
Initial question (Luc Jaulin): When dealing with outliers in a set estimation context using interval

methods, we meet the following problem: Consider p boxes (or interval vectors) of Rn denoted by

X1, . . . , Xp. Let q be an integer smaller than p. Does it exist a vector x which belongs to at least q

of these p boxes ?

My question is the following : could we find a polynomial algorithm which solves my problem ? (or

if you prefer, is my problem NP-hard ?).

�

1) Marek Gutowski

I don’t know any papers with the description of this problem, but here is the first step I would apply:

1. Partition your set X = {X1, . . . , Xp} into subsets called clusters from now on. A cluster is a

subset of X with property: each element has a non-empty intersection with at least one other

element of the said cluster OR a single interval vector, if it doesn’t intersect any other member

of X. To find all clusters you have to perform O(p2) intersections. Easy, isn’t it?

2. Now you have k clusters, k ≤ p. Your solution(s), if any, must hide in just discovered cluster(s),

nowhere else. If k = p then you have exactly k=p different solutions for q = 1 and no solutions

for any q > 1. k = 1 (exactly one cluster) means we didn’t make any progress, sorry. Otherwise,

that is if k > 1, you can safely forget all clusters with less than q members. Clusters having

exactly q members are easy to examine: the solution is either the intersection of all members

of such a cluster or none, if this intersection is an empty set.

Failing all of the above tests may mean that you have to examine all subsets with exactly q members

of every cluster large enough. This, indeed, is generally an NP-hard problem. Yet, if k is sharply less

than p, then its complexity has just been significantly lowered. At this point you may want to switch

to quite another point of view. Consider a graph representing a selected cluster: its vertices are

interval boxes and an edge exists between two boxes, if and only if their intersection is non-empty.

You may have already build such a graph as a byproduct of the clustering procedure. Any solution(s)

must intersect the vertices of order ≥ q − 1, that is with number of adjacent edges equal at least to

q − 1 - isn’t it? Having the graph in a form of adjacency matrix, all you have to do is computing

the sums of each row (or column, if you prefer) and compare those numbers with (q-1). This is

a task linear in k, while the adjacency matrix construction requires O(k2) operations. The overall

complexity is therefore O(k2), even if you include all the subsequent necessary checks of so selected

vertices. Please let me know, if you see a hole in my reasoning. Does this solve your problem? With

regards, Marek Gutowski

2) Ramon Moore

Given q boxes, the question whether there is a point x in at least p < q of them is equivalent to

asking whether there are p boxes with non-empty intersection. To find that out requires fewer than

qp computations of intersections, doesn’t it? Perhaps I do not understand the question.

3) Luc Jaulin

Dear Marek, Thank you very much for you detailed and interesting answer. No, I do not see

any hole in your reasoning. But it does not really solve my problem, since I still don’t know

if my problem is NP-hard. I agree that partitioning into cluster may reduce the computation

burden. For the complexity, I am searching for the worst case complexity, which amounts to

say that k = 1. For my application, I usually have k = 1. See e.g. Figure 3 of the paper

http://www.ensieta.fr/e3i2/Jaulin/qminimax.pdf. The graph algorithm is interesting and I agree

that it is polynomial. But, I think that it only computes sufficient conditions for emptyness. If your

algorithm fails, then we will know that the q-intersection is empty. But, if it succeed, we cannot

conclude that the q-intersection is not empty. Isn’t it ? It is a quick answer, but I need to think a

little more about it. Maybe I can find a counterexample. Thank you again, Luc

4) Vladick Kreinovich

Dear Ray, Dear Friends,

From Ray Moore. Given q boxes, the question whether there is a point x in at least p < q of them is

equivalent to asking whether there are p boxes with non-empty intersection.

This is absolutely correct.

To find that out requires fewer than q^p computations of intersections, doesn’t it ?

Correct. If we test all qp intersections, this requires time which grows exponentially with p. Luc

Jaulin’s question is whether it is possible to have an algorithm whoe computation time is bounded

by a polynomial of p and q.

�

5) Alexandre Goldzsteijn

At least if p = q then the problem is trivial, as the question is equivalent to ask whether the

2

intersection of all the boxes is empty or not. Now in general:

Claim : If we have p boxes, then their projections on one axe form at most 2p+1 areas which decide

wether we are or not in the projection of each box.

