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Abstract Moving huge objects floating at the surface of the ocean (such as con-
tainers or icebergs) with boats requires many human operators and a lot of energy.
This is mainly due to the fact that when humans operate such equipment, time is
costly. Now, when we have time (as when robots operate, for instance), it is possible
to move arbitrarily large objects, for over long distances, with a limited quantity of
energy. This is a consequence of the fact that in the water, the friction forces are
proportional to the square of the speed (i.e., when we go slowly, we have almost
no friction). This paper proposes the use of a sailboat robot to tow large objects. It
shows which control law could be used is order to (i) avoid loops inside the towing
cable, (ii) avoid collisions between the robot and the towed object, and (iii) move
the object toward the desired direction. The control law is validated on a simulation
where the object to be towed has to follow a trajectory corresponding to a large
circle.

1 Introduction

From an operational point of view, sailboat robots (see e.g. [20] [19] [5] [1] [4]) can
be viewed as floating objects moving toward some desired waypoints and taking the
energy for propulsion from its environment. A sailboat robot has to be small (oth-
erwise it may become dangerous) and therefore cannot be used for transportation.
These vessels can be used as sensors to collect measurements [22] [8], [18] for sci-
entific surveys [15] [25] or as relays for communication [24]. They can even be used
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as a windmill in order to produce the required energy [14]. However, the application
field remains limited and it is important to find some other domains where sailboat
robots can become useful.

This paper proposes the use of sailboat robots to tow a large object (named the
load). For such a heavy load (more than 10 times the weight of the sailboat) floating
at the surface of the ocean, the trajectory is mainly governed by the wind and the
currents. Now, towing the load with a sailboat will have a small impact against the
wind and currents. Thus, the main propulsion of the load will be governed by the
current and the sailboat can be used to influence the direction of the load perpen-
dicular to the current. In this way, the sailboat acts as a train switch, able to move
the load from one current path to another. The use of the sailboat we can expect is
to move the load from one point to another taking advantage of the currents. A zero
effort path has first to be found using techniques from optimal control theory and
the sailboat will play the role of a regulator controlling the load around the refer-
ence trajectory. The technique is similar to the strategy used to send a space explorer
outside the solar system. To achieve the goal, two subproblems need be solved (1)
control the motion of the load using the sailboat, neglecting the forces generated by
the currents to the load (2) finding a route consistent with the currents to bring the
load to the target.

This paper investigates subproblem (1), i.e., assumes that the influence of the
currents/wind on the load is negligible. The paper proposes a simple and robust
controller which is able to move the load from one point to another. The main diffi-
culty for the sailboat is taking into account the wind for its own propulsion, pulling
the load towards the right direction, and maintaining the towing cable straight.

The paper is organized as follows. Section 2 proposes a state space model which
includes the sailboat, the load and the interaction between both. Section 3 describes
the controller which tunes the rudder angle and the length of the mainsheet in order
to accomplish the mission. A test-case is presented in Section 4. In this test-case, the
sailboat is controlled in order to tow the load on a circular path. Section 5 concludes
the paper.

2 State space model

Consider the sailboat represented in Figure 1 with one rudder and one sail. The
sailboat has to tow a load using a cable which is attached both to the boat and to the
load, as illustrated by Figure 2.

The model of the system including the sailboat and the load is given by the fol-
lowing state space equations.
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Fig. 1 Sailboat that has to tow an object.

Fig. 2 The sailboat robot has to tow an heavy load. The angle α (here represented in a vector form)
corresponds to the direction of the cable.



(i) ṁ = v.uθ + p1aψ uψ − fcuα

(ii) θ̇ = ω

(iii) v̇ = fs sinδs− fr sinu1−p2v.|v|− fc cos(α−θ)
p9

(iv) ω̇ = fs(p6−p7 cosδs)−p8 fr cosu1−p3ωv
p10

(v) ṡ = fc.uα−p12.‖s‖.s
p11

(vi) ṅ = s

(1)

where the link variables are given by
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(a) wap =

(
aψ cos(ψ−θ)− v

aψ sin(ψ−θ)

)
(b) ψap = atan2(wap)
(c) γs = cosψap + cosu2

(d) δs =

{
π +ψap if γs ≤ 0

−u2 sign(sinψap) otherwise
(e) fs = p4 ‖wap‖sin(δs−ψap) (force on the sail)
(f) fr = p5vsinu1 (force on the rudder)
(g) fc = exp(‖m−n‖−L0) (force on the cable)
(h) α = atan2(m−n)

This model is close to the models developed in [11] and [14] except that it incor-
porates the load (object to be towed). The following describes all variables involved
in this model.

