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A B S T R A C T

This paper proposes a new concept of thick gradual sets (TGSs), which is based on the notions of thick sets
(TSs) and gradual sets (GSs). A TS is an uncertain set, which is represented by a pair of crisp sets (CSs).
These CSs represent the upper and lower bounds of the TS. Therefore, a TS can be considered as an interval
of CSs. A GS is a CS, which is parameterized by a degree of pertinence and aims to increase the specificity
of CSs. Furthermore, a TGS is an interval of GSs, i.e., a pair of lower and upper GSs. In situations when
the constraint of monotonicity (consistency) is guaranteed, a GS becomes a type-1 fuzzy set (T1FS) and a
TGS can be regarded as a thick fuzzy set (TFS). Moreover, a TFS, which is composed of lower and upper
T1FS bounds, can be interpreted as a type-2 fuzzy set (T2FS). According to the TGS representation, this new
approach offers an original concept for interpreting, manipulating, and computing some uncertain quantities
that cannot be represented by GSs, T1FSs, and/or T2FSs. The potential applications of the TGS concept has been
validated using application examples in the frameworks of solving fuzzy systems of equations and uncertain
fuzzy regression and through a real-world application where the trajectory of an underwater robot is uncertain
and cannot be precisely known because of disturbances induced by the environment. The proposed approach
makes it possible to compute the uncertain zone explored by the underwater robot.
. Introduction

Usually, in set theory, an ordered crisp set (CS), which is denoted by
, has its boundary known with certainty. However, in some practical
pplications, the boundary may become uncertain. To solve this prob-
em, the concept of a thick set (TS) has been proposed in Desrochers
nd Jaulin (2017) and Desrochers (2018). A TS is defined by two
ounds. The lower bound is a CS, which contains all the certain
lements. The upper bound is also a CS, which represents a set of
lausible (perhaps possible) elements. The difference between these
wo CSs denotes the uncertainty (ignorance). This difference is called
he penumbra (Desrochers and Jaulin, 2017).

From the methodological perspectives, the TS bounds can be viewed
s lower and upper approximations in rough-set theory (Acharjya and
braham, 2020; Pawlak, 1982; Pawlak) (see Acharjya and Abraham

2020) and Zhang et al. (2016) for a survey on rough-set theory,
ts variations, and its applications). Indeed, in rough-set theory, a
S is approximated using a pair of lower and upper CSs. Therefore,
iven the lower approximation (objects fully classified as X) and upper
pproximation (objects possibly classified as X), the boundary region
f X can be constructed. Thus, the uncertainty is characterized by the
oundary region, which is interpreted as a rough set (objects that can

∗ Corresponding author.
E-mail address: reda.boukezzoula@univ-smb.fr (R. Boukezzoula).

neither be classified as X nor its complement). It consists of objects that
are not inside or outside X. The boundary region denotes the difference
between the upper and lower approximations. If the boundary region
is empty, X is considered as CS. In rough-set theory, information is
often presented as a data table whose columns are labeled by attributes,
the rows are labeled by objects of interest, and the table entries are
attribute values. In its design, if the concept of TSs can be close to that
of rough sets, their finality and field of application differ. In rough-
set theory, the approximation of a CS by a pair of lower and upper
CSs is elaborated using an equivalence relationship (an indiscernibility
relation) defined by a set of attributes. In the TS approach, because
lower bound Xinf is included in upper bound Xsup, any CS that belongs
to the penumbra is greater or equal to Xinf and smaller or equal to
Xsup. In this sense, a TS can be viewed as an interval of CSs, which
is represented by lower and upper CSs and denoted as JXK = JXinf,
XsupK. The penumbra, i.e., the difference between Xsup and Xinf, is a
set of plausible but uncertain elements. Furthermore, in contrast to
rough sets, the TS computations are implemented using interval-based
arithmetic and solvers.

In the CS representation, the inclusion of an element to X is cer-
tain, and that of an element that is outside it is impossible. The
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Fig. 1. Crisp communication zone for m = (1, 3)
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concept of gradual sets (GSs) has been proposed to remedy this lack
of specificity (Dubois and Prade, 2008). It allows representation of the
progressive belonging through a degree 𝜆, which takes its values in the
nterval [0, 1]. This degree can be regarded as membership degrees of
uzzy sets, degrees of possibility, degrees of flexibility, etc. Thus, a GS
an be regarded as a family of stacked CSs X(𝜆), 𝜆 ∈ [0,1]. However,
o nesting condition between CS X(𝜆) is required. A GS is defined
y an assignment function associated with each degree of pertinence
r flexibility 𝜆 of its CS X(𝜆). Therefore, the GS view enriches the
epresentativeness of CSs by a vertical dimension. In situations where
he constraint of monotonicity (consistency) is guaranteed, i.e., if 𝜆1
𝜆2, then X(𝜆1) ⊆ X(𝜆2), and a GS becomes consonant and can be

