments such as sonars, gyrocompasses or GPS receivers. NMEA data are encapsulated
within “NMEA sentences”, which are standard data representations. There are many different
type of NMEA sentences, each one containing various sort of data. We are only going to use
GPGGA sentences, which is one of the most common used NMEA sentences, since it contains
only basic data. Here is an example of a GPGGA sentence :

$GPGGA,194530.000,3051.8007,N,10035.9989,W,1,4,2.18,746.4,M,-22.2,M„*6B

The type of the NMEA sentence is always specified at the beginning of the sentence. Here
it is $GPGGA.

194530.000 is the UTC time of reception : 19 hours, 45 minutes and 30.000 seconds.
3051.8007,N is the latitude : 30 degrees and 51.8007 arc minutes, North.
10035.9989,W is the latitude : 100 degrees and 35.9989 arc minutes, West.
1 is the “Fix Quality” of the GPGGA sentence. It is an indicator of the quality of the

NMEA sentence : 0=no fix, 1=GPS fix, 2=Differential GPS fix.
4 is the number of GPS satellites that are currently detected.
2.18 is the Horizontal Dilution of Precision (HDOP). It corresponds to the relative accuracy

of the horizontal position.

18 CHAPTER 2. BUILDING A PROTOTYPE OF A SAILBOAT ROBOT

746.4,M is the altitude of the antenna that receives the GPS signal : 746.4 meters above
the mean sea level.

-22.2,M is the geoidal separation : the mean sea level is 22.2 meters below the WGS-84
earth ellipsoid.

The last two blanks are supposed to be the time since last DGPS update for the first one,
and the DGPS reference station id for the second one. These information only appeared when
the Fix Quality is set to 2 (Differential GPS fix), but it is not the case in this example.

*6B is the “checksum” : it is used by all softwares in order to check if transmission errors
are present in the NMEA sentence.

Before connecting the GPS module to the Arduino Mega board, I tested it by connecting
it to my computer, whith a “USB to TTL” Serial cable.

In order to vizualize GPS data received by the antenna, I used “u-center”, a software
provided by the company u-block which allows to configure GPS receivers and to simultaneously
display various GPS data. During the first utilizations of the GPS module, GPS satellites
could take a long time to be detected (up to 30 minutes in my case), but the more the module
is used the faster GPS data are received.

Once I was sure that the GPS module was working correctly, I connected it to one of the
Serial ports (or UARTs) of the microcontroller board.

In order to read GPS data from the module, I used a library called “TinyGPS++”, which
allows to extract directly the latitude and the longitude of the current position from the output
of the GPS module.

2.5 Electronic Compass
The electronic compass (or eCompass) was the most sensible sensor I used in my project,

and required a particularly accurate calibration. I’m going to explained in detail its principle
and its calibration, but you could find additional explanations in [AND10], [NXP1], [NXP2]
and [NXP3].

2.5.1 Principle of the Sensor
An electronic compass is a device composed of two sensors : a 3-axis accelerometer and

a 3-axis magnetometer. Its function is to indicate the heading of the robot on which it
is attached. In order to do this, it has to measure the earth’s magnetic field −→B (or the
geomagnetic field) with its magnetometer, to extract the horizontal component −→Bh of that
field (which gives us the direction of the North Magnetic Pole of the Earth) and to measure
the angle between this horizontal component −→Bh and the axis of the robot. This angle will
correspond to the heading ψ of the robot (see Figure 2.9, left part). The accelerometer allows
to extract the horizontal component of the geomagnetic field by measuring the gravity vector

2.5. ELECTRONIC COMPASS 19

−→
G of the earth and by computing the roll angle and the pitch angle of the robot (see Figure
2.9, right part).

Figure 2.9: Function of the magnometer (left) and function of the accelerometer (right)

We need to calibrate separately the accelerometer and the magnetometer, then we need to
implement a tilt-compensated eCompass from the raw data of these two sensors.

2.5.2 The Aerospace Coordinate System
The eCompass uses the aerospace coordinate system. It means that when the PCB of the

eCompass is facing the north (when the heading is equal to 0°) and is parallel to the ground
(when the roll angle and the pitch angle are equal to 0°), the eCompass is in the following
configuration : the x-axis points north, the y-axis points east and the z-axis points downwards
(see Figure 2.10). So the heading will be the angle measured between the x-axis of the eCompass
and the horizontal component of the geomagnetic field.

Figure 2.10: The aerospace coordinate system

20 CHAPTER 2. BUILDING A PROTOTYPE OF A SAILBOAT ROBOT

Most of the time, the 3 axis of the magnetometer and the accelerometer are not oriented
using this coordinate system. Indeed the sensors are arbitrarily put on the PCB of the eCompass
and we have to apply corrections to their output axes in order to align them with respect to
the aerospace coordinate system.

In the example shown on the Figure 2.10, we have to redefine output axes :
Gx = gy Bx = by

Gy = −gx By = bx

Gz = gz Bz = −bz

(2.4)

where :
gx, gy and gz are the output axes of the accelerometer in g
bx, by and bzare the output axes of the magnetometer in Tesla
Gx, Gy and Gzare the redefined axes of the accelerometer in g
Bx, By and Bzare the redefined axes of the magnetometer in Tesla

2.5.3 Calibration of the Accelerometer
The accelerometer needs to be calibrated in order to remove two sources of erroneous data

: the 0g offset and the sensitivity mismatch between axes.
Indeed, each axis of the accelerometer could possibly have a constant offset (the 0g offset)

and a wrong sensitivity (a gain that is not equal to 1 on this axis). So the output of each of
the three axis of the accelerometer can be written as follows :

Gnc = Goff + (Gain×Gc) (2.5)

where :
Gnc is the non-calibrated output of one of the axes of the accelerometer in g
Goff is the 0g offset present on this axis in g
Gain corresponds to the sensitivity of the axis
Gc is the calibrated output of the axis and corresponds to the real acceleration acting on

this axis in g

The aim of the calibration is to compute Gc from Gnc , for each of the three axis. In order
to do that, we need to compute the Gain and Goff for the three axis.

A simple and efficient method consists in measuring outputs of each axis when the axis is
placed into a +1g field and a -1g field. It means that we have to place the PCB of the eCompass
in two orientations, completely immobile : one in order to put the axis in a vertical position and
pointing upwards (in a -1g field), and an other one in order to put it in a vertical position and
pointing downwards (in a +1g field). Using 2.5 and since the gravity is the only acceleration
acting on the eCompass , we have the following relations for each of the accelerometer’s axis :

G+1g = Goff + (Gain× 1g) (2.6)

2.5. ELECTRONIC COMPASS 21

G−1g = Goff − (Gain× 1g) (2.7)

where G+1g is the output (in g) of the axis placed in a +1g field, and G−1g is the output
(in g) of the axis placed in a -1g field.

