
Second Year Internship Report

COLLISION AVOIDANCE FOR AN AUTONOMOUS

SAILING BOAT

Åland University of Applied Science

ENSTA Bretagne

October 17, 2016

Student
Simon CHANU

ENSTA Bretagne

Supervisor
Anna Friebe

Åland University of Applied Science

Abstract

A report on a second year internship in Åland University of Applied Science on collision avoidance detection
for an autonomous sailing boat. Along the presentation and explanation of the functioning of Åland University,
this report covers the research of a collision avoidance system for an autonomous sailing robot along with other
minor jobs inside the team. The research began with a state of the art of the available collision avoidance
algorithms which led to create our own on MATLAB. Then this algorithm was implemented and improved on
the C++ code of the sailing boat command system. The simulation validated the code but it has not been
testes in real condition. Overall this internship achieved it's goal and was very instructive on code architecture
and project management.

Contents

1 Presentation and goals of the internship 1
1.1 Åland University of Applied Science . 1

1.1.1 Overview . 1
1.1.2 Organisation inside Åland UAS . 2

1.2 The internship . 3
1.2.1 Goals and key issues in the internship . 3
1.2.2 Quick presentation of the system . 4

2 Design of a collision avoidance system 5
2.1 Teamwork methods and overview . 5

2.1.1 Scrum and JIRA . 5
2.1.2 Git . 6
2.1.3 Presentation of the control system . 7

2.2 Matlab design . 7
2.2.1 Choice of the collision avoidance system . 7

2.2.1.1 Voronoï Diagram . 7
2.2.1.2 Vector �elds . 7
2.2.1.3 Minimum of potential �eld . 8

2.2.1.3.1 Mathematical formula of the pikes and holes 8
2.2.1.3.2 Objective potential �eld : . 9
2.2.1.3.3 Obstacle potential �eld : . 9
2.2.1.3.4 Boat potential �eld : . 10
2.2.1.3.5 Sum of these �elds : . 10
2.2.1.3.6 Adding of the sailing zone and the wind : 11

2.2.2 Condition of avoidance . 12
2.2.3 Tests of the system . 12

2.2.3.1 Change in the Matlab program architecture . 12
2.2.3.2 Simulation inside Matlab . 12
2.2.3.3 LabVIEW tests . 13

2.3 C++ design . 13
2.3.1 Sensor informations . 14
2.3.2 Intersection of polygons . 15
2.3.3 C++ tools for debug . 15
2.3.4 Results . 15

2.3.4.1 C++ code on Åland . 15
2.3.4.2 the WRSC . 16

3 Analysis of the internship 17
3.1 Åland University of Applied Science . 17
3.2 Input of the internship . 17

3.2.1 Knowledge learned . 17
3.2.1.1 Scrum . 17
3.2.1.2 Git . 18
3.2.1.3 C++ architecture . 18
3.2.1.4 Autonomous research work . 18

3.2.2 What we could have done better . 18
3.2.2.1 Message based architecture . 18
3.2.2.2 The hardware . 19

1

List of Figures

1.1 Large location of the Åland islands . 1
1.2 Close location of the Åland islands . 2
1.3 Organisation of the services inside Åland UAS . 2
1.4 WRSC 2016 in Viana Do Castello . 3
1.5 4-meters boat called Janet . 4

2.1 Scrum method for software development . 5
2.2 JIRA . 6
2.3 Presentation of our use of Git . 6
2.4 Voronoï Diagram . 7
2.5 Vector Field . 8
2.6 Objective potential �eld . 9
2.7 Obstacles potential �eld . 10
2.8 Boat potential �eld . 10
2.9 Sum of the potential �elds without wind and sailing zone . 11
2.10 Sum of the potential �elds with wind and sailing zone . 11
2.11 Matlab code architecture . 12
2.12 Simulation of obstacle avoidance inside Mariehamn bay . 13
2.13 Message architecture system by Jordan Less'Ard Springet . 13
2.14 Diagram of the messages exchanged among the collision avoidance system 14
2.15 Diagram of the detection of one obstacle . 14
2.16 Simulation on VIBes-Viewer . 16

3.1 Student accomodations found by the university . 17

Chapter 1

Presentation and goals of the internship

1.1 Åland University of Applied Science

1.1.1 Overview

Åland University of Applied Science (Åland UAS), or Högskolan på Åland in Swedish is the University located
in the town of Mariehamn in the Åland islands.