egarded as a type-1 fuzzy set (T1FS). In this case, CSs X(𝜆), 𝜆 ∈
0, 1] are 𝜆 -cuts. The literature is unanimous about the usefulness and
mportance of T1FSs, which have been the subject of countless works.
owever, some computations can lead to a family of stacked CSs, which
re not nested according to the vertical 𝜆 dimension (e.g. Allahviranloo
t al. (2011), Boukezzoula et al. (2018, 2014), Dubois and Prade
2008), and Lodwick and Dubois (2015)). This situation provides GS
ts full meaning and its full usefulness. A discussion on the relationship
etween fuzzy sets and GSs can be found in Dubois and Prade (2008).

With regard to TSs, which are introduced to deal with uncertain
oundaries of CSs, thick GS (TGSs) are natural extension of TSs when
radual inclusion is considered. This new concept is based on the
ombination of the TS (Desrochers and Jaulin, 2017; Desrochers, 2018)
nd GS (Dubois and Prade, 2008) notions. Therefore, a TGS is a family
f stacked TSs JX(𝜆)K = JXinf(𝜆), Xsup(𝜆)K, 𝜆 ∈ [0,1]. In a situation
hen the GS bounds Xinf(𝜆) and Xsup(𝜆) are consonant, they can be

epresented by T1FSs. In this framework, a TGS becomes a thick fuzzy
et (TFS) and can be regarded as a type-2 fuzzy set (T2FS). Hence, the
enumbra can be interpreted as the footprint of uncertainty (FOU) in
he T2FS representation (Mendel and Bob John, 2002; Mo et al., 2014).

T1FSs cannot effectively model uncertainties (Mendel and Bob John,
002). In contrast to T1FSs, T2FSs can address uncertainties because
heir representation integrates two T1FSs. A T2FS is completely defined
y two lower and upper T1FSs and is subjected to the inclusion con-
traint between them, i.e., lower T1FS ⊂ upper T1FS. In the T2FS
epresentation, the FOU represents the blurring of a T1FS (Mendel and
ob John, 2002) and is delimited by the bounding lower and upper
1FSs. Therefore, the notion of uncertainty is introduced using the FOU
oncept. Over the past 30 years, interest in T2FSs has significantly
ncreased owing to the works of Mendel et al. (e.g., Mendel (2001),
endel et al. (2016, 2009), and Mendel et al. (2006)), Castillo et al.

e.g., Castillo et al. (2016a,b), and Castillo and Melin (2008)), and
2

any others. The undeniable potentialities of T2FSs have been demon-
trated in various scopes, such as automatic control (Castillo et al.,
016a,b; Melin et al., 2019), multi-criteria decision making (Boukez-
oula and Coquin, 2020; Liu and Jin, 2012; Qin et al., 2017), aggre-
ation operators (Torres-Blanc et al., 2017; Wu and Mendel, 2007),
mage processing, and pattern recognition (Golsefid et al., 2016; Lopez-
aestresalas et al., 2019). T2FSs have demonstrated superior perfor-
ance in many applications (Wu and Mendel, 2019). However, in some
ractical situations, the resulting uncertain quantities cannot be repre-
ented by T2FSs because their lower and/or upper bounds are not T1FSs
ut are instead GSs (Allahviranloo et al., 2011; Boukezzoula et al.,
014; Lodwick and Dubois, 2015). Consequently, the TGS concept finds
ts usefulness and its theoretical foundation to challenge this problem
f uncertainty representation.

The motivation of the present study is twofold. The first motivation
s to propose a tool to represent and compute some uncertain quan-
ities that cannot be totally determined by CSs, T1FSs, GSs, and/or
2FSs. Therefore, we demonstrate a new methodology to manipulate
ncertain GSs via TGSs using interval arithmetic and interval solvers.
urthermore, under the consistency constraint, a GS can be interpreted
s a T1FS, and a TGS can be regarded as a T2FS. The proposed ap-
roach maintains the flexibility of the set-membership approaches and
nterval-arithmetic methods as major objectives. The second motivation
s to validate the potentialities, usefulness, and feasibility of the TGS
oncept through not only simulated applications such as solving fuzzy
ystems of equations (SoEs) and fuzzy regression problems but also
sing a real-world application where the objective is to model the zone
xplored by an underwater robot in an uncertain environment.

Section 2 presents the concepts and definitions of CSs, TSs, GSs,
nd TGSs and emphasizes their links to T1FSs and T2FSs. A simple
xample is used in this section to illustrate the concepts and processing.
n Section 3, applications of the TGS approach to solve fuzzy SoEs and
ncertain fuzzy regression are provided. Section 4 presents a real-world
pplication of the TGS concept using an underwater robot. Finally,
oncluding remarks are presented in Section 5.