Using 2.6 and 2.7, we can now compute the 0g offset and the gain of each axis as follows :

Goff = 0.5× (G+1g +G−1g) (2.8)

Gain = 0.5×
(
G+1g −G−1g

1g

)
(2.9)

Once the 0g offset and the gain are computed for each axis, we can find the real acceleration
acting on them.

For the three axes of the accelerometer, wa have :

Gc = Gnc −Goff

Gain
(2.10)

2.5.4 Calibration of the Magnetometer
A magnetometer is able to detect the geomagnetic field but also various other magnetic

fields, which could result in interferences. In this project, we only want to measure the
geomagnetic field, in order to know the direction of the North Magnetic Pole. The calibration
of the magnetometer consists in removing interferences from its data, which are mainly induced
by two sources : the hard-iron effect and the soft-iron effect.

In the absence of any hard-iron and soft-iron interferences and after rotations in yaw ψ, pitch
θ and roll φ applied to the magnetometer, the magnetic field Bm measured by the magnetometer
is :

Bm= Rx (φ)Ry (θ) Rz (ψ)

B cos δ

0
B sin δ

 (2.11)

where B is the geomagnetic field strength in Tesla and δ is the angle of inclination of the
geomagnetic field in degrees.

22 CHAPTER 2. BUILDING A PROTOTYPE OF A SAILBOAT ROBOT

These two characteristics vary with with the position of the robot on the earth’s surface.
Their value could be found on the World Data Center for Geomagnetism’s website. It is
important to note that we do not need their value for computing the heading of the robot (see
the section 2.5.5).

Let us recall that the rotation matrices Rx (φ), Ry (θ) and Rz (ψ) are defined as follows :

Rx (φ) =

1 0 0
0 cos φ sin φ

0 −sin φ cos φ

 ,Ry (θ) =

cos θ 0 −sin θ

0 1 0
sin θ 0 cos θ

 ,Rz (ψ) =

cos ψ sinψ 0
−sinψ cos ψ 0

0 0 1

(2.12)

The hard-iron effect is due to the presence of permanently magnetized ferromagnetic com-
ponents that are near the eCompass. For example in my project, magnets which are within ul-
trasonic range modules are an important source of hard-iron interferences. Indeed, permanently
magnetized ferromagnetic components add an important magnetic field to measurements.

Since these components and the magnetometer are all fixed on the platform (the buggy or
the saiboat), they are moving and rotating together. It means that hard-iron interferences will
always result in a constant vector Vhard that will be added to measurements, independently of
the position or the orientation of the robot.

Moreover, like for the accelerometer, the magnetometer has a constant zero field offset on
each of his axes, which results in a constant additive vector V0−field.

So we can write the final constant vector V which is going to be added to the magnetic field
defined in 2.11, as :

V = Vhard + V0−field (2.13)

The soft-iron effect is due to the magnetic field induced by the geomagnetic field into
normally unmagnetized ferromagnetic components. According to [NXP2], this interfering field
is assumed to be linear and can be modelled by a 3 by 3 matrix Wsoft.

Moreover, like for the accelerometer, there is a sensitivity mismatch between the three axes
of the magnetometer which can be modelled by a 3 by 3 matrix Wgain.

Finally, a third 3 by 3 matrix WNonOrthog can be defined in order to model the lack of
perfect orthogonality between the axes of the magnetometer.

We can defined a 3 by 3 matrix W which is the combination of the previous sources of
interference and which is going to multiply the magnetic field defined in 2.11 :

W = WNonOrthogWgainWsoft (2.14)

http://wdc.kugi.kyoto-u.ac.jp/igrf/

2.5. ELECTRONIC COMPASS 23

We can now write the magnetic field mesured by the magnetometer and defined in 2.11 , as
follows :

Bm= W Rx (φ)Ry (θ) Rz (ψ)

B cos δ

0
B sin δ

+ V (2.15)

where W is the matrix defined in 2.14 and V is the vector defined in 2.13.

The calibration of the magnetometer consists in computing W and V , in order to remove
them from Bm.

This computation can be made thanks to the Method of Least Squares, based on a great
number of samples taken from magnetometer’s measurements.

In order to save time, I used a software called “MagMaster”, which allows to compute W
and V, from magnetometer’s measurements (see Figure 2.11).

Figure 2.11: MagMaster

2.5.5 Computation of the Heading

Once both accelerometer and magnetometer are calibrated, we can implement a tilt-
compensated eCompass.

As explained in the section 2.5.1, we need to compute the direction of the gravitational
acceleration’s vector, in order to know where the horizontal plane is with respect to the robot.
In order to know that, we need to compute the pitch angle θ and the roll angle φ of the robot.

24 CHAPTER 2. BUILDING A PROTOTYPE OF A SAILBOAT ROBOT

The magnetometer will measure the geomagnetic field’s vector. Thanks to the computa-
tion of the pitch angle and the roll angle, we could extract the horizontal component of the
geomagnetic field’s vector.

The final will consist in measuring the angle between this horizontal component and the
axis of the robot, which will correspond to the heading (or the yaw) ψ of the robot.

We know that we can write the calibrated output Gc of the accelerometer as follows (after
applying the gain and the 0g offset corrections to the raw data, as explained in the section
2.5.3) :

Gc=

Gcx

Gcy

Gcz

= Rx (φ)Ry (θ) Rz (ψ)

0
0
g

 (2.16)

where Rx (φ), Ry (θ) and Rz (ψ) are the rotation matrices defined in 2.12, in g is the
gravitational acceleration equal to 9.81 m.s−2.

Since we assume than no other acceleration than the gravitation acceleration is acting on
the axes of the accelerometer, we can say that the rotation of the robot in yaw ψ does not affect
the accelerometer’s measurement. Using 2.16 and since rotation matrices are orthogonal, we
can write :

Ry (−θ) Rx (−φ)

Gcx

Gcy

Gcz

= Rz (ψ)

0
0
g

 =

0
0
g

 (2.17)

By using 2.12, we can develop 2.17 as follows :
cos θ 0 sin θ

0 1 0
−sin θ 0 cos θ

1 0 0
0 cos φ −sin φ
0 sin φ cos φ

Gcx

Gcy

Gcz

 =

0
0
g

 (2.18)

cos θ sin θsin φ sin θcos φ

0 cos φ −sin φ
−sin θ cos θsin φ cos θcos φ

Gcx

Gcy

Gcz

 =

0
0
g

 (2.19)

By using the second line of the linear system defined in 2.19, we can compute the roll angle
φ:

Gcycos φ−Gczsin φ = 0 (2.20)

2.5. ELECTRONIC COMPASS 25

φ = atan2 (Gcy , Gcz) (2.21)

By using the first line of the linear system defined in 2.19 and 2.21, we can compute the
pitch angle θ:

Gcxcos θ +Gcysin θsin φ+Gczsin θcos φ = 0 (2.22)

θ = atan2 (−Gcx , Gcysin φ+Gczcos φ) (2.23)

Now that we have computed the roll angle and the pitch angle, we can use them with the
magnetometer’s mesurement in order to compute the heading (or yaw) angle ψ.