Inputs. The sailboat has two inputs. The first input u1 = δr is the angle between
the rudder and the sailboat. The second input u2 corresponds to the length of the
mainsheet. More precisely, u2 corresponds to the absolute value of the maximal
angle δs that could reach the sail when the mainsheet is tight.

State variables. The state variables occurring in the proposed model (1) are
m,θ ,v,ω,s,n where m = (mx,my) are coordinates of the robot, θ is its heading,
v is its speed along the main axis, ω is its angular speed. The state variables asso-
ciated with the load should also be included, i.e., the position n = (nx,ny) and the
speed s = (sx,sy) of the load.

Parameters. In the model, p1 is the drift coefficient, p2 is the tangential friction,
p3 is the angular friction, p4 is the sail lift, p5 is the rudder lift, p9 is the mass of the
boat and p10 is the mass moment of inertia. The distances p6, p7, p8 are represented
in Figure 1. Also add the mass of the load p11, the friction coefficient p12. All
parameters pi are assumed to be known exactly. Two other quantities should also
be considered as parameters: the speed aψ of the wind and its direction ψ . All
quantities are expressed using the international unit system.

Link variables. These variables are used to shorten the expression of the state
equations. (a) The vector wap corresponds to the apparent wind expressed in the
robot frame. (b) The angle of wap (in the robot frame) is denoted by ψap. (c) The
coefficient γs is positive if the mainsheet is tight. (d) When the mainsheet is not tight,
the angle of the sail δs, is equal to π +ψap and it behaves as a flag. Otherwise, the
angle corresponds to ±u2. (e) fs represents the force of the wind on the sail, (f) fr
is the force of the water on the rudder. (g) The force on the cable is obtained from
the expression of the potential energy of an elastic cable: Ep = exp(‖m−n‖−L0),
where L0 is the nominal length of the cable. (h) α is the angle of the cable which is
assumed to be straight.

State equations. The first equation (i) of (1) expresses that the boat follows its
heading uθ , where uθ = (cosθ ,sinθ)T, but always loses some advance with respect
to the wind aψ uψ (where uψ = (cosψ,sinψ)T is the direction vector of the wind
and aψ is the speed of the wind). The motion of the boat is also influenced by the
cable through the term fcuα where uα = (cosα,sinα)T. Equations (iii) and (iv) are
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obtained using the Newton laws applied to the boat. Equation (v) corresponds to the
Newton law applied to the load.

Note that this model for the sailboat could be made more realistic by adapting the
modeling tools described by Fossen in the context of marine vessel [6] to sailboats
(see [28]). To the authors’ best knowledge a model with a sailboat towing a load has
never been proposed before.

3 Controller

There exist different approaches to control sailboat systems [10] [27] [9] [3] [7] [2]
[16] [26]. This section proposes a pragmatic approach (as in [12] [17]) to have a
simple controller for the towing sailboat, with few parameters and easy to debug.
The system to be controlled is composed of two subsystems: the load and the sail-
boat. The sailboat can be interpreted as a complex actuator which is able to generate
forces that will influence the motion of the load. To find the controller we decom-
pose into six steps described as follows. (a) Since the load is typically a second order
system moving on a plane, we first propose a basic proportional control to move it
toward the desired direction. (b) The proportional control is adapted to make the
load move with respect to a desired vector field. (c) We introduce a new concept of
segment for a sailboat which consists of an arc where the robot can move maintain-
ing the cable taut. (d) Unfeasible segments are projected to get the nearest feasible
segment. (e) The heading of the boat is oriented in order to pull the cable as much as
possible. (f) Control the rudder and the sail in order to have the right heading. Once
all these six steps are described, we propose a controller implementation.

(a) Moving the load with a proportional control. Consider a load moving at the
surface of the water. Assume that the load can be pull with respect to the direction α∗

A proportional like control pulls toward the desired direction α0, but also corrects by
pulling proportionally to the heading error. More precisely, the proportional control
is given by

α
∗ = α0 + sin(α0− atan2(ṅ)) . (2)

Here α0−atan2(ṅ) represents the heading error of the load and the sine function
eliminates the 2π discontinuities. Note that, for this application, it is the sailboat
which pulls. It has its own dynamics and cannot pull toward arbitrary direction at
anytime.

(b) Vector field. The desired dynamics for the load is described by a vector field
[21] [23]. Classically, a vector field is a function from Rn to Rn (since the load
moves in the plane, n = 2). This vector field associates with a position (nx,ny) of
the load, the vector (speed and direction) to be followed. Now, in a sailboat context,
the amplitude of the vector has no meaning: we do not want to control our speed to
a given value. Instead, the boat has to do its best to go to the right direction and to
go as fast as possible. As a consequence, a vector field will be a function from R2 to
[−π,π]. It associates to a position n of the load, the direction α0 to be followed. The
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corresponding vector is (cosα0, sinα0). The proportional control (2) can be used
to make the load going in the direction α0. Again here, we do not consider that the
load is towed by a sailboat and that all directions for α∗ are not possible.