Figure 1.1: Large location of the Åland islands

They o�ers degree programme in Swedish in business administration, navigation, hospitality management,
engineering (marine, electrical and IT) and health and caring science for a total of 600 students.

1 Åland University of Applied Sciences was founded in 1997 by the Åland Provincial Government as a co-
operative network for vocational higher education with the right to award polytechnical diplomas.

1History taken from the great Åland UAS English website

1

Figure 1.2: Close location of the Åland islands

On 1 January 2003, Åland University of Applied Sciences became a permanent institution when it merged
with Åland Open University. After the merger, its Swedish name was changed to Högskolan på Åland. The
English name has not been changed on the communication medium yet, that's why Åland UAS I will continue
to call the university Åland UAS.

1.1.2 Organisation inside Åland UAS

The head of the university is Mr Edvard Johansson, as you can see on the diagram below, he oversee with his
vice-director, Mr Ronny Eriksson all the departments of the University.

Figure 1.3: Organisation of the services inside Åland UAS

The Åland Sailing Robot Project, led by Anna Friebe as Project Manager at Åland UAS and overseen

2

by Ronny Eriksson as Vice-Director, is a project began in 2013 to create a cost e�cient and environmentally
friendly way to carry out autonomous task on the seas (marine research, surveillance, transport). This project
is funded by the European Regional Development Fund and Åland UAS.

One of the �nal goal of the project is to create the �rst autonomous sailing robot to cross the Atlantic
Ocean. Besides, each year Åland UAS participate to the World Robotic Sailing Championship (WRSC) with
its software. This is a worldwide championship consisting of several challenges aiming to simulate the necessary
features of a sailing robot.

1.2 The internship

1.2.1 Goals and key issues in the internship

My internship took place in Åland UAS in Mariehamn from the 20th of June to the 10th of September. At �rst
my personal goal for this internship was to participate to the WRSC and ful�l the condition of going 12 week
abroad during an internship. I applied in the Ålandish team because of several reasons : ENSTA Bretagne have
good relations with them, they were �rst at the last WRSC, going to an archipelago was very appealing and
last but not least, they were competing for the WRSC.

Initially, when we discussed the subject of the internship with Anna Friebe, my tutor, it was about the
WRSC. I would prepare the boat for the competition by designing its collision avoidance system, and I would
accompany the Ålandish team to the WRSC in Portugal to help them there.

Before the internship, the Åland Team and ENSTA Bretagne team merged into one team due to boat trans-
port problem from Åland. ENSTA Bretagne would provide the boat, and Åland would provide the software.
So it turned out that I wouldn't work against my school in the end.

The joint team decided to split the work in two. ENSTA Bretagne would provide the boat and the hardware,
Åland UAS would provide the software.

Figure 1.4: WRSC 2016 in Viana Do Castello

As I explained in the presentation of the university, the WRSC is an international competition. It gives an
international show of the quality of your work and contribute to the renown of a university. That's why even if
the WRSC is not the main goal of the Åland Sailing Robot project some funds have been given to our team to
participate to this competition. Moreover, Åland �nished �rst last year, so we wanted to �nish �rst this year
as well.

3

1.2.2 Quick presentation of the system

I worked during my internship on a software designed for the boat below. This 4-meters boat is controlled by
two actuators : one for the main sail and the other for the rudder. The electronic inside is composed mainly of
a raspberry pi and the necessary hardware to get informations from the GPS, the wind sensors, the RC receiver
and the 3G router. Working precisely the electronic architecture was not the purpose of this internship so the
electronic architecture is in the annexes.

The software is composed of :

• A sailing logic : it regroup the high level commands of the boat. That's where I worked for most of the
internship

• A waypoint manager : it's the system that retrieve the new waypoints from the database if the last ones
were harvested.

• Drivers : this regroup everything that communicates with hardware (xbee, gps, wind sensor, actuators)

• An RC receiver : the boat had the ability to be controlled by a remote control. There is an RC multiplexer
on the boat to switch from software control to manual control at any time.

• A database : it receive the logs from the system and contain parameters for the software.

• A website and an httpsync system on the boat : using the router to have an internet connection, the boat
was synchronizing its database with the database of http://sailingrobots.com/. This website was used
to monitor the boat and check the logs.