. Concepts and definitions

.1. Illustrative example

The concepts and definitions presented in this section are illustrated
sing a simple example of an autonomous vehicle that moves on a
wo-dimensional (2D) path. Its position is x = (𝑥1, 𝑥2). The vehicle com-
unicates with a transmitter located at position m = (m , m ). When
1 2
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Fig. 2. 2D box [𝒙] = [𝑥1] × [𝑥2].

the vehicle is at a distance of less than 20 m to the transmitter, it detects
its signal and can communicate with it. In this case, communication
zone Z is a circle with center m and radius of 20 m, which is expressed
as

Z = {𝒙 |‖𝒙 −𝒎‖ ≤ 20}. (1)

Fig. 1 shows the communication zone for m = (1, 3). When the
vehicle is outside Z, i.e., it is in Z, communication between the vehicle
nd transmitter is impossible. This basic condition will be explained
urther in the next subsections in relation to each new concept.

.2. CSs, crisp intervals (CIs), and boxes

Let X be a crisp subset (often called CS for ease) of R𝑛. CS X simply
represents the union of its contained singletons x = (𝑥1, …, 𝑥𝑛). The
haracteristic function of X, 𝜇X ∶ R𝑛 → {0, 1}, is expressed as

X(𝒙) =

{

1 if 𝒙 ∈ X,

0 if 𝒙 ∉ X.
(2)

The elementary operations between two CSs X and Y, such as
he intersection, union, and difference, are respectively expressed as
ollows:

X ∩ Y = {𝑎|𝑎 ∈ X ∧ 𝑎 ∈ Y},

X ∪ Y = {𝑎|𝑎 ∈ X ∨ 𝑎 ∈ Y},

X∖Y = {𝑎|𝑎 ∈ X ∧ 𝑎 ∉ Y} = X ∩ Y,

(3)

here ∧ and ∨ refer to the logical ‘‘and’’ and ‘‘or ’’ operators, respec-
ively, and Y represents the complement of Y.

A crisp interval (CI) [x] is a closed compact and bounded CS of R
uch that [𝑥] = [𝑥−, 𝑥+] = {𝑥 ∈ R|𝑥− ≤ 𝑥 ≤ 𝑥+}. A CI vector [x] (x in

bold) is called a box and is defined as the Cartesian product of n closed
Is, i.e.,

𝒙] = [𝑥1] × [𝑥2] ×⋯ × [𝑥𝑛], where [𝑥𝑖] = [𝑥−𝑖 , 𝑥
+
𝑖 ], for 𝑖 = 1,… , 𝑛. (4)

For example, Fig. 2 shows a 2D box, with [𝒙] = [𝑥1] × [𝑥2].

2.3. TSs, thick intervals (TIs), and thick boxes (TBs)

2.3.1. Definitions
Let ((R𝑛), ⊂) be the power set of R𝑛 equipped with inclusion order

relationship ⊂. Set (R𝑛) is a complete lattice with respect to ⊂ (please
refer to Desrochers and Jaulin (2017) and Desrochers (2018) for more
details). TS JXK of R𝑛 is an interval of ((R𝑛), ⊂) such that

X =
[[

Xinf ,Xsup]] =
{

X ∈ (R𝑛)|Xinf ⊂ X ⊂ Xsup} . (5)
[[ ]]

3

Fig. 3. Representation of TS [[X]].

TS JXK is a sublattice of ((R𝑛), ⊂) (Desrochers and Jaulin, 2017;
Desrochers, 2018) with lower and upper bounds Xinf and Xsup, respec-
tively (see Fig. 3). Therefore, if A∈[[X]] and B∈[[X]], then A∩B∈[[X]], and
A∪B∈[[X]]. If Xinf = Xsup = X, then [[X]] is a CS of R𝑛, i.e., a singleton
in (R𝑛).

In contrast to CSs where only two logic values are used, in the
TS representation, three logic values are necessary: ‘‘0’’ (False), ‘‘?’’
(Perhaps), and ‘‘1’’ (True). The fundamental logical operations such
as ‘‘and’’, ‘‘or ’’, and ‘‘not ’’ can be implemented using Kleene’s ternary
logic (Kleene, 1952; Malinowski, 2014) (see Fig. 4). Similar to a CS, the
characteristic function of TS [[X]], 𝜇[[X]] ∶ R𝑛 → {0, ?, 1}, is defined as

𝜇[[X]](𝒙) ↦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if 𝒙 ∈ Xinf ,

0 if 𝒙 ∉ Xsup

? otherwise.