(c) Feasible segment. We now consider that the load is towed by a sailboat.
Assume that the cable is long and that the speed of the load is small with respect to
the speed of the boat. To maintain the cable taut, the boat has to move in a circle of
radius L0 centered in n (see Figure 3). Define a segment as an arc of this circle with
an half angle ζ0. A segment is identified by its middle angle ᾱ as shown by Figure
3. A segment is feasible if the two directions (direct and indirect) along this arc are
feasible. A segment with angle ᾱ is thus feasible if

|sin(ᾱ−ψ)| ≤ cos(ζ +ζ0) ,

where ζ is the close hauled angle of the sailboat (typically ζ = π

4 ). When the boat
decides to follow a segment, it has to scan this segment back and forth. A Boolean
state variable ε ∈ {−1,1} has thus to be introduced so that the controller knows
in which direction it is scanning the selected segment. When ε = 1 the segment is
scanned in the direct trigonometric sense. The value for ε is allowed to change only
once the boat has reached the border of the segment, i.e., when cos(ᾱ−α)< cosζ0.
In such a case, ε takes the value 1 if sin(ᾱ−α)> 0 and −1 otherwise.

(d) Projection. Recall that the projection x̄ of a point x onto a subset X of a metric
space corresponds to one point of X which minimizes its distance to x. A point x may
have several projections. Now, for simplicity, we assume that projection is unique.

Proposition. Given a set of angles B = {β such that cos |β |> cosβ0} where
β0 ∈

[
0, π

2

]
, the projection ᾱ of an angle α onto B (i.e., the closest angle in B

to α) is obtained using the following analytical expression

ᾱ = atan2(min(|sinα| ,sinβ0) .sign(sinα) ,max(|cosα| ,cosβ0) .sign(cosα)) ,
(3)

where atan2(y,x) returns the horizontal angle of the vector (x, y)T.
Proof. The projection ȳ of a real y onto an interval [−b,b] is ȳ=min(|y| ,b)·sign(y) .

The projection x̄ of a real x onto the complementary of the interval [−a,a] is
x̄ = max(|x| ,a)·sign(x) . To obtain formula (3), it suffices to project sinα onto
[−sinβ0,sinβ0] and cosα on the set [−1,−cosβ0]∪ [cosβ0,1]. The corresponding
angle (obtained using atan2) is the projection. �

Figure 4 gives an illustration of the projection onto the set {β such that cos |β |> cosβ0}.
For β = 0.5, the graph of the projection function (3) is given by Figure 5.
(e) The robot has to pull. If the segment ᾱ is fixed, the robot now has to be

controlled in order to follow its segment. At first glance, it could be thought that the
robot has to follow the direction θ̄ = α + ε

π

2 . Now, for such a direction, the boat
does not pull anything, as illustrated by Figure 6 (a),(c). To pull the load, the robot
has to look at outside the circle as in Figure 6 (b),(d). The desired heading for the
boat will thus be chosen as θ̄ = α + ε instead of θ̄ = α + ε

π

2 .
(f) Heading control. To control the low level actuators (here the rudder and the

length of the mainsheet), a heading controller similar to [13] is used. This heading
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Fig. 3 Six segments are represented. Since none of them intersects the gray sectors, they are all
feasible, i.e., the boat can move back and forth, on each segment.

control is given by

u1 =

{
π

4 .sign
(
sin
(
θ − θ̄

))
if (cos

(
θ − θ̄

)
≤ 0)

π

4 .sin
(
θ − θ̄

)
otherwise

u2 =
π

2
.

(
cos
(
ψ− θ̄

)
+1

2

)
.

Here, to avoid doing any loop, always tack with the cable on the back, i.e.,

u1 =

{
π

4 .sign
(
sin
(
α− θ̄

))
if (cos

(
θ − θ̄

)
≤ 0) (tacking)

π

4 .sin
(
θ − θ̄

)
otherwise.

Controller. The resulting controller is as follows
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Fig. 4 Illustration of the projection on the set of angles represented by the hatched sectors. The αi
are projected into ᾱi. Since α5 is inside the section, α5 = ᾱ5.