• A LabVIEW program communicating with the boat by xbee to monitor and take control of the boat. It
can run a matlab script to command the boat.

Figure 1.5: 4-meters boat called Janet

This system changed completely for the WRSC but it will be explained later.

4

http://sailingrobots.com/

Chapter 2

Design of a collision avoidance system

2.1 Teamwork methods and overview

2.1.1 Scrum and JIRA

Our team was composed of 9 persons.

• Simon Chanu : specialized in robotics, worked on collision avoidance

• Jordan Less'Ard Springett : specialized in software engineering, rearchitectured the whole code to a
message based architecture.

• Eloïse Dalin : specialized in robotics, worked on the matlab part of collision avoidance and on the marine
sensors.

• Oliver Nylhom : a video game programmer, worked on the C++ code and implemented the line following
algorithm.

• Peter Worsnop, specialized in robotics, worked on the hardware communication and on the self steering
wind vane.

• Emil Strandvik : specialized in web programming, worked on the web part of the project and was the
scrum master of the team.

Figure 2.1: Scrum method for software development

We used for the software development the SCRUM method. It consist mainly in a backlog, which is basically
the tasks left to do with di�erent priority �ags. Then the project is split in sprint of 2 to 4 weeks. AT the
beginning of the sprint, the team choose together the tasks they should achieve during the sprint and plan
approximatively the time needed for them. When the amount of time of the sprint is reached, the planning
is done and the sprint can begin. During the sprint, the members can choose the task they want and help
each other for a greater e�ciency. Each morning we do a "daily scrum" : this is a quick meeting during which
each member explains its current work and its planned work. At the end of the sprint, each member of the
team present its work and the scrum master presents the results. Then a new sprint can begin from the backlog.

5

Figure 2.2: JIRA

We used JIRA to have a backlog and set up sprint. This is a very powerful tool online which allow each
member to connect and change the status of a task, add comments or add new tasks in the backlog.

2.1.2 Git

The Åland Sailing Robot Project is an Open-Source research project. That's why it has a frequently updated
github : https://github.com/AlandSailingRobots/

We used git in a formalized way explained by Jordan. The graphic below is an extract from one the internal
documents on how to properly use git.

Figure 2.3: Presentation of our use of Git

The principle is to have a master branch always ready and working and other branch for speci�c development.

• The master branch contains only the code of develop that has been tested and validated in real conditions.

• The develop branch contains only code that compiles and has been through unit test and simulation if
possible.

• The feature branch are the development branch. That's where the new features are coded and then merged
into the rest of the code.

With this type of organisation, we �gured out that we need to be careful not to have diverging branch :
branch on which the code is so di�erent that it become very di�cult to merge them together.

6

https://github.com/AlandSailingRobots/

2.1.3 Presentation of the control system

2.2 Matlab design

2.2.1 Choice of the collision avoidance system

I worked on the Matlab collision avoidance design with Eloïse Dalin from ENSTA Bretagne. We began by
a state of the art of the di�erent obstacle avoidance technics available, mainly from the work of Luc Jaulin.
Among those which could �t to our problem, we can list Voronoï Diagrams and Vector �elds command.

2.2.1.1 Voronoï Diagram

The voronoï diagram avoidance command is a simple and elegant method to avoid many obstacles at once. A
voronoï diagram is created by �nding the perpendicular bisector between each point to create tiles around the
points. So the lines are the points equidistant from the 2 closest obstacles. In everyday life it can be seen on
plants or bubbles.

Figure 2.4: Voronoï Diagram

The command using voronoï diagram consist in following the lines created by the voronoï diagram, so the
robot is always the furthest possible from the two closest obstacles.

The bene�ts of this system is that it's robust against many obstacles. Besides it allows us to use a line
following algorithm for the boat which is what we want since following only waypoints doesn't correct the drift
of the boat. On long travel such as crossing the Atlantic Ocean it could be a serious issue.

The drawbacks are that you need to have at least two obstacles to draw a voronoï diagram. In case of a
lone obstacle this system wouldn't work. Moreover, if two obstacles are very close, there would still be a line
between them that the robot could follow. But the last drawback is something that can be corrected by some
conditions.