Proof : by induction. For one box, we have 3 areas. If the projection of p boxes forms 2p+ 1 areas,

then adding on box adds at most 2 areas. Then, we just have to test all possible choice of one area on

each axe, hence (2p + 1)n intersections, where n is the dimension of the problem... So, the problem

may be exponential with the dimension (though this is not proved) but it is polynomial once the

dimension is fixed. We can even be quicker if for each area on each axe we record the number of

boxes which have a non empty projection with it. Then you don’t even have to check areas for whose

number of non empty intersection is less than q.

6) Luc Jaulin

Dear Ray and all, Thank you very much for your answer. I agree that that the problem can be solved

with less than pq computations of intersections.

But pq is not polynomial (by polynomial, I mean polynomial in both p and q). When the dimension

n is one (i.e., the boxes are intervals of R), one could easily find an algorithm which has a complexity

of O(p. log(p)) (it suffices to sort lower and upper bounds all together and to count). But when

n > 1, I do not know if this polynomial complexity can still be obtained. Regards, Luc.

7) Bruno Lang

Dear Luc and all. At least for n = 2 there is a (low-degree) polynomial algorithm for this problem.

In two dimensions this problem is similar to the 3D visibility problem in the following sense: identify

each box n◦ i with a rectangle at depth i and determine which (parts of the) sides of each rectangle

are visible from the origin. This problem can be solved in O((p + k). log p) operations, where k

= O(p2) is the total number of intersection points between any sides. (The algorithm is based on

Bentley/Ottmann and the so-called connection graph of the scene.). A slight modification of this

technique will also yield, for each (part of a) side, the number of rectangles between the line segment

and the origin (i.e., the number of rectangles obstructing it). Thus, there is a q-fold intersection iff

any of these numbers is ≥ q − 1. In addition, the intersection can be extracted from the connection

graph. Best regards. Bruno.

8) Jean Pierre Merlet.

3

In the plane (n=2) a sweeping line algorithm will have a complexity of (p+q).(log p). But complexity

may be dangerous because we forget about the constant: in term of computation time the pq algorithm

may be in fact faster than the (p+q).(log p) one if p, q are low enough and if your p boxes are already

sorted for some reasons. JPM

9) Dirk Pattinson

Hi all, My hunch is that the problem is NP-complete if we assume the planes that bound the boxes

are parallel to the coordinate planes. The argument goes as follows:

first note that the following are equivalent:

• (a) there are q boxes with nonempty intersection

• (b) there are q boxes with pairwise nonempty intersection.

Clearly (b) ==> (a) and to get (a) from (b) note that the (additional?) assumption that the boxes

are parallel to the coordinate planes lets us argue in each dimension separately, and (b)⇒ (a) in the

case where the boxes are intervals (this needs to be checked more carefully than I have done). Now to

the problem: Consider the graph whose vertices are the boxes with an edge between box b1 and b2

if b1 and b2 have non-empty intersection. Finding q boxes whose intersection is non-empty amounts

to finding a clique of size q in this graph (by the above observation) and we know that this problem

is NP-complete. This might be bad news; on the other hand — if the observation above is correct — it

means that one can immediately make use of a lot of quite clever graph theoretic algorithms. hope

this helps, Dirk Pattinson.

10) Sylvain Pion

This looks much more like a computational geometry question, so you may be more lucky asking it

on the compgeom-discuss mailing list. I believe a closely related work is Frank Nielsen’s PhD thesis

which you can find here: http://www.inria.fr/rrrt/tu-0418.html . It is in French, but there might be

related articles available in English as well. Sylvain Pion

11) Marek Butowski

Dear Luc, Indeed my answer was pretty quick, but it is correct nevertheless. It doesn’t mean, of

course, that no better algorithm exists. See my other comment below, within your text.

4

From Luc: The graph algorithm is interesting and I agree that it is polynomial. But, I think that it

only computes sufficient conditions for emptyness. If your algorithm fails, then we will know that the

q-intersection is empty. But, if it succeed, we cannot conclude that the q-intersection is not empty.

Isn’t it ?

