Relaxed intersection of thick sets

Benoit Desrochers and Luc Jaulin

Lab-STICC, ENSTA Bretagne, Brest, France

benoit.desrochers@ensta-bretagne.org

Relaxed Intersection: The *q*-relaxed intersection m sets $\mathbb{X}_1, \ldots, \mathbb{X}_m$ of \mathbb{R}^n , is the set of all $\mathbf{x} \in \mathbb{R}^n$ which belong to all \mathbb{X}_i 's except q at most. This notion is important in the context of robust bounded error estimation [1].

Thick set. Denote by $(\mathcal{P}(\mathbb{R}^n), \subset)$, the powerset of \mathbb{R}^n equipped with the inclusion \subset as an order relation. A *thick set* $[\![X]\!]$ of \mathbb{R}^n is an interval of $(\mathcal{P}(\mathbb{R}^n), \subset)$. If $[\![X]\!]$ is a thick set of \mathbb{R}^n , there exist [2] two subsets of \mathbb{R}^n , called the subset bound and the supset bound such that

$$\llbracket X \rrbracket = \llbracket X^{\subset}, X^{\supset} \rrbracket = \{ X \in \mathcal{P}(\mathbb{R}^n) | X^{\subset} \subset X \subset X^{\supset} \}.$$
(1)

Thick test. Given a thick set $[\![X]\!]$, the corresponding thick test $[\![t]\!] : \mathbb{R}^n \to \{0,?,1\}$ associates to any **x** the value 0 if $\mathbf{x} \notin \mathbb{X}^{\supset}$, 1 if $\mathbf{x} \in \mathbb{X}^{\subset}$ and ? otherwise.

Algorithm. Using a paver and an arithmetic on thick tests we show that we can easily obtain a guaranteed approximation of the relaxed intersection of m thick sets.

TestCase: Let us take the following system of interval linear equations [3]:

$$\begin{pmatrix} [2,4] & [-2,-1] \\ [0,2] & [-3,-1] \\ [-6,-4] & [-1,0] \\ [-3,-2] & [-3,-2] \\ [-1,1] & [-5,-4] \end{pmatrix} \cdot \mathbf{x} = \begin{pmatrix} [-1,1] \\ [-5,0] \\ [-6,0] \\ [2,7] \\ [-9,-3] \end{pmatrix}.$$
(2)

This system corresponds to six interval equations, each line of which corresponds to a thick set $[X_i]$ in \mathbb{R}^2 . Performing a relaxed intersection of the thick sets $[X_i]$, we obtain the characterization relaxed intersection $[X^{\{q\}}]$ of the $[X_i]$ for $q \in \{1, 2, 3\}$ as given by Figure 1. For q = 0, $[X^{\{q\}}]$ is empty.

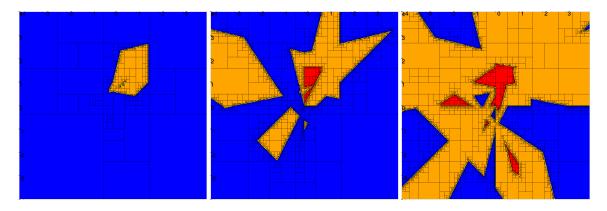


Figure 1: $[X^{\{1\}}]$ (Right), $[X^{\{2\}}]$ (middle) and $[X^{\{3\}}]$ (Right). Red boxes correspond to the subset bound $X^{\{q\}\subset}$ of $[X^{\{q\}}]$, blue ones are outside the supset bound $X^{\{q\}\supset}$ and orange boxes belong to $X^{\{q\}\supset} \setminus X^{\{q\}\subset}$.

References:

- Q. BREFORT, L JAULIN, M. CEBERIO, V. KREINOVICH, Towards Fast and Reliable Localization of an Underwater Object: An Interval Approach, *Journal of Uncertain Systems*, (2015).
- [2] B. DESROCHERS, L. JAULIN, Computing a guaranteed approximation the zone explored by a robot, *IEEE Transaction on Automatic Control*, (2016).
- [3] V. KREINOVICH AND S. SHARY, Interval Methods for Data Fitting under Uncertainty: A Probabilistic Treatment, *Reliable Comput*ing, (2016).