2.2.1.2 Vector �elds

To get something that can handle one obstacles we looked into gradient based descent minimization of a poten-
tial �eld : following a vector �eld. To explain it simply, imagine that the robot is a drop of water, the obstacles

7

some mountains and the goal a wide basin. Then the drop will take the closest path avoiding the obstacles
thanks to gravitation. This is the same idea here, the robot is following the least potential path.

Figure 2.5: Vector Field

This is a very interesting method for ground robot because it can handle a lot of moving obstacles and is
very �exible. It's possible to add custom potential to avoid some areas for example.

But in the case of a sailing robot, it can't just stop and go back when the boat is facing an obstacle. The
boat will continue and crash into the obstacle, or turn heavily away from the closest path because of the wind.
Moreover, the boat can't move forward facing the wind, so there is some headings it can face only brie�y. That
means in some cases the boat could be stuck in a position of constantly tacking from one side to the other.
That's why the boat should follow a line long enough, more than three or four times the boat length, to be able
to manoeuvre if necessary. That's not the case if it follows a vector �eld.

2.2.1.3 Minimum of potential �eld

According to the bene�ts and limitations of the technics we found, none was exactly �tting to our issue. So
we decided to create our own system. The toughest system is the vector �eld command for its handling of
lone obstacles. So we took this basis. The main problem was the use of vector in the command system. So
we decided to keep the powerful and �exible tool that was the potential �eld and remove the gradient based
descent minimization.

We decided instead to command the boat during the avoidance using a line following algorithm : the boat
would follow a line and tack around it if necessary. A line is constituted by 2 points : a beginning and an end.
The �rst point would be the boat at the collision detection, the second point would be the most interesting
place to go in order to avoid the obstacles without going too far away from the ideal path. This last point would
be computed by �nding the minimum of the potential �eld.

The potential �eld is made of several summed potential �elds. They have been created separately and then
combined and calibrated to work properly together.

On the graphics below, the red color is the highest potential and the blue color the smallest.

2.2.1.3.1 Mathematical formula of the pikes and holes To modify a �at potential �eld, we decided to
use the following function :

8

z = A ∗ exp(−t2) (2.1)

t = B ∗ ((x+ a)2 + (y + b)2) (2.2)

With :
A the strength of the pike,
B the scale of the pike,
a the o�set on the x axis and
b the o�set on the y axis.

We used this function because it is simple and easy to use.

2.2.1.3.2 Objective potential �eld : The collision avoidance point should be the closest to the direction
of the objective. So the potential �eld of the objective is wide and not very deep.

Figure 2.6: Objective potential �eld

2.2.1.3.3 Obstacle potential �eld : The collision avoidance point should be the furthest from any obsta-
cles. Besides, the boat should avoid the obstacle by the left or the right at approximatively 30 meters. So the
obstacle is a big pike with one deep and narrow hole on each side. The obstacle is oriented in the direction of
the line between the boat and the goal.

9

Figure 2.7: Obstacles potential �eld

After some testing we decided to cap the height of the obstacles to avoid very high values on the potential
�eld. It was to make the debugging easier since the view is automatically scaled between the highest and lowest
value.

2.2.1.3.4 Boat potential �eld : The collision avoidance point should be as close as possible to the boat up
to a certain distance. Indeed, the collision avoidance point should make the boat avoid the closest obstacles, not
the ones it has already avoided, nor the ones very close to the objective. However, in case of several obstacles
drawing together a U shape with the boat at its center, the collision avoidance point is on the boat. That's not
what we wanted because the boat wouldn't avoid any obstacles, so we added this pike on the boat.

Figure 2.8: Boat potential �eld

2.2.1.3.5 Sum of these �elds : After some calibration we obtained this result.
That's not all. The collision avoidance point must still stay on the water and be out of the No-go zone. The

No-go zone is an area where the boat shouldn't go because its heading would be too close too the wind. Usually
it's an in�nite triangle of 90 degrees centred on the direction of the wind with the boat at its head.

10

Figure 2.9: Sum of the potential �elds without wind and sailing zone

2.2.1.3.6 Adding of the sailing zone and the wind : The No-go zone was easy to create, a simple
product of step function of two di�erent angles.

The same principle was used for the creation of the sailing zone. It's a product of step functions to create
an area of potential equal to one. Then the axis is inverted to create a plateau of negative potential.