Using 2.15, we can write :

Rz (ψ)

B cos δ

0
B sin δ

 = Ry (−θ) Rx (−φ) W−1 (Bm −V) (2.24)

where Bm is the raw data vector of the magnetometer in Tesla.

Since Rx (φ), Ry (θ) , W , V and Bm are now known, we can note the right part of the
equation 2.24 as :

Bc =

Bcx

Bcy

Bcz

 = Ry (−θ) Rx (−φ) W−1 (Bm −V) (2.25)

where Bc represents magnetometer’s measurements which have been calibrated with
respect to hard-iron and soft-iron effects, and for which the rotations in pitch and roll have
been removed.

Using 2.24 , 2.12 and 2.25 , we have :
cos ψ sinψ 0
−sinψ cos ψ 0

0 0 1

B cos δ

0
B sin δ

 =

Bcx

Bcy

Bcz

 (2.26)

26 CHAPTER 2. BUILDING A PROTOTYPE OF A SAILBOAT ROBOT

After developping 2.26, the first and second lines give us :

cos ψ B cos δ = Bcx (2.27)

sinψ B cos δ = Bcy (2.28)

Finally thanks to 2.27 , 2.28 and 2.25 , we can compute the heading (or yaw) angle ψ as
follows :

ψ = atan2 (−Bcy , Bcx) (2.29)

2.5.6 Components Involved
In order to implement the tilt-compensated eCompass of my buggy, I used a PCB which

contains a 3-axis accelerometer ADXL345 and a 3-axis magnetometer HMC5883L (see Fig-
ure 2.12). Both of these sensors were connected to my Arduino Mega board thanks to I2C
communications.

In order to communicate with these sensors, I used three unofficial Arduino libraries :
“I2Cdev.h”, “HMC5883L.h” and “ADXL345.h”.

These cheap sensors give pretty accurate measurements with this whole calibration, but the
robot must not move with high accelerations during the computation of the heading, since it
would distort accelerometer’s measurements.

In order to fix this problem, we could add a 3-axis gyroscope and use an advanced sensor
fusion algorithm in order to have more stable measurements of the roll and the pitch angles.

Figure 2.12: eCompass composed of a 3-axis accelerometer ADXL345 and a 3-axis magnetome-
ter HMC5883L

2.6. WIND SENSOR 27

2.6 Wind Sensor
As explained in [SAU09], there are three types of wind sensors : the mechanical sensor, the

contactless mechanical sensor and the ultrasonic sensor. For my project, I chose the cheepest
one : the mechanical wind sensor.

It is composed of two parts : a rotary encoder and a wind vane.

2.6.1 The Rotary Encoder
The rotary encoder I used is a Keyes KY-040 Rotary Encoder Module (see Figure 2.13, left

part). This device is a simple potentiometer (or knob) which can rotate continuously, without
never being blocked. It also allows to know for how much the knob has been rotated and its
direction of rotation.

Figure 2.13: The Keyes KY-040 Rotary Encoder Module (left) and the two signals used in this
module (right)

A rotary encoder uses two square wave outputs A and B which are in quadrature (they have
a phase offset equal to 90 degrees), as represented on the right part of the Figure 2.13.

The rotary encoder has several steps which can be felt when you turn the knob. Each time
a step is crossed, one of the two signals A or B changes its value (0 or 1).

Moreover, the microcontroller board will read the value of the signal B each time that the
value of the signal A is dropping from 1 to 0.

As shown in the Figure 2.13, if the value of the signal B is 1, it means that the knob is
being turned clockwise. At the contrary if its value is 0, it means that knob is being turned
counter-clockwise.

Finally, the number of crossed steps allows us to know how much the knob has rotated.
For example, there are 60 steps within the device I used, which means that each time a step is
crossed, the knob has done a rotation of 6 degrees (360 degrees divided by 60). So if we are
able to count the number of steps crossed from the initial position of the knob, we can know
the rotation completed by the knob with an accuracy of 6 degrees.

28 CHAPTER 2. BUILDING A PROTOTYPE OF A SAILBOAT ROBOT

In order to count the number of steps crossed at any moment (during the execution of the
program), we have to use “interruption functions”.

Indeed, as explained in the section 2.1.2, the Arduino Mega has 6 digital inputs that could
be used for this purpose. We just have to attach an interruption function to two digital inputs
(one for each square wave outputs A and B), and each time that the value of A or B will change,
the function will interrupt the program and the change of value will be taken into account.

2.6.2 The Wind Vane

In order to detect the current direction of the wind, a wind vane is needed. Indeed, this
wind vane will make the rotary encoder rotate according to the direction of the wind.

Figure 2.14: The 3D printed wind vane

I used the software “SolidWorks” in order to create a 3D model of my wind vane, and to
print it with a 3D Printer (see Figure 2.14).

The 3D Printer used was a “MakerBot Replicator 2”, using ABS filaments. This material
(Acrylonitrile Butadiene Styrene) is very light and resistant, which is perfect for a wind vane
that has to be moved by the wind.

I paid attention to make a hole in the wind vane with the same shape as the knob of the ro-
tary encoder : a circle with a cutout part. The knob will be placed in this hole (see Figure 2.15).

This wind vane is pretty accurate in most cases, but does not work well with a weak wind.
Indeed, the wind is then too weak to make the knob cross a step.

2.6. WIND SENSOR 29

Figure 2.15: Positioning of the wind vane

30 CHAPTER 2. BUILDING A PROTOTYPE OF A SAILBOAT ROBOT

Chapter 3

Simulation of an autonomous sailboat

The second part of my internship consisted in simulate the future autonomous sailboat
during two situations : following a path, and staying in a predefined zone while avoiding
several obstacles.

I will describe the model of the autonomous sailboat used in the two simulations, then I
will describe the algorithms used in both simulations.

3.1 Modelling an autonomous sailboat
In order to test my algorithms, I used the following model in order to simulate the behaviour

of a sailboat robot, taken in [JAU15] :

ẋ = v cos θ + p1a cos ψ

ẏ = v sin θ + p1a sinψ

θ̇ = ω

v̇ = fssin δs−frsin u1−p2v2

p9

ω̇ = fs(p6−p7cos δs)−p8frcos u1−p3ωv
p10

fs = p4 ‖wap‖ sin (δs − ψap)
fr = p5v sin u1

σ = cos ψap + cos u2

δs =
π + ψap if σ ≤ 0
−sign (sinψap) · u2 otherwise

wap =
 a cos (ψ − θ)− v

a sin (ψ − θ)

ψap = angle (wap)

(3.1)

31

32 CHAPTER 3. SIMULATION OF AN AUTONOMOUS SAILBOAT

The establishment of these state equations is explained in [JAU04] and [JAU11].