, (6)

Eq. (6) is an extension of the conventional characteristic function
of a CS, as expressed in (2), of the TS case. In this context, the
characteristic functions of TSs can be combined using the Kleene’s
ternary operators. The arithmetical and logical operators among CSs
can be extended to TSs (Desrochers and Jaulin, 2017; Desrochers, 2018;
Jaulin, 2012). For example, the intersection, union, and difference
operators are respectively expressed as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[[X]] ∩ [[Y]] =
[[

Xinf ∩ Yinf ,Xsup ∩ Ysup]] ,

[[X]] ∪ [[Y]] =
[[

Xinf ∪ Yinf ,Xsup ∪ Ysup]] ,

[[X]] ∖ [[Y]] =
[[

Xinf∖Ysup,Xsup∖Yinf ]] .

(7)

A TI is a special case of a TS such that JxK = J[x inf], [xsup]K, [x inf]
⊂ [xsup] [see Fig. 5(a)]. If [x inf] = [xsup] = [x], TI JxK becomes a CI,
i.e., JxK = [x]. Another representation of TIs that is based on the left
and right CIs has been proposed (Boukezzoula et al., 2019). These two
representations are equivalent.

A TI vector JxK = J[x inf], [xsup]K (x in bold) is known as a TB.
Because [x inf] and [xsup] are boxes of R𝑛, they can be expressed as the
Cartesian product of n CIs [see Fig. 5(b) for a 2D TB], i.e.,
{

[𝒙inf ] = [𝑥inf1 ] × [𝑥inf2 ] ×⋯ × [𝑥inf𝑛 ],

[𝒙sup] = [𝑥sup1 ] × [𝑥sup2 ] ×⋯ × [𝑥sup𝑛 ].
(8)

2.3.2. Illustration
Because of the possible presence of obstacles and disturbances

induced by other networks, the autonomous vehicle locates the trans-

mitter position with uncertainty, which is represented by a 2D box
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[m] = [m1]× [m2]. We need to note that this representation by a
ox is relatively poor. However, it will be enriched later. Thus, two
ested communication zones can coexist. The first one is defined by all
ositions x of the vehicle where communication with the transmitter
s certain regardless of its location m in [m]. The second one, which

encompasses the first one, is the zone where the communication with
the transmitter is plausible, i.e., at least one location m in [𝒎] exists
where communication between the vehicle and transmitter is possible.
If each zone is represented by a CS, their difference represents the
uncertainty (ignorance) and is interpreted as the zone where communi-
cation between the vehicle and transmitter is plausible but not certain
(perhaps possible). Let A ⊂ X ×M be the constraint

A = {(𝒙,𝒎) ∈ R4
| ‖𝒙 −𝒎‖ ≤ 20}

= {(𝒙,𝒎) ∈ R4
|(𝑥1 − 𝑚1)2 + (𝑥2 − 𝑚2)2 ≤ 400}. (9)

Constraint (9) is a four-dimensional CS that defines all positions
𝒙 = (𝑥1, 𝑥2) ∈ R2 of the vehicle and all locations 𝒎 = (𝑚1, 𝑚2) ∈ R2

of the transmitter such that the Euclidean distance (‖𝒙 −𝒎‖) between
x and m is ≤ 20 m. Because exact location m = (𝑚1, 𝑚2) of the
transmitter is located in box [m] = [𝑚1]×[𝑚2], i.e., 𝑚1 ∈ [𝑚1] and
𝑚2 ∈ [𝑚2], communication zone Z becomes uncertain, and we have
Zinf ⊂ Z ⊂ Zsup where
{

Zsup = {𝒙|∃𝒎 ∈ [𝒎], ‖𝒙 −𝒎‖ ≤ 20},

Zinf = {𝒙|∀𝒎 ∈ [𝒎], ‖𝒙 −𝒎‖ ≤ 20}.
(10)

CS Zinf represents a certain zone, which consists of all points x in R2,
where communication between the vehicle and transmitter is certain
regardless of its location m in [m]. CS Zsup corresponds to the zone
where communication between the vehicle and transmitter is plausible.
Outside Zsup, communication is impossible. CS Zsup \Zinf represents
the penumbra, which is an uncertain zone where communication is
plausible but uncertain. The communication zone can be expressed as
TS [[Z]]= [[Zinf,Zsup]]. The bounds Zinf and Zsup can be computed from
the projections on X of the intersection of A with Cartesian product
X × [𝒎]
{

Zsup = projXA ∩ (X × [𝒎]),

inf
(11)
Z = projXA ∩ (X × [𝒎]), /

4

where the bar symbol indicates the complement of the set under the
bar.