Figure 2.10: Sum of the potential �elds with wind and sailing zone

The graphic above is the result of the calibration of all those �elds. We can see the magenta point which
point the minimum of the �eld, the red point which is the boat, the green point which is the objective and the
black point which are the obstacles.

With simulations and tests we �gured that the boat was not avoiding soon enough. So we decided to create
the obstacles closer than their real position in order to simulate an anticipation from the boat. This is an o�set
of 5 meters.

11

2.2.2 Condition of avoidance

For a system to avoid an obstacle, a condition of avoidance is needed to prevent the boat from constantly
avoiding anything or on the contrary, avoiding nothing.

At �rst we used the following condition :

If the boat is closer than 30 meters away from an obstacle and this obstacle has an intersection with the

heading of the boat.

But in the command system of the boat we use a line following algorithm. that means the boat will follow
the line or tack around it while staying below a prede�ned distance from the line. So if an obstacle was outside
the channel created by this prede�ned distance but still visible by the boat while it's tacking. The boat will be
likely to face the obstacle and avoid it even if there is no chance to hit it since it has no intersection to the channel.

So we decided to change the condition to this one :

If the boat is closer than 30 meters away from an obstacle and this obstacle has an intersection with the

channel.

2.2.3 Tests of the system

2.2.3.1 Change in the Matlab program architecture

As explained before, to test this script in real condition we could use a LabVIEW program. Due to the size of
our Matlab program we had to tidy the scripts in folders giving this result :

Figure 2.11: Matlab code architecture

With this architecture we have been able to keep the main for the LabVIEW and the main to test indepen-
dently from LabVIEW separate.

2.2.3.2 Simulation inside Matlab

Once the system set up, we have been able to run some simulation. As explained in some text passages above,
it has been useful to calibrate and change some parts of the algorithm.

In order to be able to use real gps points and interface with the LabVIEW program running on the boat
we modi�ed the Matlab script to use matrices of GPS points. These points were in utm coordinates. The utm

12

coordinates are the distance in meter from the origin point of an area on Earth.

So we have been able to simulate the behaviour of the boat with approximatively the same geographical
parameters as the reality.

Figure 2.12: Simulation of obstacle avoidance inside Mariehamn bay

2.2.3.3 LabVIEW tests

If the Matlab simulation tests were conclusive, the tests with the LabVIEW program were not. None of us
were really pro�cient in LabVIEW, this program had been inherited from students who worked on the project
during the school year. I took some time to try to make it work, but by the end of the internship the WRSC
was closing so we decided to give up the LabVIEW.

2.3 C++ design

Figure 2.13: Message architecture system by Jordan Less'Ard Springet

13

The C++ architecture of the boat have been heavily modi�ed during my stay, we changed to a message
based architecture programmed by Jordan Less'Ard Springett. A message based architecture is composed of a
message bus, which store and send the messages to the right part of the program, and of nodes, which are part
of the programs processing an input (a message) and sending back an output (a message).

The collision avoidance system is programmed as a collision avoidance node. It receive the informations
from the sensors, the waypoint manager and from the color detection node. It sends back waypoints to the
waypoint manager node

Figure 2.14: Diagram of the messages exchanged among the collision avoidance system

2.3.1 Sensor informations

When the Matlab design was approved I began to code the C++ version of the algorithm. It was approxima-
tively at the same time that the team began to discuss the available sensors for the WRSC.

It turned out that we would use a boat too small to use any distance sensors. I would be retrained to a
camera on the front of the boat. So I decided to use the same Matlab algorithm with a few additions and to
program everything on C++ to spare some time.

I needed to �nd the distance to the obstacle with only the heading from the boat of the obstacle and the
apparent width on the camera. So I decided to use the fact that the boat moves along time. The obstacles
would be polygons that would be intersected with the new informations in order to make something similar to
interval computation.

For example, on position A, the boat would see an obstacle so the system would memorize the area where
the obstacle could be. Then, on a second loop, the boat would see the same obstacle from a di�erent point of
view and the system would then intersect the last triangle with the new one to get the closest center to the
obstacle.

Figure 2.15: Diagram of the detection of one obstacle

14

In case of a �rst detection of an obstacle, that is to say a detection intersecting nothing, the center of the
obstacle is computed as if the obstacle was a circle as close as possible inside the area.

