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Abstract. Testing parametric models for identifiability is particularly
important for knowledge-based models. If several values of the param-
eter vector lead to the same observed behavior, then one may try to
modify the experimental set-up to eliminate this ambiguity (which cor-
responds to performing qualitative experiment design). The tediousness
of the algebraic operations involved in such tests makes computer alge-
bra particularly attractive. This paper describes some limitations of this
classical approach and explores an alternative route based on new defini-
tions of identifiability and numerical tests implemented in a guaranteed
way. The new approach is illustrated in the context of compartmental
modeling, widely used in biology.

1 Introduction

In many domains of pure and applied sciences, one would like to build a math-
ematical model from input-output experimental data. Sometimes, the only pur-
pose of modeling is to mimic these observations, with no physical interpretation
in mind. One then speaks of a black-box model. The situation considered in this
paper is different. It is assumed that some prior knowledge is used to build a
mathematical model that depends on a vector of parameters to be estimated
from the data. If the model is entirely based on such a prior knowledge, one
speaks of a white-box model. This is an idealized situation seldom encountered
and the model is often a mixture of knowledge-based and black-box parts. One
then speaks of a gray-box model. For white-box and gray-box models, all or some
of the parameters receive a physical interpretation, and one would like to make
sure that these parameters can be estimated meaningfully.

Let u be the (known) vector of the inputs of the system, which is usually a
function of time t, and let y(t) be the corresponding vector of the outputs of the
system at time t. A typical set-up for estimating the vector p of the parameters
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of the model of this system (see, for instance, [1], [2] or [3]) is to give the system
and model the same input (one then speaks of a parallel model), and to look for
the estimate �p that minimizes the sum of the squares of the differences between
the system and model outputs

�p = arg min
p

f�

i=1

(y(ti) − ym(ti,p))T(y(ti) − ym(ti,p)).

In this equation, the tis are the instants of time at which the outputs of the sys-
tem are measured and ym(t,p) is the vector of the outputs of the model at time
t when the parameter vector takes the value p. The dependence of y and ym
on the input u is omitted to simplify notation. When p has a physical meaning,
one would like to know whether finding a numerical value for �p gives any indi-
cation about the actual values of the physical parameters of the system under
investigation. If not, one may try to modify the experimental set-up in order to
remove the ambiguity. This is why it is desirable to reach a conclusion as soon
as possible (if possible before performing any actual experimentation). A partial
answer is found, under idealized conditions, with the concept of identifiability.
We shall start by presenting the classical notion of identifiability before pointing
out some of its limitations and proposing alternative definitions of identifiability
and a guaranteed numerical method of test consistent with these new definitions.

2 Classical Approach to Identifiability Testing

Assume that there are no measurement noise or system perturbations, that the
input and measurement times can be chosen in the most informative manner and
that the system is actually described by a model with output ym(ti,p∗), where
p∗ is the (unknown) true value of the parameter vector. Under these idealized
conditions, it is always possible to find at least one �p such that the “system”
with parameters p∗ and the “model” with parameters �p behave in exactly the
same manner for all inputs and times, which we shall denote by

ym(t, �p) ≡ ym(t,p∗). (1)

It suffices to take the trivial solution �p = p∗ for (1) to be satisfied. If this solution
is unique, then the model is said to be globally (or uniquely) identifiable. This is
of course desirable. Unfortunately, there may be parasitic solutions. If the num-
ber of solutions of (1) for �p is greater than one, then we know that even under
idealized conditions it will not be possible to estimate meaningfully all compo-
nents of p∗ with a single point estimate such as �p. As an illustrative example,
consider the compartmental model described by Figure 1. Each circle represents
a tank. The ith tank contains a quantity xi of material. These tanks exchange
material between themselves and with the exterior as indicated by arrows. A
usual assumption in linear compartmental modeling is that the flow of material
leaving a compartment via an arrow is proportional to the quantity of material in
this compartment. The constants of proportionality of these exchanges are then
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Fig. 1. Compartmental model

parameters to be estimated. Note that even when the compartmental model is
linear, its output is nonlinear in these parameters, which significantly compli-
cates their estimation. The dynamical state-space equations associated with a
given compartmental model are very simple to obtain by writing down mass bal-
ances for each compartment. Such models, or variants of them, are widely used
in biology and find applications in other experimental sciences such as pharma-
cokinetics, chemistry or ecology [4], [5]. For the model of Figure 1, mass balances
in Compartments 1 and 2 lead to

dx1

dt
= −(p1 + p2)x1 + p3x2 + u

and

dx2

dt
= p1x1 − p3x2.

Assume that there is no material in the system at time 0, so x(0) = 0, and that
the quantity of material in Compartment 2 can be measured at any positive
time, so

ym(t,p) = x2(t,p).

The question we are interested in is as follows: assuming that noise-free data are
generated by a compartmental model with the structure described by Figure 1
and parameters p∗, can the value of p∗ be recovered from an analysis of the
input-output data?