For the sake of simplicity in representation, we consider the case
where 𝑚2 is constant, e.g., 𝑚2 = 0, and can be omitted. Thus, we let
[m] = [m1] = [−10, 10]. In this case, constraint (9) becomes

= {(𝒙, 𝑚1) ∈ R3 |
|

|

(𝑥1 − 𝑚1)2 + 𝑥2
2 ≤ 400}. (12)

This constraint is a cylinder in space (x1, x2, m1). Fig. 6(a) shows
he envelope of the cylinder and two planes, which are the upper and
ower bounds of Cartesian product X× [−10, 10]. Figs. 6(b) and 7 show
ow Zinf and Zsup are obtained from the projections.

Efficient computation of Zinf and Zsup can be performed using the
ethod proposed in Jaulin et al. (2002). The main idea is to use

nterval computation to determine whether or not the projections of
ox [𝒙] × [𝒎] ⊂ X × M belong to Zinf or Zsup. It is based on the
et properties of Zinf and Zsup when [m] is split into several parts,
.e., [𝒎] = ∪

𝑖

[

𝒎𝑖
]

. Indeed, we have

Zsup = projXA ∩ (X × ∪
𝑖

[

𝒎𝑖
]

) = ∪
𝑖
projXA ∩ (X × [𝒎𝑖]) = ∪

𝑖
Zsup
𝑖 ,

Zinf = projXA ∩ (X × ∪
𝑖

[

𝒎𝑖
]

) = ∪
𝑖
projXA ∩ (X × [𝒎𝑖])

= ∩
𝑖
projXA ∩ (X × [𝒎𝑖]) = ∩

𝑖
Zinf
𝑖 .

(13)

Fig. 7 shows how Zinf and Zsup are obtained when [𝒎] is split into
wo parts, i.e., [𝒎] = [𝑚1] = [−10, 2] ∪ [2, 10].

We must note that Zinf , which is shown in Fig. 6(b), is the intersec-
ion of Zinf

1 and Zinf
2 shown in Fig. 7 because Zinf = Zinf

1 ∩Zinf
2 according

o (13). In the same manner, Zsup, which is shown in Fig. 6(b), is the
nion of Zsup

1 and Zsup
2 because Zsup = Zsup

1 ∪Zsup
2 . This principle can be

eneralized for the paving of X × [𝒎] by a set of boxes, i.e.,

× [𝒎] = ∪
𝑖,𝑗

[

𝒙𝑖
]

× [𝒎𝑗 ]. (14)

The paving algorithm proposed in Chabert and Jaulin (2009) leads
o efficient computations using the interval-based solver PyIbex (https:
/www.ensta-bretagne.fr/desrochers/pyibex/docs/pyibex/). PyIbex is

https://www.ensta-bretagne.fr/desrochers/pyibex/docs/pyibex/
https://www.ensta-bretagne.fr/desrochers/pyibex/docs/pyibex/
https://www.ensta-bretagne.fr/desrochers/pyibex/docs/pyibex/
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Fig. 6. Illustration of the projection principle.
Fig. 7. Projection illustration for computing Zinf and Zsup.
a set of Python modules for solving nonlinear problems using interval-
arithmetic tools. For practical implementation of the PyIbex interval-
based solver, (13) is transformed into equations using logical quanti-
fiers. Thus, we obtain

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Zsup = {𝒙|∃𝒎 ∈ [𝒎], ‖𝒙 −𝒎‖ ≤ 20} = projX{(𝒙,𝒎)| ‖𝒙 −𝒎‖ ≤ 20},

Zinf = {𝒙|∀𝒎 ∈ [𝒎], ‖𝒙 −𝒎‖ ≤ 20} = {𝒙|∃𝒎 ∈ [𝒎], ‖𝒙 −𝒎‖ > 20},

= projX{(𝒙,𝒎)| ‖𝒙 −𝒎‖ > 20}.

(15)
5

CS Zsup is a plausible zone and is associated with existential quanti-
fier ∃, whereas CS Zinf is a certain zone and is associated with universal
quantifier ∀.

Fig. 7 shows the solution provided by the solver and represented by
the visualization system VIBes (http://codac.io/manual/07-graphics/
01-vibes.html) Communication zones Zinf and Zsup when m1 = [−10,
10] and m2 = [0, 0] = 0 (i.e., [m] = [−10, 10]×[0, 0]) are shown in
Fig. 8 with and without a paving illustration. In the following study
and for reasons of visibility, paving is often not shown in the figures.
Eq. (12) in R3 is used for ease in explanation and representation.
Nevertheless, the principle is general and can be applied to the initial

4
constraint in R , as expressed by (9), i.e., when (m1, m2) belongs to 2D

http://codac.io/manual/07-graphics/01-vibes.html
http://codac.io/manual/07-graphics/01-vibes.html
http://codac.io/manual/07-graphics/01-vibes.html
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Fig. 8. Results of Zinf and Zsup using PyIbex for [m] = [−10, 10] × [0, 0]).
Fig. 9. Uncertain communication zone illustration for [m] = [−1, 3] × [1, 5].
box [m]. The results obtained for [m] = [−1, 3]×[1, 5] are shown in
Fig. 9.