2.3.2 Intersection of polygons

The polygons were stored as a class variable inside the code. To handle polygons I used the boost::geometry
library since it's fast and very well documented.

The intersection algorithm work as the following :

• Fresh Data : the data from the obstacle detection are retrieved. It gives the heading of the obstacle and
the angle measurement of its width.

• Cleaning : the obstacles that should have been seen and are not seen on the fresh data are erased from
the memory

• Creation : the up-to-date obstacles are built from the informations of the fresh data.

• Merging : the up-to-date obstacles are merged with the memorized obstacles to re�ne the memory and
get a more accurate position of the obstacle.

During the unit tests of my program, I �gured out that boost doesn't handle very well the intersection
of too much surfaces at the same time. If three surfaces overlap, then it crash. That's why I had to set up
some safeties to prevent crashes. I had to split the merging part in three steps : �rst the up-to-date obstacles
are fusionned together, then this union is intersected each by each with the memorized obstacles. Then, any
up-to-date obstacle that hasn't been intersected is kept as a new one.

If anyone want to take a look at the code, everything is available on the github of Åland Sailing Robot on
branch "CollisionAvoidance".

2.3.3 C++ tools for debug

To debug the program I used mainly the vibes drawing library developed by ENSTA Bretagne. This software for
C++ allows the user to easily draw anything on another window from inside the program. With this software i
have been able to show the behaviour of the intersection of polygons and correct bugs during the unit tests of
each function.

Moreover, a C++ simulation of the boat, based on the model from Luc Jaulin has been created in python
by Elouan Autret. It's a server that receive with over a socket the commands of the boat, and gives back to
the simulation node inside the boat the new sensors informations. Elouan used a server/client architecture to
be able to run the simulator on another computer while the system of the boat was running.

But this simulator didn't simulate the obstacles, so I had to modify the simulator to implement the obstacle
simulation. Due to the limited amount of time we had before the WRSC I decided to code the simulation inside
the simulation node instead of inside the simulator. It was because coding the transmission of the obstacle
informations over the socket would have been too long.

So with the simulator and vibes, we have been able to simulate the C++ code on the boat. For example
you can see below a screenshot of the simulation.

2.3.4 Results

2.3.4.1 C++ code on Åland

The programming of this part took a lot of time, around the half of my internship, but was eventually �nished
before the WRSC.

Unfortunately, there was still a bug inside the collision avoidance system. You can see on the sreenshot of
the simulation above that the red triangles are not where are the black dots. I spent the last week looking for
this bug while programming a simple backup solution (If the boat sees an obstacle the line turns left).

I have since discussed with a hydrography teacher on this problem. Our boat was designed to cross long
distances, so the command algorithms use a gps coordinate system which require a lot of computations to handle
points and lines. For the collision avoidance system, I tried to lighten these computations. Since the obstacles
aren't detected further than 100 meters from the boat, I used the gps coordinates as if it was meters using

15

Figure 2.16: Simulation on VIBes-Viewer

a simple coe�cient when it was necessary to transform latitude and longitude into meters. I measured this
coe�cient on a map at the equator, but I didn't �gure out that this coe�cient would change for the longitude
according to the latitude of the gps point. This was the mistake. I have since sent an email to my tutor so she
will be able to correct this mistake.

So before the WRSC I had a non-useable collision avoidance system and a backup collision avoidance system,
besides a functional control system tested on a 4 meters boat.

2.3.4.2 the WRSC

Before the WRSC, the team met at Brest to share our work. There has been some issues on the hardware
side of the project. The boat the joint team should have used wasn't available anymore. Moreover there was
another boat available but it was impossible to use it if we weren't completely sure that the command system
wouldn't break the boat. Indeed this boat doesn't belong to ENSTA either so some members of the team were
very careful on that. Besides our control system had been designed for a 4 meters boat, and this boat was 1.5
meters long with a di�erent hardware. We had coded the necessary driver nodes but nothing had been tested
yet. So the team had to fall back on a much smaller boat.

During the competition, we used as well this smaller boat. It created a lot of issues we didn't see on the
big boat. Indeed the control system of the 4 meters boat was slow enough to hide the remaining bugs inside
the control system. This control system has not been coded by someone understanding the maths behind the
command algorithm, so we had to recheck everything at the last moment. At the same time our modi�cations,
probably due to stress and exhaustion, created more bugs. Fortunately, we managed to clean everything in the
end.