Figure 3.1: The model of the autonomous sailboat

The state vector x = (x, y, θ, v, ω) has a dimension equal to 5.
x and y represent the GPS coordinates of sailing robot’s centre of gravity, and θ is its

heading.
v is its linear acceleration, while ωis its angular acceleration.
The two inputs u1 and u2 represent respectively the angle δr of the rudder and the maximal

length δmaxs of the sheet that allows to adjust the sail.
The last six equations are not state equations, but are just written in order to simplify the

previous state equations.
σ is a parameter that indicates if the sheet of the sailboat is stretched or not, and δs is angle

of the sail witch respect to the hull of the sailboat.
a is the speed of the wind and ψ is its direction.
wapp is the apparent vector of the wind, from the point of view of the sailboat, and ψapp is

its direction or angle.
fs is the force applied by the wind on the sail of the sailboat and fr is the force applied by

waves on its rudder.
p1 , p2 , . . . , p10 are parameters related to the construction the sailboat itself :
- p1 is the drift coefficient
- p2 is the tangential friction coefficient between the boat and water, and p3 is the angular

friction coefficient
- p4 is the sail lift coefficient and p5 is rudder lift coefficient
- p6, p7 and p8 are distances shown on Figure 3.1
- p9 is the mass of the sailboat and p10 is its angular inertia

According to [JAU04] and [JAU11], the model 3.1 is known to reproduce very well the
behaviour of a real sailboat, and it will be suitable for our next simulations.

3.2. A LINE-FOLLOWING ALGORITHM 33

3.2 A Line-Following Algorithm

For the first simulation, I decided to implement on Matlab a well-known line-following
algorithm taken from [JAU12] and [JAU15].

3.2.1 Principle of the Algorithm

This controller is a “model-free controller”, which means that the controller is not based
on the state equations of the sailing robot. Indeed, instead of being constructed from a model
that could not perfectly reproduce the reality of a complex system, this kind of controller tries
to mimic natural behaviours : this is biomimetics.

In our case, the previous model is quite realistic, but can not take into account all aspects
of a real sailboat, such as the elasticity of the sail or its curvature for example. The algorithm
used in this section try to reproduce the real behaviour of a human navigator, without taking
into account any state equation.

The model 3.1 will only help to test the controller, just for the needs of the simulation.

Figure 3.2: The Line Following Algorithm

As shown in the Figure 3.2, this controller has two levels : a high level controller that
generates lines that have to be followed by the sailboat, and a low level controller that acts on
the rudder and the sail of the sailboat in order to follow these lines.

34 CHAPTER 3. SIMULATION OF AN AUTONOMOUS SAILBOAT

Indeed, the high level controller takes two points a and b as inputs, generates an attractive
line that crosses these two points, and gives a desired heading θ̄ (that tends to follow the
attractive line) as an output. Moreover, this controller has two parameters : the width 2r of
the “safety corridor” and the characteristic angle ζ of the “no-go zone” (see section 3.2.2).

The low level controller takes the desired heading θ̄ as an input and generates u1 (the angle
of the rudder) and u2 (the length of the sheet that adjust the sail) as outputs, which will make
the sailboat follow θ̄. This controller has two parameters : the maximal angle δmaxr of the
rudder and the angle β of the sail in a “beam reach” configuration (see section 3.2.2).

The sensors of the sailboat allow us to measure the current geographic position (x, y) of the
sailing robot, its heading θ and the direction of the wind ψ. Then, these measurements are
taken into account by the high level controller in order to generate a new desired heading θ̄,
and a new loop is launched by this line-following controller.

3.2.2 Detailled Algorithm

I’m going to describe more technically the line-following algorithm, but further mathemat-
ical explanations could be found in [JAU12] and [JAU15].

Here is the mathematical implementation of the algorithm :

Algorithm 3.1 Line-Following Algorithm
1 e = det

(
b−a
‖b−a‖ , m− a

)
2 if | e |> r then q = sign (e)
3 ϕ = angle (b− a)
4 θ̄ = ϕ− atan

(
e
r

)
5 if cos

(
ψ − θ̄

)
+ cos ζ < 0

6 or (| e |< r and (cos (ψ − ϕ) + cos ζ < 0))
7 then θ̄ = π + ψ − qζ
8 δr = δmaxr

π
sawtooth

(
θ − θ̄

)
9 δmaxs = π

2

(
cos(ψ−θ̄)+1

2

) log(π
2β)

log(2)

Lines from 1 to 7 correspond to the high level controller and lines 8 and 9 correspond to
the low level controller.

3.2. A LINE-FOLLOWING ALGORITHM 35

Figure 3.3: The safety corridor (left part) and the no-go zone (right part)

The line 1 allows to compute the algebraic error e between the sailboat and the line that
must be followed. If e < 0, the sailboat is at the left of the line ; if e = 0, the center of gravity
of the sailboat is exactly on the line ; if e > 0, the sailboat is at the right of the line.

The line 2 allows to check if the sailboat is out of the “safety corridor” in which the sailboat
must absolutely stay. The parameter r represents half of the width of this corridor. If the
sailboat is beyond a distance of r from the line that must be followed, the variable q is updated.
The aim of the variable q is to direct the sailboat toward the inside of the “safety corridor” (see
Figure 3.3, left part) . The variable q will be used in the line 7, during the computation of the
desired heading θ̄.

In line 3, the algorithm basically computes the angle between the x-axis of the local plane
and the direction of the line crossing the points a and b (which is the line that must be followed).

The line 4 computes the desired heading θ̄ in order to bring the sailboat closer to the line
that must be followed, without taking into account the direction of the wind. The desired
heading θ̄ lies between −π

2 and +π
2 .

Lines 5, 6 and 7 allows to adjust the desired heading θ̄ in taking into account the
direction ψ of the wind. Indeed, the sailboat can not navigate while facing the wind,
because the sail would not be inflated, and would flap like a flag. In order to avoid this
situation, the sailboat must not enter in what we called a “no-go zone”. The no-go zone
is a set of heading that the sailboat must not take and is characterized by the angle ζ.
Indeed, the no-go zone is an angle which has a width of 2ζ and which is centered on the
direction ψ of the wind (see Figure 3.3, right part). The line 7 allows the sailboat to enter
in a “close hauled” configuration, instead of entering in the no-go zone (see Figure 3.3, left part).

The line 8 computes the angle δr of the rudder, which corresponds to the entry u1 of the
autonomous sailboat.