2.4. GSs, T1FSs, and gradual boxes (GBs)

2.4.1. Definitions
Let L be a complete distributive lattice with top ‘‘1’’ and bottom ‘‘0’’.

In this study, L is considered as totally ordered and is taken as a unit
interval. As discussed in Dubois and Prade (2008), the elements of L
can be regarded as membership degrees for fuzzy sets and degrees of
pertinence or of flexibility, among others. Let X be a CS. A GS G of X
is defined using an assignment function G from (0, 1] to 2X, i.e.,

∀𝜆 ∈ (0, 1]∶ G(𝜆) = X(𝜆). (16)

In this study, the domain of 𝜆 is extended to [0, 1], i.e., X(0) is
defined. Eq. (16) indicates that the assignment function assigns to each
degree 𝜆 a CS X(𝜆) of R𝑛. Therefore, the arithmetical and logical
perators initially defined in CSs can naturally be extended to GSs.
urthermore, at each degree 𝜆, the characteristic function of X(𝜆),

i.e., 𝜇X(𝜆) ∶ R𝑛 → {0, 1}, for all 𝜆 ∈ [0, 1], is defined by

𝜇X(𝜆)(𝒙) =

{

1 if 𝒙 ∈ X(𝜆),
(17)
0 if 𝒙 ∉ X(𝜆).

6

Eq. (17) is simply an extension of (2) with a gradual case where
a vertical dimension 𝜆 is added to represent the gradual inclusion.
In a gradual framework, the images of the assignment function are
not necessarily nested (Dubois and Prade, 2008). Therefore, a GS is
regarded as a stack of CSs that are not necessarily nested. Furthermore,
the monotonicity (consistency) condition

∀𝜆1, 𝜆2 ∈ [0, 1], 𝜆1 ≤ 𝜆2 ⇒ X(𝜆2) ⊆ X(𝜆1), (18)

which is required for T1FSs, is relaxed (not imposed) for GSs. Three
examples of 2D GSs with their assignment functions X1(𝜆), X2(𝜆), and
X3(𝜆) are shown in Fig. 10.

In the remainder of this paper, for simplicity of notation and when
no confusion occurs, a GS is directly denoted by its assignment function
X(𝜆), 𝜆∈[0, 1]. Furthermore, a CS is considered a special case of a GS
with a constant assignment function.

Because a box is a particular case of a CS, a GB is a particular case
of a GS. For instance, a 2D GB is shown in Fig. 11 with its assignment
function X(𝜆), i.e., at each level 𝜆, X(𝜆) is a box.

For reasons of homogeneity with the box notation, GBs can be
represented by the well-known bracket notation. In this case, GB, with
its assignment function X(𝜆), can be denoted by [x(𝜆)] (x in bold).
Notation [x(𝜆)] can be regarded as an assignment function that assigns



R. Boukezzoula, L. Jaulin, B. Desrochers et al. Engineering Applications of Artificial Intelligence 102 (2021) 104287

a
a

[

Fig. 10. Three 2D GSs.
Fig. 11. 2D GB (a discrete representation with a sampling step of 0.2 on 𝜆).

box for any degree 𝜆. More generally, GB [x(𝜆)], 𝜆 ∈ [0, 1] is defined
s

[𝒙(𝜆)] = [𝑥1(𝜆)] × [𝑥2(𝜆)] ×⋯ × [𝑥𝑛(𝜆)], where

𝑥𝑖(𝜆)] = [𝑥−𝑖 (𝜆), 𝑥
+
𝑖 (𝜆)] for 𝑖 = 1,… , 𝑛. (19)

By comparing (19) and (4), we can confirm that a GB is simply
a box parameterized by 𝜆. Furthermore, a one-dimensional (1D) GB
is a gradual interval (GI) that is represented by [x(𝜆)] = [x−(𝜆),
x+(𝜆)] (Boukezzoula et al., 2018; Fortin et al., 2008).