But the size of the boat was still a problem. The WRSC took place in a river crossing Viana Do Castello
in Portugal. This river had a current of 1 meter per second and the wind was strong, creating big waves for
this boat. So it was di�cult, even on manual control to sail properly with this boat. So the control system
never managed to sail properly, especially because the boat hardly tacked and gybed. Nonetheless, we used a
monitoring tool all along the competition to verify the behaviour of the boat and the results were correct during
the last two challenges.

16

Chapter 3

Analysis of the internship

3.1 Åland University of Applied Science

Åland UAS is a university funded by the Åland government and the subscription of its students to provide
courses and fund research project such as the one I worked into. When I worked here I observed that Universi-
ties in France and in Åland function more or less the same way.

The particularity of this university is its size : around 600 students work here. This is tiny for an average
university. It entails that every people knows each other so there is a small hierarchical distance between us
and the di�erent members of the administration. Moreover, the internship took place during the summer, so
there was very few young people on the University. So even if some of then were responsible for handling my
accommodation and some other administrative tasks, they were close with the team.

Figure 3.1: Student accomodations found by the university

The most surprising part was before the internship. The administration of the university handled everything
for me. They lent me a bike, took care of the accommodation and the transport from the airport. During the
internship they accepted late payment for the rent of the �at and were worried about the European grant I
should have received sooner in the internship.

3.2 Input of the internship

3.2.1 Knowledge learned

3.2.1.1 Scrum

On this internship I really learned how to work e�ciently in a small team. The scrum method is certainly
something I will remember and use in the future.

With this method we have been able to track our work and the work of others very easily. Besides, the
use of daily short meeting allowed us to keep track of works far from our area. For example, when one of the
member of the team working on a self-steering wind vane for the 4-meters boat took a leave of 1 week, I switched
from my work to his because it was urgent. I have been able to go into his work very quickly because I knew

17

approximatively what he did.

Moreover, whenever someone had some issues on a task, he would tell it in the daily scrum meeting and
someone would give him some advice.

Overall, it's a very e�ective way of working on software for a small team on small projects. However, the
team needs an e�ective task manager software such as JIRA to use the Scrum method at it's full potential.

3.2.1.2 Git

During the internship, I our C++ specialist, Jordan Less'Ard Springett taught the team on how to properly
use git. I already explained the way of using it in 2.1 Teamwork methods and overview.

It gave us the tools to use git at it's full potential. This is a valuable knowledge I will use in my projects in
the future.

I also learned a practical example of why a README �le and speci�cations documents are so important.
Because when you join an ongoing project, getting to know how to work on the code is very di�cult without
these �les. For example, at the beginning of the internship it took me 2 days to install the code on my computer
because I had found no installation document. So I had to ask to other members of the team and try to handle
the problems myself. So a README �le on github is mandatory on a team project.

3.2.1.3 C++ architecture

In Åland I learned a new programming language : C++. I discovered a fast and e�cient language with lots
on available libraries on the internet to help on particular tasks. For instance : polygon handling or display.
However this is an old language with a lot of speci�cities that make it di�cult to master. For example, an
object is always copied when as an argument of a function, that's why most function uses only the references
of objects. This speci�city makes the code much harder to read.

For this project, even if python would have greatly reduced the development time, I don't think it would
have been suitable. Indeed, the collision avoidance system handled 100x100 matrices for the potential �eld and
handled polygon intersections. In python, the computational time would have been under 0.1 seconds. However,
for quick and little projects I won't use C++ in the future since the set up time to create something is much
longer.

3.2.1.4 Autonomous research work

The management in Aland was very free, we had a lot of autonomy : it was very instructive. Anna Friebe
didn't veri�ed our work closely to make sure everything was right trusting us to be able to speak if something
wasn't right. So we had to be liable and autonomous in a foreign language.

3.2.2 What we could have done better

3.2.2.1 Message based architecture

We decided to change from the old architecture to a custom built message based architecture to improve the
maintainability of the code while keeping a light architecture. That's why Jordan designed a message based
architecture based on a queue storing pointers to the nodes.