36 CHAPTER 3. SIMULATION OF AN AUTONOMOUS SAILBOAT

The function sawtooth (x) is a function that allows to “filter” the angle x and to return its
value into the interval [−π, π]. A good expression of this function could be :

sawtooth (x) = 2 atan (tan (0, 5× x)) (3.2)

The parameter δmaxr is the maximal angle of the rudder and can be adjusted by the user
depending on the structure of the hull of the sailboat. The angle δr computed in the line 8 lies
between −δmaxr and +δmaxr and is proportional to the difference between the current heading
of the sailboat θ and the desired heading θ̄.

The line 9 computes the length δmaxs of the sheet that allows to adjust the angle of the sail,
which corresponds to the entry u2 of the autonomous sailboat.

δmaxs is proportionnal to the difference between the direction ψ of the wind and the desired
heading θ̄, and lies between 0 and π

2 . In the following explanations we are going to assume that
δs = δmaxs , because the angle of the sail δs has the same behaviour as the length of the sheet
δmaxs .

The expression of δmaxs was built from a cardioid model, which allows to have the following
values :

δmaxs =

0 when θ̄ = ψ ± π (the sailboat is facing the wind)
β when θ̄ = ψ ± π

2 (both directions of the sailboat and the wind are perpendicular)
π
2 when θ̄ = ψ (the sailboat is in the same direction of the wind)

(3.3)

where β is a parameter adjustable by the user, used during a “beam reach” configuration.
These values allows to reproduce the real navigation of a sailboat.

Results of the simulation
Results of the simulation can be seen in the Annex 2.

3.3 Anchoring Zone and Obstacle Avoidance
The second simulation that I made during my internship had two goals : the autonomous

sailboat had to stay in a predefined zone while avoiding several obstacles.
Indeed, the user of this simulation can defined a rectangular zone in which the sailboat must

absolutely stay, and can also place on the local plane (or the map) several points that must be
avoided, independently of the anchoring zone. We could for example imagine a navigator who
wants to place his sailboat in a port, without using a real anchor. The sailboat would have
to stay in a precise zone in this port and would have to avoid various obstacles such as other
boats, rocks or port structures.

In this section, the zone in which the sailboat must stay will be called the “anchoring zone”
and the points to avoid will be called “obstacles”.

3.3. ANCHORING ZONE AND OBSTACLE AVOIDANCE 37

3.3.1 Principle of the Simulation

This simulation is more complex than the first one from the section 3.2, and I decided to
use two robust and effective tools : Voronoi Diagrams and the Line-Following Algorithm from
the section 3.2.2.

The Voronoi Diagram is a powerful tool that allows to easily compute safe paths to follow,
in order to go between obstacles on the map and avoid them (see section 3.3.2 for further
explanations). Moreover, as seen in the section 3.2.3, the line-following algorithm allows to
follow lines very efficiently, independantly of the direction of the wind.

Figure 3.4: The anchoring zone and obstacle avoidance simulation

38 CHAPTER 3. SIMULATION OF AN AUTONOMOUS SAILBOAT

As seen on the Figure 3.4, the whole simulation is composed of three distinct algorithms : the
“Voronoi Diagrams algorithm”, the “Anchoring algorithm” and the “Line-Following algorithm”.

The input of the Voronoi Diagram algorithm is the list of obstacles’ coordinates. This
algorithm will take into account these obstacles and will compute the safest paths that go
between each of the obstacles (see section 3.3.2). These safe paths are called “Voronoi paths”.
Then, all Voronoi paths are put into a list and return as an output.

The Anchoring algorithm has two inputs : Voronoi paths computed by the Voronoi Diagram
algorithm and the anchoring zone in which the sailboat must stay. Depending on the position
of the sailboat, the Anchoring algorithm will choose the most appropriate path from the list of
Voronoi paths (in order to avoid obstacles) and will also be able to shorten it in order to stay
in the Anchoring zone (see section 3.3.3). Once the path to follow is determined, its starting
point and its ending point are returned by the Anchoring algorithm as an output.

The Line-Following algorithm is exactly the same that the one from the section 3.2, so it
will not be explained in detail in this section. This algorithm will make the sailboat successively
follow all paths determined by the Anchoring algorithm. Its input is the starting point and
the ending point which composed the line to follow choosen by the Anchoring algorithm. Its
output is the vector u composed of the angle of the rudder δr and the maximal length of the
sheet δmaxs , which allows to controll the sailboat. As in the section 3.2, the parameters r, ζ,
β and δmaxr can still be adjusted, depending on the configuration of obstacles, the size of the
anchoring zone and the sailboat itself.

Finally, the current geographic position (x, y) of the sailing robot, its heading θ and the
direction of the wind ψ measured by sensors will be used in order to know the situation of the
sailboat. If the ending point of the line to follow has been reached, a new path is computed
by the Anchoring algorithm in order to stay in the anchoring zone. If not, the sailboat keep
following the current line thanks to the Line-Following algorithm.

The Voronoi Diagrams algorithm and the Anchoring algorithm are now going to be explained
in detail.

3.3.2 Voronoi Diagrams algorithm

The computation of a Voronoi diagram can be implemented in various way. The following
method was taken from [JAU15].

Definition of Voronoi Diagrams

As explained in the previous section, the Voronoi Diagrams algorithm takes all obstacles as
inputs and computes the safest paths for avoiding them.

3.3. ANCHORING ZONE AND OBSTACLE AVOIDANCE 39

Figure 3.5: Obstacles to avoid before (left) and after the computation of Voronoi paths (right)

The Figure 3.5 shows us an illustrative example of the Voronoi Diagrams algorithm. On
the left side of the Figure 3.5, black points represent the obstacles to avoid ; on the right side
of the Figure 3.5, green lines represent “Voronoi paths”, which are at equal distance of the two
obstacles between which they go. We are going to describe more precisely how these Voronoi
paths are computed.

Let us call O1 , . . . , Om the obstacles to avoid, where m is the number of obstacles.

On the right side of the Figure 3.5, we can see that each obstacle Oi is inside a polygon Pi
delimited by green lines.

A Voronoi Diagram is basically the collection of all the polygons Pi , each one associated to
its obstacle Oi, and defined by :

Pi =
{
x εR2 / ∀j ε {1, . . . ,m} , ‖x−Oi‖ ≤ ‖x−Oj‖

}
(3.4)

The lines that compose the boundaries of all these polygons Pi are called “Voronoi paths”.
Thanks to the definition 3.4, we can easily see that each Voronoi path is at equal distance of
the two obstacles that lie on both side of this Voronoi path.

This is why we can say that Voronoi paths are the safest paths for avoiding obstacles, and
this is why I chose this method of guidance. Moreover, Voronoi paths are just basic lines that
can be easily followed by the sailboat thanks to the Line-Following algorithm.

We are now going to see the algorithm I chose to use in order to compute Voronoi Diagrams,
but note that other algorithms that are able to compute Voronoi Diagrams exist, based on other
mathematical concepts.