2.4.2. GSs and T1FSs
A T1FS can be represented either by a membership function or by a

family of nested CSs, which is called 𝜆-level sets (𝜆-cuts). According
to the representation theorem (Negoita and Ralescu, 1975; Ralescu,
1992), any T1FS, which is denoted by X̂, can be decomposed into a
family {X(𝜆)}𝜆, 𝜆 ∈ [0, 1] of its 𝜆-cuts under the constraint of mono-
tonicity, i.e., (18). Hence, a 𝜆-cut on a T1FS is CS X(𝜆), 𝜆 ∈ [0, 1], and
the membership function of T1FS X̂ is obtained from the characteristic
function of CSs by

𝜇X̂(𝒙) = sup
𝜆∈[0,1]

𝜆𝜇X(𝜆)(𝒙),∀𝒙 ∈ R𝑛. (20)

When the consistency condition, i.e., (18), is guaranteed, a GS
becomes a T1FS, where the assignment-function concept in GSs is
substituted by the 𝜆-cut principle in T1FSs. In this case, the membership
function of a T1FS can be deduced from that of a GS using the assign-
ment function and vice versa (Dubois and Prade, 2008). If a T1FS is a
particular case of a GS, the reciprocal is false insofar as no monotony
7

constraint is associated with the GS. For the others, a GS, where the
consistency condition is followed, is called a consonant GS (or a T1FS).
A non-consonant GS, which cannot be represented by a T1FS, is called
a pure GS.

An interval-valued T1FS (IV-T1FS), also called a fuzzy interval or an
interval-valued fuzzy number (Dubois et al., 2000; Fortin et al., 2008;
Suo et al., 2020), is a particular case (1D representation) of a T1FS and
can be regarded as a consonant GI (Boukezzoula et al., 2018, 2014).
For compatibility reasons with the interval notation, an IV-T1FS is often
denoted by its 𝜆-cuts [x(𝜆)], 𝜆 ∈ [0, 1]. Each 𝜆-cut is CI [x(𝜆)] = [x−(𝜆),
x+(𝜆)].

An IV-T1FS vector is defined by the Cartesian product of n IV-T1FSs.
In this study, an IV-T1FS vector is called a box-valued T1FS (BV-T1FS)
and is defined by its 𝜆-cut representation, namely, (19), under the
consistency constraint, i.e., a BV-T1FS is a consonant GB.

2.4.3. Illustration
The position of the transmitter remains uncertain but is now in-

stantiated in boxes with the associated degrees of confidence. Thus,
representing uncertain information, e.g., a transmitter is located in
[m] with a confidence of 50%, is made possible. These confidence
levels may depend on the weather and some environmental factors.
As mentioned in Boukezzoula et al. (2018), Dubois and Prade (2008),
and Fortin et al. (2008), the idea of moving from a Boolean to a
gradual context through a degree, which takes its values in the interval
[0,1], makes illustrating the notion of progressive uncertainty possible.
Therefore, the notion of progressivity in belonging to box [m] enriches
its representativeness and improves its specificity. The uncertain trans-
mitter position can be represented by 2D GB [m(𝜆)], 𝜆 ∈ [0, 1], which
can be interpreted as a 2D distribution of possibility. At each level 𝜆,
the transmitter is located in box [m(𝜆)], and the communication zone
is a TS. Fig. 12 shows gradual box [m(𝜆)] = [−1+2𝜆, 3-2𝜆]× [1+2𝜆,
5-2𝜆] for 𝜆 = 0, 0.5, and 1.

Therefore, box [m(0)] = [−1, 3]×[1, 5] corresponds to the most
uncertain location of m, and [m(1)] = [1, 1]×[3, 3] = (1, 3) refers to
its most precise (crisp) position.

2.5. TGSs, T2FSs, and thick GBs (TGBs)

2.5.1. Definitions
In an uncertain environment, because the concept of CSs has been

extended to GSs, the concept of TSs can also be extended to TGSs.
Therefore, a TGS, which is described by its assignment function [[X(𝜆)]],
can be defined as an interval of two GSs, namely, lower GS Xinf(𝜆) and
upper GSs Xsup(𝜆), such that

[[X(𝜆)]] =
[[

Xinf (𝜆),Xsup(𝜆)
]]

= {X(𝜆) ∈ (R𝑛)|Xinf (𝜆) ⊂ X(𝜆) ⊂ Xsup(𝜆)},∀𝜆 ∈ [0, 1]. (21)



R. Boukezzoula, L. Jaulin, B. Desrochers et al. Engineering Applications of Artificial Intelligence 102 (2021) 104287

e

𝜇

u
p

p
i

a
(
a
T
f
t

X

Fig. 12. Discrete representation of GB [m(𝜆)] for 𝜆 = 0, 0.5, and 1.
Fig. 13. Discrete representation of 2D TGS (TGB) with a sampling step of 0.2 on 𝜆.
a
T

For each level 𝜆∈[0, 1], [[X(𝜆)]] is a TS. In this case, the characteristic
function of [[X(𝜆)]], namely, 𝜇[[X(𝜆)]] ∶ R𝑛 → {0, ?, 1}, for all 𝜆 ∈ [0, 1], is
xpressed as

[[X(𝜆)]](𝒙) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if 𝒙 ∈ Xinf (𝜆),

0, if 𝒙 ∉ Xsup(𝜆),

?, otherwise.