An obvious difficulty with this question is that the numerical value of p∗ is
unknown (since the very purpose of the exercise is to estimate it!), so we would
like to reach a conclusion that would not depend on this value. Unfortunately,
this is impossible in general, because there are usually atypical hypersurfaces
in parameter space for which the conclusion is not the same as for all other
values of the parameter vector. An example of such an atypical hypersurface
is the plane defined by p∗

1 = 0 for the model of Figure 1. Indeed, if there is
no flow from Compartment 1 to Compartment 2 then no material ever reaches
Compartment 2 and y(t) = ym(t,p∗) ≡ 0, so there is no information in the
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system output about p∗
2 and p∗

3. This is of course pathological and one would
not use such a model if one had reasons to believe that there is no exchange from
Compartment 1 to Compartment 2. The existence of such pathological situations
led to the following usual definition of structural (or generic) identifiability [6]: a
model is structurally globally identifiable (s.g.i. for short) if for almost any value
of p∗

ym(t, �p) ≡ ym(t,p∗) ⇒ �p = p∗.

If a model is not s.g.i., then there are several values of �p for the same input-output
behavior, and it is impossible to find out which one of them corresponds to p∗

even in our idealized noise-free experimental set-up. The situation can only get
worse in the presence of noise or perturbations. Moreover since there are several
models with the same behavior, there are several ways of reconstructing non-
measured state variables, e.g., by Kalman filtering, with different results. So it
is important to test models for identifiability whenever unknown parameters or
state variables have a physical meaning or when decisions are to be taken on the
basis of the numerical values of the estimates of these quantities.

A typical method of test consists of two steps. The first one is the obtention
of algebraic equations that �p and p∗ must satisfy for (1) to hold true. For the
model of Figure 1, it is easy to show that its transfer function is

Y (s)
U(s)

=
p1

s2 + (p1 + p2 + p3)s + p2p3
,

or equivalently that

d2y

dt2
+ (p1 + p2 + p3)

dy

dt
+ p2p3y = p1u.

So, for almost any value of p∗, (1) holds true if and only if
⎧
⎨
⎩

�p1 = p∗
1,

�p1 + �p2 + �p3 = p∗
1 + p∗

2 + p∗
3,

�p2�p3 = p∗
2p

∗
3.

The second step is then the search for all solutions of these equations for �p. In
the case of the model of Figure 1, these solutions are the trivial solution �p = p∗

and ⎧
⎨
⎩

�p1 = p∗
1,

�p2 = p∗
3,

�p3 = p∗
2.

The model of Figure 1 is therefore not s.g.i. The roles of p2 and p3 can be
interchanged, and it is impossible to know which is which. Moreover, since there
are two models with the same input-output behavior, there are two ways of
reconstructing x1 from measurements of x2, even in a noise-free situation, leading
to different values of �x1. Note that the parameter p1, which takes the same values
in the two solutions is s.g.i., and recall that most of this analysis becomes false
if p∗

1 = 0.
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3 Limitations of This Classical Approach

Steps 1 and 2 of structural identifiability testing require algebraic manipulations
that may become exceedingly complicated for models of a more realistic size.
Both are facilitated by computer algebra [7], but these algebraic manipulations
may become so complex that they are no longer feasible even on present-day
computers. Moreover taking into account the fact that only real solutions are
of interest is still a subject of research with computer algebra. Failing to detect
that all solutions for �p but one are complex would mean failing to detect that
the parameters are actually globally identifiable.

Consider, for example, the (static) one-parameter model

ym(p) = p(p − 1)(p + 1).

Equation (1) translates into

�p(�p − 1)(�p + 1) = p∗(p∗ − 1)(p∗ + 1),

and the set of real solutions for �p is a singleton, a pair or a triple depending on
the value taken by p∗. So global identifiability is not a structural property for
this model.

These shortcomings call for new definitions of identifiability, first presented
in [8].

4 New Definitions and Method of Test

The parameter pi will be said to be globally identifiable in P (g.i.i.P) if for all
(p∗, �p) in P × P, ym(t, �p) ≡ ym(t,p∗) implies that �pi = p∗

i . The model will be
g.i.i.P if all of its parameters are g.i.i.P. With this new definition of identifiability,
atypical hypersurfaces are no longer allowed in P and unique identifiability can
be established even if the model is not structurally globally identifiable. It makes
sense to study identifiability in a specific region P of parameter space, if only
because some information is usually available on the sign and possible range for
each physical parameter.

It does not suffice to have realistic new definitions of identifiability, methods
of test are also needed. A model will be g.i.i.P if and only if

�(p∗, �p) ∈ P × P such that ym(t, �p) ≡ ym(t,p∗) and ��p − p∗�∞ > 0.