40 CHAPTER 3. SIMULATION OF AN AUTONOMOUS SAILBOAT

Computation of Voronoi Diagrams

Algorithm 3.2 Voronoi Diagrams Algorithm
Input : LO = {O1 , . . . , Om}

1 VT = ∅
2 LV P = ∅
3 for Oi in LO
4 for Oj in LO
5 for Ok in LO
6 T = (Oi, Oj, Ok)
7 C = circumscribed circle (T)
8 Bool = False

9 for Ox in LO
10 if (Ox is inside C) AND (Ox 6= Oi AND Ox 6= Oj AND Ox 6= Ok)
11 Bool = True

12 end if
13 end for
14 if Bool = True

15 discard T
16 else
17 push T into VT
18 end if
19 end for
20 end for
21 end for
22 for Tu in VT
23 for Tv in VT
24 if (Tu and Tv have exactly two vertices in common)
25 Cu = center of the circumscribed circle (Tu)
26 Cv = center of the circumscribed circle (Tv)
27 push (Cu ; Cv) into LV P
28 end if
29 end for
30 end for

return LV P

The input of this algorithm is the list LO of all the obstacles O1 , . . . , Om that lie on the
map (or the local plane).

3.3. ANCHORING ZONE AND OBSTACLE AVOIDANCE 41

We define two other lists in lines 1 and 2 : the list VT of all “valid triangles” and the list
LV P of all the “Voronoi Paths”.

From lines 3 to 6, the Voronoi Diagrams algorithm goes through the list LO (thanks to
three for loops), in order to go through all the possible triangle T that can be formed by the
obstacles O1 , . . . , Om.

In line 7, the algorithm computes the circumscribed circle C of the selected triangle T
(formed by the obstacles Oi, Oj and Ok). See Annex 1 in order to have more mathematical
explanations about the computation of the circumscribed circle C.

From lines 8 to 13, the algorithm checks if any obstacles are inside the circle C, apart from
the three vertices Oi, Oj and Okof the triangle T . If one or more obstacles (appart from Oi,
Oj and Ok) are inside the circle C, the variable Bool is set to True ; if none of the obstacles
(appart from Oi, Oj and Ok) are inside the circle C, the value of the variable Bool stays at
False. See Annex 1 in order to have more mathematical explanations about how to check if
an obstacle is inside C.

From lines 14 to 18, the algorithm discard or delete the triangle T if Bool is set to True
(if at least one obstacle is inside C), or keep T in memory if Bool is set to False, by storing it
inside the list of all “valid triangles” VT .

From lines 22 to 30, the algorithm goes through the list of all “valid triangles” VT , figures
out those which are side by side (those which share exactly two vertices), and stores the centers
of their two respective circumscribed circles in the list of all the “Voronoi Paths” LV P . Indeed,
these two centers are going to form together a Voronoi Path.

Finally, the output of this algorithm is LV P , the list of the points that formed all Voronoi
Paths.

In a Voronoi diagram, the circle circumscribed to each triangle does not enclose any other
obstacles than the vertices of its triangle.

3.3.3 Anchoring Algorithm

In order to make a robust simulation, I created the Anchoring algorithm. This algorithm
is the most important part of the simulation because it allows to ensure the safety of the
navigation and to provide the effectiveness of the simulation.

Principle of the Anchoring algorithm

As explained in the section 3.3.1, the Anchoring algorithm allows the autonomous sailboat
to choose the best line to follow in order to achieve the two objectives of the simulation : stay
in the anchoring zone and avoid obstacles.

Indeed the Anchoring algorithm is going to receive the coordinates of the four points that
form the rectangular anchoring zone, and the list of all the Voronoi pahs computed by the
Voronoi Diagrams algorithm. Then the algorithm will choose the starting point and the ending

42 CHAPTER 3. SIMULATION OF AN AUTONOMOUS SAILBOAT

point of the line that must be followed by the sailboat, and will transmit this line to the
Line-Following algorithm.

The Figure 3.6 shows the way the Anchoring algorithm works.

Figure 3.6: The Anchoring algorithm

3.3. ANCHORING ZONE AND OBSTACLE AVOIDANCE 43

The Anchoring algorithm has two inputs : the rectangular Anchoring zone (choosen by the
user of the simulation) and the list of all the Voronoi Paths LV P (computed by the Voronoi
Diagrams algorithm). Moreover, the output of the algorithm is the line that is going to be
followed by the sailboat and which is represented by a “starting point” and an “ending point”.

Firstly, the algorithm checks if the simulation is in its “Initialization” step : when the
simulation has just begun and when the sailboat is in its initial position and could be anywhere
on the map. If the simulation is in this Initialization step, the output of the Anchoring algorithm
is the line with the initial position of the sailboat as its starting point, and which has its ending
point represented by the nearest point to the sailboat that is also an endpoint of a Voronoi
Path stored in LV P .

Then, the algorithm checks if the “Special Mode” is activated. This mode is initially dis-
abled, but it will be activated further in the simulation, when the sailboat will be about to
leave the Anchoring zone. Indeed, when the Special Mode is activated, the algorithm allows the
sailboat to make a U-turn by reversing the starting point and the ending point of the previous
line that has been followed. The sailboat will follow the same line, but in the opposite direc-
tion. Thanks to this Special mode, the autonomous sailboat will never leave the Anchoring
zone. The Special mode is then immediately disabled and will be activated again, each time
the sailboat is about to leave the Anchoring zone.

If the Special Mode is disabled and if the simulation is not in its Initialization step, it means
that the sailboat has finished to follow a Voronoi Path stored in LV P and is now exactly on
the corresponding ending point. In this case, the algorithm will basically gives a new line to
follow, by taking the ending point of the previous Voronoi Path as the “new starting point”,
and by defining the “new ending point” thanks to Voronoi Paths stored in LV P . Indeed, the
algorithm will search in LV P a Voronoi Path which has the “new starting point” as one of its
endpoints, and will take the other endpoint of this Voronoi Path as the “new ending point”.

Finally, if the “new ending point” that has been selected by the Anchoring zone is out of the
Anchoring zone, the “new ending point” is repositioned within the Anchoring zone, in order to
be still placed on the corresponding Voronoi Path. In order to have further explanations about
this repositionning, see Annex 3. Moreover, the Special Mode is activated for the next call of
the Anchoring algorithm, in prevision of the fact that the sailboat is going to reach the “new
ending point” and will then have to make a U-turn in order to stay within the Anchoring zone.

Illustrative Example

The Figure 3.7 shows an illustrative example of the Anchoring algorithm. The sailboat is
represented in red. O1, O2, O3 and O4 (in black) are the obstacles that must be avoided by the
sailboat. The blue rectangle is the anchoring zone in which the sailboat must stay. Green lines
represent the Voronoi paths that have been generated by the Voronoi Diagrams algorithm in
order to avoid the obstacles Oi. A, B, C, D, E and F are the endpoints of Voronoi paths.