However, this architecture has been built from scratch so very few tools have been developed to monitor and
simulate easily and quickly the system. That's something very important that I learned during the internship :
SPLM

• Simulate
Being able to easily and quickly simulate a system is a major necessity. For example in Åland, when we
tested our code on the 4-meters boat it took one day to set up everything and make the test. So testing
several times a day some slight changes in the algorithm is out of question.

• Playback
That's something that lacked the system during the WRSC. On several challenges, some behaviour of

18

the sailing robot were strange. We noticed it on the monitoring system but we have never been able to
precisely explain them. A playback system associated with a logging system would have solved that.

• Log
During the WRSC the system had a logging system. But showing them took at least 20 minutes. We
should have set up an easier log display to avoid loosing time.

• Monitor
The monitoring system is totally mandatory on an autonomous robot. Indeed, we need to know if the
behaviour of the robot is logical or not. Our system worked with a con�gurable monitoring tool developed
for the Abersailbot team

There is some existing middleware that uses these tools. ROS or MOOS for example. We decided to create
our own message based architecture to avoid such heavy middlewares. But in the end we didn't have the
necessary and easy to use tools to debug e�ectively the system. I would advise for the future to heavily improve
this software with these tools or to switch to a known middleware such as MOOS or ROS.

3.2.2.2 The hardware

There was some little boat of the size of the one we used during the WRSC at the university. We tried to create
an electronic for this boat to be able to test our algorithms on a much smaller robot.

Apart from the lack of electronic tools on the university that slowed a lot the creation of this hardware, it
has never been �nished. Indeed the WRSC closing in we decided to completely �nish the software instead of
setting up a new boat. It was a mistake. Indeed the change of scale of the boat is very important : the wind
and the waves don't scale down. Besides, there was some bugs we haven't been able to see on the 4-meters boat
we saw on the small boat as explained in the results of the internship. So when we ended up with a small boat
we haven't been able to change everything in time to make it work properly.

So I have learned that the tests must be made since the beginning on something close to what we will use
in the end. Besides, the two teams should have worked more closely so we would have been able to test sooner
when the Aland team arrived to Brest.

19

Conclusion

This traineeship in Aland University of Applied Science has been a very instructive experience. I worked on
the exiting project of developing the arti�cial intelligence for collision avoidance for a sailing robot in a great
environment. I began at �rst by creating the algorithms on Matlab, then while improving it, I translated
everything to C++ on the boat system. So I have created a complex system from the beginning to the �nal
tests on a sailing boat. There has been a lot of issues during the internship but I learned a lot of technical skills
with git, C++, but management skills as well with Scrum. In the end, while doing a work that will be used in
the future, this great internship has been very instructive on project management and robotic projects.

20

Bibliography

[1] Åland University of Applied Sciences - In English - Högskolan på Åland. www.ha.ax.

[2] Luc Jaulin. La robotique mobile, pages 0 � 274. ISTE Editions, 2015.

[3] Luc Jaulin and Fabrice Le Bars. A Simple Controller for Line Following of Sailboats, pages 117�129. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013.

[4] Chris Venes. Calculate distance, bearing and more between latitude/longitude points. http://www.movable-
type.co.uk/scripts/latlong.html.

21

ANNEXES

22

Electronic Architecture

23

24

25

26

27

28

29

30

	Presentation and goals of the internship
	Åland University of Applied Science
	Overview
	Organisation inside Åland UAS

	The internship
	Goals and key issues in the internship
	Quick presentation of the system

	Design of a collision avoidance system
	Teamwork methods and overview
	Scrum and JIRA
	Git
	Presentation of the control system

	Matlab design
	Choice of the collision avoidance system
	Voronoï Diagram
	Vector fields
	Minimum of potential field
	Mathematical formula of the pikes and holes
	Objective potential field :
	Obstacle potential field :
	Boat potential field :
	Sum of these fields :
	Adding of the sailing zone and the wind :

	Condition of avoidance
	Tests of the system
	Change in the Matlab program architecture
	Simulation inside Matlab
	LabVIEW tests

	C++ design
	Sensor informations
	Intersection of polygons
	C++ tools for debug
	Results
	C++ code on Åland
	the WRSC

	Analysis of the internship
	Åland University of Applied Science
	Input of the internship
	Knowledge learned
	Scrum
	Git
	C++ architecture
	Autonomous research work

	What we could have done better
	Message based architecture
	The hardware