Fig. 5 Graph of the angular projection function. The frame box is [−10,10]× [−4,4]
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Fig. 6 (a),(c) the boat follows the segment but does not pull the cable; (b),(d) the boat pulls the
load

Controller. in: m,n, ṅ,θ ,ψ; out: u1,u2; inout: ε

1 α0 = field(n) ; α∗ = α0 + sin(α0− atan2(ṅ)) ;
2 α̃ = α∗−ψ; β0 =

π

2 −ζ −ζ0;

3 ᾱ = ψ + atan2
(

max(|cos α̃| ,cosβ0) .sign(cos α̃)
min(|sin α̃| ,sinβ0) .sign(sin α̃)

)
;

4 α =atan2(m−n);
5 if cos(ᾱ−α)< cosζ0 then ε = sign(sin(ᾱ−α));
6 θ̄ = α + ε;
7 if (cos

(
θ − θ̄

)
≤ 0) then u1 =

π

4 .sign
(
sin
(
α− θ̄

))
else u1 =

π

4 .sin
(
θ − θ̄

)
;

8 u2 =
π

2 .

(
cos(ψ−θ̄)+1

2

)
.

The inputs of the controller are the position m of the boat, the position of the load
n, its speed ṅ, the heading of the boat θ and the direction of the wind ψ . The output
of the controller are the rudder angle u1 and the length u2 of the mainsheet. There is
only one binary state variable ε ∈ {−1,1}. From n, ṅ, Step 1 computes the direction
α∗ we want to pull from the desired vector field (b). This direction is obtained using
the proportional control law (a). Since α∗ may be unfeasible, Steps 2 and 3 project
(see (d)) this angle to get the nearest feasible direction ᾱ . This direction gives the
segment (c) to be followed back and forth. When the boundary of the segment is
reached the scanning direction ε changes at Step 5. The desired heading is corrected
at Step 6 in order to pull the cable (see (e)). Steps 7 and 8 correspond to the low
level control (f) for the rudder and the sail.
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Fig. 7 The limit cycle Cρ of this vector field is the bold circle.

4 Test-case

Assume that the load has to follow a circle Cρ with radius ρ . Thus choose a vector
field so that the circle Cρ corresponds to a limit cycle of the field. An expression of
such a vector field in given by

ϕ (n) = atan2(n)+
π

2
+ atan

(
‖n‖−ρ

δ

)
,

where δ is the required accuracy (typically the GPS accuracy). Figure 7 shows such
a vector field. Taking two circles bracketing the limit circle Cρ (such as the two
dotted circles C−ρ ,C+

ρ of Figure 7), the corresponding dynamical system, is cap-
tured by the corridor delimited by these two circles. This is the case even for small
uncertainties.

For simulation, the same coefficients as [17] are used for the sailboat. For the
cable, a length of L0 = 50m is chosen. The mass of the load is p11 = 2000Kg. The
friction coefficient of the load is p12 = 10 Kg.s.m−1. For the controller, a segment
with half radius ζ0 = 0.2rad is applied. For the initialization, the load is placed at
the center of the circle. For a circle with radius ρ = 150m, the trajectories painted in
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Figure 8 are obtained. This figure illustrates the desired circle Cρ for the load (dotted
circle), the trajectory of the load (bold curve), and the trajectory of the sailboat
(thin curve). The trajectory of the boat is mainly composed of many segments (i.e.,
arcs with half angle ζ0 = 0.2rad ' 11deg). The big arcs (with angle around π

2 )
correspond to situations where the load wants to go perpendicular to the wind and
thus two different projections exist in (3). The sailboat thus has to alternate between
these two projections.

Remark. Figure 8 contains some arcs that would not be considered as feasible.
See, e.g., at the very top (before the trajectory of the towed load finishes the circle).
The sailboat is performing a large arc windwards. This phenomenon is due to the
model we considered: the dynamic of the boat and that of the load are considered
almost independent. More precisely, in the unfeasible arcs, the boat is in a closed
hauled mode whereas the cable maintains it and the arc. This makes the boat going
upwind (which is not possible). In practice, the switching would require tacking. �

For a circle with radius ρ = 500m, we get the simulation illustrated by Figure
9. Note that now, due to the zoom out effect, the trajectory for the load looks much
more accurate. Once the initialization has been performed and that the load has
reached the desired circle, the distance of the load to the circle is always less than
20m.

5 Conclusion

This paper has presented a controller for a sailboat robot for towing an heavy load
along a desired trajectory. To our knowledge, this problem has never been consid-
ered before. The controller is simple to implement (about 10 lines of C++ code) and
only includes easy-to-tune parameters (such as the length of the cable or the angle of
the segments). The feasibility and the robustness of the controller has been tested on
some simulations. It remains to validate the principle on experiments involving an
actual sailboat robot (towing a zodiac, for instance). Note that the controller could
also be used for towing objects that are not as large as addressed in the paper: in
practical application a sailing robot could be used to tow a floating or submerged
sensing device.

All C++ codes associated with the test-case can be found at

www.ensta-bretagne.fr/jaulin/tracteur.html
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