In practice, it will usually suffice to prove that

�(p∗, �p) ∈ P × P such that ym(t, �p) ≡ ym(t,p∗) and �p∗ − �p�∞ > δ,

where δ is some small positive number to be chosen by the user. The model will
then be said to be δ-g.i.i.P. Testing whether a model is δ-g.i.i.P boils down to
a constraint satisfaction problem (CSP). The algorithm sivia, combined with a
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forward-backward contractor, can be used to bracket the solution set S of the
CSP

(p∗, �p) ∈ P × P, ym(t, �p) ≡ ym(t,p∗), �p∗ − �p�∞ > δ

between inner and outer approximations:

S ⊂ S ⊂ S.

If S is empty, then the model is δ-g.i.i.P. If S is not empty, then the model is not
δ-g.i.i.P. Details about sivia can be found in the paper by Kieffer and Walter in
this volume and in [9], where forward-backward contractors are also presented.

5 Benchmark Example

The model of Figure 2 could serve as a benchmark example. It has been proposed
to describe the distribution of drugs such as Glafenine in the body [10], [11]
after oral administration. Compartment 1 corresponds to the drug in the gastro-

2 3
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p3

p2

u

1

p5 p4

Fig. 2. Model of the distribution of Glafenine

intestinal tract, and Compartments 2 and 3 respectively correspond to the drug
and its metabolite in the systemic circulation. The state equation of this model
is

⎡
⎣

dx1
dt

dx2
dt

dx3
dt

⎤
⎦ =

⎡
⎣

− (p1 + p2) 0 0
p1 − (p3 + p5) 0
p2 p3 −p4

⎤
⎦

⎡
⎣

x1
x2
x3

⎤
⎦ +

⎡
⎣

1
0
0

⎤
⎦ u.
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By measuring the plasma concentration of the drug and its metabolite, the
quantities of drug in Compartments 2 and 3 are determined up to unknown
multiplicative constants, so

ym(t,p) =
�

p6x2(t)
p7x3(t)

�
,

where p6 and p7 are respectively the inverses of the volumes of Compartments 2
and 3. The dimension of the parameter vector p is thus seven. The corresponding
transfer matrix is trivial to obtain by taking the Laplace transform of the state
and observation equations and then eliminating the state variables. The same
approach as in the introductory example of Section 2 can then be used to obtain
a set of nonlinear equations in �p and p∗ that are equivalent to

ym(t, �p) ≡ ym(t,p∗).

These equations can be written as

�p1�p6 = p∗
1p

∗
6

�p2�p7 = p∗
2p

∗
7

�p7 (�p1�p3 + �p2�p3 + �p2�p5) = p∗
7 (p∗

1p
∗
3 + p∗

2p
∗
3 + p∗

2p
∗
5)

�p1 + �p2 + �p3 + �p5 = p∗
1 + p∗

2 + p∗
3 + p∗

5

�p1�p3 + �p1�p5 + �p2�p3 + �p2�p5 = p∗
1p

∗
3 + p∗

1p
∗
5 + p∗

2p
∗
3 + p∗

2p
∗
5

�p1 + �p2 + �p3 + �p4 + �p5 = p∗
1 + p∗

2 + p∗
3 + p∗

4 + p∗
5

�p1�p3 + �p1�p4 + �p1�p5 + �p2�p3 + �p2�p4 + �p2�p5 + �p3�p4 + �p4�p5 =
p∗
1p

∗
3 + p∗

1p
∗
4 + p∗

1p
∗
5 + p∗

2p
∗
3 + p∗

2p
∗
4 + p∗

2p
∗
5 + p∗

3p
∗
4 + p∗

4p
∗
5

�p4 (�p1�p3 + �p1�p5 + �p2�p3 + �p2�p5) = p∗
4 (p∗

1p
∗
3 + p∗

1p
∗
5 + p∗

2p
∗
3 + p∗

2p
∗
5)

Their obtention is facilitated by the use of computer algebra.
We said in [8] that this model was δ-g.i.i.P for P = [0.6, 1]×7 and δ = 10−9,

but this remains to be confirmed, as this result may have been obtained with an
incorrect software.
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6 Conclusions

The concept of identifiability is important whenever physically meaningful pa-
rameters or state variables are to be estimated from experimental data. Testing
models for structural global identifiability is not always possible, even with the
help of computer algebra, and when a conclusion can be reached, it is not always
relevant. This has led us to propose new definitions of global identifiability in a
domain of parameter space. With this definition, it is possible to prove identifi-
ability even in cases where the parameters are not structurally identifiable. The
tests are performed via interval constraint satisfaction programming, with the
use of contractors to avoid bisection as much as possible, thereby reducing the
effect of the curse of dimensionality. We hope to have convinced the reader that
identifiability testing is both a useful part of model building and an interesting
challenge for interval analysts.

In this paper, it was assumed that there was a single model structure to be
considered for the description of the data. When several model structures are in
competition, a natural question to ask is whether it will be possible to select one
that is more appropriate than the others. This question can be answered in the
same type of idealized setting as considered for identifiability and corresponds
then to the notion of distinguishability. The methodology advocated here for
testing models for identifiability readily extends to the test of model structures
for distinguishability.
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