Yes and no. Vertices of order below q−1 are not interesting at all, q-intersections are simply impossible

there, so obviously empty. Therefore this is a sufficient condition for emptiness of intersection. On the

other hand the connectedness of q or more boxes is only a necessary condition for their intersection

to be non-empty. Therefore the final, direct check is unavoidable; you have most likely overlooked

the last part of my sentence " .. even if you include all the subsequent necessary checks of so selected

vertices." Yes, you have to check them one after another as the counterexamples are easy to present:

see for example five squares sharing their corners, as in Sierpinski carpet, or even sharing their edges

and thus forming of a cross. What *I* have overlooked is the fact that this step increases the overall

complexity: O(k2) ≤ O(qk2) ≤ O(k3), I believe. Anyway, this is the overestimate of the worst

case complexity and still better than anticipated NP-hardness. Thank you for the link to your very

interesting paper, (not published yet, right?). I already considered similar ideas, in connection with

the experimental data analysis, namely with curve fitting. In exchange, and FYI I enclose the relevant

paper. I introduce the notion of "crude solutions" there - it is in essence nearly your problem. For

clarity, I discuss only a simple linear case i my paper, but the transition to other, nonlinear models is

straightforward, if you apply my "box slicing algorithm" also presented in this paper. As for today

there is no continuation of this work. And the reason is simple: the experimental data, even in the

form of intervals, are never 100% certain. I still don’t see how to relate the probabilities (suppose

we know the quite precisely) of each measurement to be covered by an interval Xi with the number

of measurements, which might be, or perhaps even should be, eventually disregarded by a fitting

procedure. In summary: forget the clustering procedure. This was my first idea, not leading directly

to the desired result, and in fact - not necessary. Do not waste the computer resources and start

directly with the graph picture, this is enough. If finding the "nearest neighbors", i.e. boxes with

non-empty intersection with current box, is executed simultaneously with evaluating the intersection

itself, then you can expect the worst case complexity O(p2), at least for vertices of order k < q. For

higher order vertices - we are at the beginning again, I’m afraid. But aren’t you seeking for the

highest possible value of q for a given set of boxes? If so, then your problem should be, perhaps,

reformulated. Maybe the ideas from my paper are of some help here, if the "faulty" boxes need not

neither to be identified nor known at the beginning of the procedure. Regards, Marek Butowski.

�

12) Luc Jaulin

Dear all, Thank you for all your answers. After some discussions with A. Goldsztejn, it seems that

5

for n fixed, the problem can be solved in a polynomial time. The principle of such an algorithm is

illustrated by the following figures.

1. Generate the (2p− 1)n as on figure (b).

2. Take the center of all the boxes as on figure (c)

3. Check if there exists one of these center which belong to q of the p boxes (subfigure (d)). The

complexity of such a test is O(p.n). The whole algorithm has a complexity of O(pn+1).

This is a good new for my application where n is small (= 4). But, in a theoretical point of view, it

will be nice to know if the problem has a complexity polynomial in p, q and n. Best regards, Luc

13) Dirk Pattinson

Hi Luc, thanks for the clarification. In hindsight, my argument shows not that your problem is

NP-hard, but that it is not harder than np. In order to show NP-hardness, one would of course

need to give a translation in the opposite direction, i.e. encode every graph in terms of a system of

intersecting boxes, which is what I haven’t done. Thanks for pointing out the error, best, Dirk.

14) Gilles Chabert

Dear all, This problem is already well-known in graph theory and formulated as follows: "The problem

of [optimizing the size of] maximum cliques in n-boxicity graphs can be solved in polynomial time".

This comes from the fact that the particular class of graphs corresponding to the intersection of boxes

6

has a number of maximal cliques bounded by a polynomial in p (instead of 2p, as in the general case).

Here is an example of reference I found on the web: http://www.cs.ualberta.ca/~stewart/Pubs/few_cliques.pd

(See Corollary 4 and the beginning of Section 3) However, since the upper bound on the number

of maximum cliques is exponential in n, it should be easy to prove that the problem cannot be

polynomial in n. Gilles Chabert.

15) Vladik.

Dear Gilles, Many thanks for the reference. I do not think, however, that it will be easy to prove

that a polynomial algorithm is not possible: if you prove that, then you prove that P is different

from NP! At best, we can hope to prove that the general problem is NP-hard. Vladik.