44 CHAPTER 3. SIMULATION OF AN AUTONOMOUS SAILBOAT

Figure 3.7: Illustrative example of the Anchoring algorithm

The Figure 3.7 shows the path followed by the autonomous sailboat :
- 1 : The sailboat is in a given initial position. The Anchoring algorithm is in its Initial-

ization step, so the sailboat is going to follow the line formed by its initial position (starting
point) and the point B (ending point), since the point B is the nearest point that is an endpoint
of a Voronoi Path.

- 2 : Once the sailboat has reached the point B, the Anchoring algorithm is going to select
a Voronoi Path to follow. The special mode is not activated, so the algorithm has to choose
one of the three Voronoi Path that are connected to the point B. The point D is selected, so
the new starting point of the line to follow is the point B and its ending point is the point D,
which is inside the anchoring zone.

- 3 : Once the sailboat has reached the point D, the Anchoring algorithm has to select a
new Voronoi Path to follow, as in the previous step. The algorithm choose the point E, which
is not within the anchoring zone : the special mode is activated and the ending point of the
new line to follow is repositioned.

- 4 : The sailboat has reached the ending point of the line, which is a new point (different
from the point E) that has been placed within the Anchoring zone and on the same Voronoi
Path as the point E (see Annex 3). Since the special mode is activated, the sailboat has to
make a U-turn and to go again on the point D (which was the previous starting point, in the
step 3). The special mode is disabled.

- 5 : Once the point D is reached, and since the special mode has been disabled, the
algorithm choose the point B has the ending point of the new line to follow. The point B is
within the anchoring zone, so the special mode is not activated and no repositioning is required.

- 6 : Once the point B is reached, the Anchoring algorithm choose the point C as the new
ending point. As in the step 3, this point is outside the anchoring zone, so the ending point of

3.3. ANCHORING ZONE AND OBSTACLE AVOIDANCE 45

the new line to follow is repositioned within the anchoring zone.
- 7 : As in the step 4, the sailboat as to make a U-turn and to return to the point B.
- 8 : When the sailboat reach the point B, the algorithm has to choose a new point from a

Voronoi Path, and so on.

The Anchoring algorithm will always generated lines that allows the autonomous sailboat
to stay in the anchoring zone, while avoiding obstacles.

Results of the simulation
Results of the simulation can be seen in the Annex 4.

46 CHAPTER 3. SIMULATION OF AN AUTONOMOUS SAILBOAT

Chapter 4

Conclusion

Firstly, the feasibility study showed me a deeper look into some sensors, such as the eCom-
pass for example, and all the calibration methods that I learned during my internship coulb be
reusable during my future projects.

Secondly, the “simulation part” of my internship made me discover what “working in the
Research” really means. Indeed, I discovered in what consists the work of a researcher. Firstly,
I began by reading a lot of scientific publications that were on the same subject than my
simulation. Then, I selected what seems to be the best tool in order to reach the goal of my
simulation : Voronoi diagrams, which allows to face any configurations of obstacles to avoid,
and the Line-Following algorithm which allows to always follow lines efficiently, even when the
sailboat has to face the wind. Finally, I even tried to created a new algorithm in order to
connect these two tools.

For these reasons, I really liked this internship in the University of Plymouth, and it gives
me the desire to work as a researcher after my studies.

47

48 CHAPTER 4. CONCLUSION

Chapter 5

Annex

Annex 1 : Mathematical Details of the Voronoi Diagram
Algorithm

How to compute the circle circumscribed to three points ?

We want to compute the center a and the radius r of the circle C circumscribed to three
points O1, O2 and O3 (which could be the three vertices of a triangle).

with a =
(
a1

a2

)
and Oi =

(
O1
i

O2
i

)
, ∀i ε {1, 2, 3}.

We have :

∀i ε {1, 2, 3} , ‖Oi − a‖2 = r2 (5.1)

Thanks to the polarization identity (‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2 < x , y >), we have :

∀i ε {1, 2, 3} , ‖Oi‖2 + ‖a‖2 − 2 < Oi , a > −r2 = 0 (5.2)

49

50 CHAPTER 5. ANNEX

By defining the variable a3 = ‖a‖2 − r2, we have :

∀i ε {1, 2, 3} , 2 < Oi , a > −a3 = ‖Oi‖2 (5.3)

Knowing that < Oi , a >= OT
i a, we can write the equation 5.3 in a matrix format :

∀i ε {1, 2, 3} ,
(

2O1
i 2O2

i −1
)

a1

a2

a3

 = ‖Oi‖2 (5.4)

By bringing the three equations (for i = 1, 2 and 3) together, we have :
2O1

1 2O2
1 −1

2O1
2 2O2

2 −1
2O1

3 2O2
3 −1

a1

a2

a3

 =

‖O1‖2

‖O2‖2

‖O3‖2

 (5.5)

By defining M =

2O1

1 2O2
1 −1

2O1
2 2O2

2 −1
2O1

3 2O2
3 −1

, A′ =

a1

a2

a3

 and O′ =

‖O1‖2

‖O2‖2

‖O3‖2

 , we have :

A′ = M−1.O′ (5.6)

which allows us to compute a1, a2 and a3.

Moreover, thanks to the definition of a3, we have :

r =
√
‖a‖2 − a3 (5.7)

We have managed to compute the center a =
(
a1

a2

)
and the radius r of the circle C

circumscribed to the points O1, O2 and O3.

How to verify if an obstacle is inside the circumscribed circle ?
In order to know if an obstacle Oi is inside a circumscribed circle C, which has a center a

and a radius r, we just have to check if :

‖Oi − a‖ ≤ r (5.8)

If the inequation 5.8 is verified, the obstacle Oi is inside the circle C.

51

Annex 2 : Results of the First Simulation

Result 1

In the following figure, the black cross represent the initial position of the autonomous
sailboat, and the blue curve is the trajectory of its centre of gravity.

The red line is the line that must be followed by the sailboat, and the two green lines
represent the “safety corridor”. The line must be followed from the left to the right.

The red arrow represent the direction of the wind.

We can see that the sailboat manages to follow the line. It is easy to do in this situation,
since the sailboat has to navigate toward the same direction than the wind.

52 CHAPTER 5. ANNEX

Result 2

In this situation, the sailboat has to navigate against the wind.
We can see that it still manages to follow the line, but he has to navigate in a “close hauled”

configuration.

53

Annex 3 : Mathematical Details of the Anchoring Al-
gorithm

When the autonomous sailboat is following a Voronoi Path, the ending point of this line can
lie outside the anchoring zone. In this situation, the Anchoring algorithm has to repositionned
the ending point of the line to follow inside the anchoring zone.

4 cases are possible.