16) Vladik.

Luc Jaulin’s problem — of checking whether at least p out of q given boxes have a non-empty inter-

section — is NP-hard. Here is a proof.

We can consider boxes in which each side is either [0,0], or [1,1], or [0,1]. We can even limit ourselves

to the case when in each box, no more than two variables have [0,0] or [1,1];the rest are [0,1]. If this

particular case is NP-complete then the general problem is NP-complete as well. In this particular

case, if the intresection is non-empty, then this interesection contains a Boolean vector with all

coordinates 0 or 1. If we associate 1 with true and 0 with false, then belonging to each box means

that a&b, where a is xi if the box’s i-th coordinate is xi=1 and not xi if it is [0,0]. So, we have

a sequence of statements a&b, and we need to check whether there exists a boolean vector which

satisfies at least p of them. This means that at most q-p of these statements can be false. The falsity

of each statement is represented by a 2-clause not a or not b. So, we can reformulate the problem

as follows: we have a list of q clauses, and we need to find whether there exists a Boolean vector

which makes no more than q-p of them true. This auxiliary problem is known to be NP-complete

(see attached). Thus, the original Luc’s problem is also NP-complete. Vladik

P.S. I am sending remotely, from an interent cafe near a Polish conference where I am attending an

interval session, I already found out that what I send comes out as not an ascii file, I apologize for

the inconvenience.

17) Alexandre Goldzsteijn.

Dear Vladik and Professor Moore, When you count qp, I think you count the number of ways to

7

choose q intervals among a set of p intervals, but you allow choosing several times the same interval.

If we choose q *different* intervals among a set of p intervals, then we have C(p, q) possible choices.

Isn’t it? Also, I think that if we use the projections of the intervals on the axis then we can find an

algorithm of complexity (2p + 1)n . For fixed dimension, we obtain a polynomial complexity w.r.t.

p . However, for fixed p and increasing dimension, the C(p, q) algorithm is better ! Best regards!

Alexandre

18) Dirk Pattinson

Hi all,

From Ray Moore : Given p boxes, the question whether there is a point x in at least q < p of them is

equivalent to asking whether there are q boxes with non-empty intersection. To find that out requires

fewer than pq computations of intersections, doesn’t it? Perhaps I do not understand the question.

My hunch is that the problem is NP-complete if we assume the planes that bound the boxes are

parallel to the coordinate planes. The argument goes as follows: first note that the following are

equivalent:

• (a) there are q boxes with nonempty intersection

• (b) there are q boxes with pairwise nonempty intersection.

Clearly (b)⇒ (a) and to get (a) from (b) note that the (additional?) assumption that the boxes are

parallel to the coordinate planes lets us argue in each dimension separately, and (b) ⇒ (a) in the

case where the boxes are intervals (this needs to be checked more carefully than I have done). Now

to the problem: Consider the graph whose vertices are the boxes with an edge between box b1 and b2

if b1 and b2 have non-empty intersection. Finding q boxes whose intersection is non-empty amounts

to finding a clique of size q in this graph (by the above observation) and we know that this problem

is NP-complete. This might be bad news; on the other hand — if the observation above is correct — it

means that one can immediately make use of a lot of quite clever graph theoretic algorithms. Hope

this helps, Dirk.

19) Wayne

From Dirk Pattinson: Consider the graph whose vertices are the boxes with an edge between box b1

and b2 if b1 and b2 have non-empty intersection. Finding q boxes whose intersection is non-empty

8

amounts to finding a clique of size q in this graph (by the above observation) and we know that this

problem is NP-complete.

Except I think you’ve translated in the wrong direction. Remember, to prove a problem is NP-

complete, you need to translate an *existing* NP-complete problem *to* your problem. The transla-

tion you’ve described above is in the opposite direction: you’ve shown that we can use clique-finding

to find box intersections. But there’s no guarantee that clique-finding is the most efficient way to

solve box intersection. A better algorithm might exist. The direction you’ve translated above would

be akin to saying that sorting takes exponential time because we can solve the sort problem by trying

every possible permutation until we find one that’s sorted. Obviously, such an algorithm would work

but doesn’t prove that sorting in general takes exponential time. :-) To prove that box intersection is

NP-complete, you’d need to show how to *use* box intersection to *solve* clique-finding. As a first

step, this requires demonstrating that an arbitrary graph can be "coded" into box intersections. I’m

not sure that’s possible; I haven’t thought about it, but it seems to me that it might be possible to

create a graph that cannot possibly represent box intersections in the model you’ve described above.

The way I remember which direction to translate is to think in terms of an actual program. If you

give me a program to solve your problem, then my task (to prove your problem is NP-complete) is

to *use* your program to solve an NP-complete problem in polynomial time. To do that, I need to

figure out some way to translate an existing NP-complete problem to your problem, in polynomial

time. Such a translation proves that your problem is NP-complete, because it demonstrates that

your problem is at least as hard as existing NP-complete problems, in the sense that if somebody

finds a polytime algorithm to solve your problem, then I can use your program and my translation

to solve an existing NP-complete problem in polynomial

time. Wayne.

20) Wayne Hayes

I just realized that there were a few typos in my previous message that may have made it unclear.

Here’s another attempt to explain *why* the translation must be from an existing NP-complete

problem, to the new problem. Let’s say you give me a "black box" that solves the box intersection

problem. Then, let’s say that I find some way to encode the input and output of the clique-finding

problem into the input and output format for your black box, such that the clique problem has a

positive answer if and only if your black box returns a valid solution to the box intersection problem

(which, recall, is an encoding of the clique-finding problem). Furthermore, the translation of both

inputs and outputs takes polynomial time. Then, *if* your "black box" always runs in polytime,

then I’ve magically found a way to solve clique-finding problems in polytime. Hope that’s clear.

As I said in my previous message, I would guess that it would be difficult or impossible to encode

9

arbitrary graphs into intersecting boxes (or at least, to do so in polynomial time). This doesn’t mean

that the box intersection problem isn’t NP-complete; it just means that, if it’s NP-complete, then

clique-finding isn’t the right problem to translate from. Wayne Hayes.

21) Marek Gutowski

Vladik, I’m impressed. This is to say I do not understand the very first sentence of your proof.

Anyway, you don’t mention what is the dimension of the boxes. So, how should I understand your

proof if the 1D case is evidently NOT NP-hard? Something has to be wrong. Marek Gutowski.

22) Baker

Vladik, This might be minor. However, at the beginning, you assert that the problem is "np-hard,"

whereas at the end of your proffered proof, you say, "therefore, the original problem is np-complete."

Can you clarify the distinction ("np-hard" versus "np-complete")? Baker

23) Wayne Hayes

Marek, Somehow I didn’t see Vladik’s original message, but the phrase "We can consider boxes

in which each side is either [0, 0], or [1, 1], or [0, 1]" refers to the "sides" of the box either being

points, or intervals of length one. For example, in three dimensions, the "box" (ie., line) going

along the x-axis from the origin to (x, y, z) = (1, 0, 0) has "sides" x ∈ [0, 1], y ∈ [0, 0], z ∈ [0, 0].

The line starting at the end of that previous line and going up paralell to the y-axis has "sides"

x ∈ [1, 1], y ∈ [0, 1], z ∈ [0, 0]. The line starting from that point and going up parallel to the z-axis

has "sides" x ∈ [1, 1], y ∈ [1, 1], z ∈ [0, 1]. Similarly, the unit box in the (x, y) plane has "sides"

x ∈ [0, 1], y ∈ [0, 1], z ∈ [0, 0]. Vladik’s example can be phrased in higher dimension, but has similar

cases.

24) Wayne Hayes

Vladik, I’m sorry, but it seems to me that your transformation is in the wrong direction. You’ve

shown that the intersection problem reduces to the boolean problem, which is the wrong direction of

transformation for a proof of NP-completeness (see my message from last night for details). Instead,

we need to show that an existing NP-hard problem reduces to our problem, in order to demonstrate

that our problem is also NP-hard. Your proof also doesn’t mention p, q, or n (the dimension of the

boxes), as Marek points out.

10

�

25) Guillaume Melquiond

Wayne Hayes wrote: I’m sorry, but it seems to me that your transformation is in the wrong direc-

tion. You’ve shown that the intersection problem reduces to the boolean problem, which is the wrong

direction of transformation for a proof of NP-completeness (see my message from last night for de-

tails). Instead, we need to show that an existing NP-hard problem reduces to our problem, in order

to demonstrate that our problem is also NP-hard.