Case 1 : the ending point is at the left of the anchoring zone

The blue rectangle is the anchoring zone in which the sailboat must stay. Its dimensions
are : (Ax2 − Ax1)× (Ay2 − Ay1).

The red dotted rectangle corresponds to the “safety margin”. It is a rectangle that is at a
distance m of all the edges of the anchoring zone. Indeed, in order to provide more security to
the navigation, ending points are not repositionned exactly on the boundary of the anchoring
zone, but at a distance m of this boundary. This safety distance m can be adjusted by the user
of the simulation.

The green line is the line that must be followed by the sailboat.

The point S is the starting point of the line to follow. Its coordinates are
(
Sx
Sy

)
.

The point E is the ending point of the line to follow, which is outside the anchoring zone,

at the left side. Its coordinates are
(
Ex
Ey

)
.

The point E′ is the new ending point of the line to follow, which has been repositionned by
the Anchoring algorithm inside the anchoring zone, at a distance m of its left boundary. Its

54 CHAPTER 5. ANNEX

coordinates are
(
E ′x
E ′y

)
.

As shown on the Figure, u is the unitary vector of the line to follow ;

u =
(
ux
uy

)
= E− S
‖E− S‖

= 1√
(Ex − Sx)2 + (Ey − Sy)2

·
((

Ex
Ey

)
−
(
Sx
Sy

))
(5.9)

We want to find the corrector vector v such as :

E + v = E′ (5.10)

with v =
(
vx
vy

)
.

We know that v is proportional to u :

v = k · u (5.11)

where k is a real number.

So thanks to the equations 5.10 and 5.11, we can write :

E ′x = Ex + vx (5.12)

E ′x = Ex + k · ux (5.13)

55

k = E ′x − Ex
ux

(5.14)

Moreover, since E′ has been repositionned at a distance m of the left boundary of the
anchoring zone (see Figure), we know that

E ′x = Ax1 +m (5.15)

So, thanks to the equations 5.14 and 5.15, we have

k = Ax1 +m− Ex
ux

(5.16)

Finally, thanks to the equations 5.10, 5.11 and 5.16, we have found the coordinates of the
new ending point E′ :

E ′x = Ex + Ax1 +m− Ex
ux

· ux (5.17)

E ′y = Ey + Ax1 +m− Ex
ux

· uy (5.18)

56 CHAPTER 5. ANNEX

Case 2 : the ending point is at the right of the anchoring zone

u =
(
ux
uy

)
= E− S
‖E− S‖

= 1√
(Ex − Sx)2 + (Ey − Sy)2

·
((

Ex
Ey

)
−
(
Sx
Sy

))
(5.19)

E ′x = Ex −
Ex − (Ax2 −m)

ux
· ux (5.20)

E ′y = Ey −
Ex − (Ax2 −m)

ux
· uy (5.21)

57

Case 3 : the ending point is below the anchoring zone

u =
(
ux
uy

)
= E− S
‖E− S‖

= 1√
(Ex − Sx)2 + (Ey − Sy)2

·
((

Ex
Ey

)
−
(
Sx
Sy

))
(5.22)

E ′x = Ex + Ay1 +m− Ey
uy

· ux (5.23)

E ′y = Ey + Ax1 +m− Ex
uy

· uy (5.24)

58 CHAPTER 5. ANNEX

Case 4 : the ending point is above the anchoring zone

u =
(
ux
uy

)
= E− S
‖E− S‖

= 1√
(Ex − Sx)2 + (Ey − Sy)2

·
((

Ex
Ey

)
−
(
Sx
Sy

))
(5.25)

E ′x = Ex −
Ey − (Ay2 −m)

uy
· ux (5.26)

E ′y = Ey −
Ey − (Ay2 −m)

uy
· uy (5.27)

Multi-case

The Anchoring algorithm is able to reposition ending points that are in two different cases
at the same time, as shown in the example below :

59

Initial Situation

Case 1

60 CHAPTER 5. ANNEX

Case 4

Final Situation

61

Annex 4 : Results of the Second Simulation

Initial configuration

In the following figure, the blue rectangle is the anchoring zone, the black dots are the
obstacles that must be avoided, the red cross is the initial position of the autonomous sailboat,
and the red arrow is the direction of the wind.

Results of the simulation

The green lines represent the Voronoi Paths, the red curve is the trajectory of the centre of
gravity of the sailboat, and the numbers 1 to 6 is where the sailboat went (chronologically).

62 CHAPTER 5. ANNEX

We can see that the simulation was a success, since the sailboat stayed inside the anchoring
zone, and managed to avoid all obstacles.

Bibliography

[AND10] Analog Devices, Using an Accelerometer for Inclination Sensing, Application Note
1057, 2010.

[JAU04] Jaulin L., Modélisation et commande d’un bateau à voile, CIFA, Douz (Tunisie),
2004.

[JAU11] Sliwka J., Xiao K., Jaulin L., A wind-independent control strategy for au-
tonomous sailboats based on Voronoï diagram, CLAWAR 2011, Paris, 2011.

[JAU12] Jaulin L., Le Bars F., A simple controller for line following of sailboats, Pro-
ceedings of the 5th International Robotic Sailing Conference, Springer Eds., Cardiff,
England, 2012.

[JAU15] Jaulin L., Mobile robotics, ISTE WILEY, 2015.

[NXP1] NXP, Layout Recommendations for PCBs Using a Magnetometer Sensor, Applica-
tion Note 4247, 2015.

[NXP2] NXP, Calibrating an eCompass in the Presence of Hard- and Soft-Iron Interference,
Application Note 4246, 2015.

[NXP3] NXP, Implementing a Tilt-Compensated eCompass using Accelerometer and Magne-
tometer Sensors, Application Note 4248, 2015.

[SAU09] Neal M., Sauze C., Thomas B., Alves J., Technologies for Autonomous Sailing:
Wings and Wind Sensors, Proceedings of the 2nd IRSC, Matosinhos, Portugal, July
6-12, pp. 23–30, 2009.

63

	Introduction
	The Need of Autonomous Sailboat
	The University of Plymouth

	Building a Prototype of a Sailboat Robot
	The Body of the Buggy
	The Chassis
	The Microcontroller
	The Motor Shield
	Power Supply

	LCD Screen
	Ultrasonic Ranging Module
	GPS Module
	Electronic Compass
	Principle of the Sensor
	The Aerospace Coordinate System
	Calibration of the Accelerometer
	Calibration of the Magnetometer
	Computation of the Heading
	Components Involved

	Wind Sensor
	The Rotary Encoder
	The Wind Vane

	Simulation of an autonomous sailboat
	Modelling an autonomous sailboat
	A Line-Following Algorithm
	Principle of the Algorithm
	Detailled Algorithm

	Anchoring Zone and Obstacle Avoidance
	Principle of the Simulation
	Voronoi Diagrams algorithm
	Anchoring Algorithm

	Conclusion
	Annex