I had the same reaction when reading Vladik’s mail the first time. But as far as I can tell, Vladik’s

transformation is sound. Consider a formula in conjunctive normal form (n variables, q clauses). You

want to find a boolean vector such that at most q − p clauses of the formula hold. Each clause is a

disjunction, so its negation is a conjunction. Associate to this conjunction a box. If the variable i does

not appear in the conjunction, the projection of the box on axis i is [0, 1]. If the variable i appears

negated, the projection is [0, 0]. Otherwise the projection is [1, 1]. So any vector with coordinates 0

or 1 in this box is a boolean vector which satisfies the conjunction. Solve the intersection problem

for p boxes. This gives you (or not) a vector. Each coordinate that is neither 0 or 1 must be changed

to either one. Due to the way the boxes were chosen, this modified vector also happens to be in

the intersection. As all its coordinates are 0 or 1, this is a boolean vector, and it satisfies at least p

conjunctions of the negated formula. So it means that it satisfies at most q−p disjunctions (the ones

associated to the other clauses) of the original formula. So you have solved the NP-complete boolean

problem by using a solver for the intersection problem. As the transformations are linear in n.q, if

the intersection solver is polynomial, then one can solve the boolean problem in polynomial time.

So the intersection problem is NP-hard. And since the intersection problem is NP (checking that

an intersection of p boxes is not empty is linear in np), it is NP-complete. Best regards, Guillaume

Melquiond.

�

26) Luc Longpre

Here is Vladik’s proof expressed a little more formally. The box intersection problem: Given a set

of p n-dimensional boxes, and a number q < p. Is there a vector x which belongs to at least q of

these p boxes? A previous e-mail described an algorithm that works in time pn+1. This algorithm

is polynomial time if n is constant, it’s exponential if n is allowed to grow with input size. Vladik

provided a proof of NP-completeness for the case of n not constant. The problem box intersection

problem obviously in NP: it is easy to check that a given vector belongs to at least q of the boxes. So

we only need a proof of NP-hardness. The proof is by reduction from the "limited clauses" problem

described in the reference, which has been proved NP-complete: Given a 2-CNF formula F and a

11

number k, is there a Boolean vector which satisfies at most k clauses of F. Here is Vladik’s proof,

expressed more formally. Given a p-clauses 2-CNF formula F of n variables and a number k, we

associate a dimension with each variable. Build a set of p n-dimensional boxes, one for each clause.

If clause i mentions vi1 and vi2 variables, then the ith box has sides [0, 1] in all dimensions except in

the dimensions associated with variables vi1 and vi2 . For those two dimensions, the side is [0, 0] if the

variable occurs positively in the clause and [1, 1] is the variable occurs negatively. (Actually the boxes

are n − 2 dimensional objects in n-dimensional space, since two of the dimensions are degenerate.

For example, the box ([0, 0], [0, 1], [0, 1], [1, 1]) is a 2-D object in 4-D space.) Now, let q = p− k. The

claim is that there exists a vector x which belongs to at least q of these p boxes if and only if there

is a Boolean vector which satisfies at most k clauses of F. Suppose the vector x exists. Suppose box

i is associated with variables vi1 and vi2 . For each of the box i for which x belongs, make vi1 False if

the box has [0, 0] on the side associated with variable vi1. Same for variable vi2 . Because of the way

the boxes were build, the boolean vector we build will make the clause associated with the box false.

For example, if the clause is vi1 || vi2, then the box will have [0, 0] for the sides associated with both

variable, so they will be both assigned the False boolean value, making the clause false. This means

that the Boolean formula built will make at least q clauses become false. This formula will satisfy at

most k = p− q clauses. In the opposite direction, if there is a Boolean vector which satisfies at most

k clauses of F, build a vector x which has value 0 in dimension i if the variable associated with this

dimension the Boolean vector is False, and 1 otherwise. Since the Boolean vector satisfies at most

k clauses of F, it makes at least q = p − k clauses false. This means that the vector we build will

belong to all the boxes associated with the q clauses that are false. Luc Longpre.

12