(22)

Eqs. (21) and (22) are extensions of (5) and (6) to the grad-
al case, respectively, where all CSs are replaced by GSs, which are
arameterized by 𝜆.

By analogy to a GB, a TGB can be envisioned and regarded as a
articular case of a TGS. For example, TGB JX(𝜆)K, 𝜆 ∈ [0, 1], is shown
n Fig. 13.

We can observe that at each level 𝜆, JX(𝜆)K is a TB. Furthermore,
thick GI (TGI) (Boukezzoula et al., 2019) is a 1D TGB. Another view

based on left and right GIs) that is specific to TGIs in the interval-
rithmetic context has been proposed (Boukezzoula et al., 2019). Here,
GIs are considered as GSs and are treated via a set-membership
ormalism. Even if the two representations are different, they lead to
he same results.

In the TGS formalism, no monotonic constraint is imposed for GSs
inf(𝜆) and Xsup(𝜆). In all circumstances, if Xinf(𝜆) = Xsup(𝜆), TGS

[[X(𝜆)]] becomes GS X(𝜆).

2.5.2. TGSs and T2FSs
In the TGS representation, if GS bounds Xinf(𝜆) and Xsup(𝜆) are
consonant, i.e., they are represented by T1FSs. Then, a TGS becomes

8

TFS. Therefore, a TFS can be defined by a system (a family) of nested
Ss {JX(𝜆)K}𝜆; 𝜆 ∈ [0,1] of its 𝜆-cuts under the following monotonicity

constraint:

𝜆1 ≤ 𝜆2 ⇒
[[

X(𝜆2)
]]

⊆
[[

X(𝜆1)
]]

⇔ 𝜆1 ≤ 𝜆2

⇒ Xinf (𝜆2) ⊆ Xinf (𝜆1) andXsup(𝜆2) ⊆ Xsup(𝜆1). (23)

Therefore, TFS JX̂K, which is considered as a family of 𝜆-cuts, has
its thick membership function defined by

𝜇[[X̂]](𝒙) = sup
𝜆∈[0,1]

𝜆𝜇[[X̂(𝜆)]](𝒙)

=
[[

sup
𝜆∈[0,1]

𝜆𝜇Xinf (𝜆)(𝒙), sup
𝜆∈[0,1]

𝜆𝜇Xsup(𝜆)(𝒙)
]]

,∀𝒙 ∈ R𝑛. (24)

From (24), we can state that a TFS is represented by an interval
of T1FSs. In cases when Xinf(𝜆) = Xsup(𝜆) = X(𝜆), TFS becomes a
T1FS. Furthermore, because TFS is composed of two T1FSs (lower
and upper T1FSs) under constraint Xinf(𝜆) ⊂ Xsup(𝜆),∀𝜆 ∈ [0, 1], this
condition implies that a TFS can be regarded as a special case of a
T2FS. The lower bound represents a T1FS, which is certain. The T1FS
upper bound delimits all plausible T1FSs. The uncertainty is exhibited
by penumbra Xsup(𝜆)\ Xinf(𝜆), ∀ 𝜆 ∈ [0,1]. This penumbra concept in
the TFS representation can be regarded as the FOU phenomenon in the
T2FS representation (Mendel and Bob John, 2002; Mo et al., 2014).

A thick IV-T1FS (TIV-T1FS) [[𝑥̂]] is a special case of a TFS, i.e., a 1D
TFS, and is represented by its membership function

𝜇[[𝑥̂]](𝑥) =
[[

sup 𝜆𝜇[𝑥inf (𝜆)](𝑥), sup 𝜆𝜇[𝑥sup(𝜆)](𝑥)
]]

,∀𝑥 ∈ R. (25)

𝜆∈[0,1] 𝜆∈[0,1]
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Fig. 14. Communication zone [[Z(𝜆)]] for 𝜆 = 0, 0.5, and 1.
Fig. 15. GSs Zinf(𝜆) and Zsup(𝜆) for 𝜆 = 0, 0.5, and 1 .
Therefore, a TIV-T1FS is an interval with lower and upper IV-

T1FSs. A TIV-T1FS vector is called a thick BV-T1FS (TBV-T1FS) and is
9

defined by the Cartesian product of n TIV-T1FS. We need to note that

a TIV-T1FS is a particular case of a TGB and can be interpreted as an
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interval-valued T2FS (IV-T2FS) (Dymova et al., 2015; Figueroa-Garcia
et al., 2015; Hamrawi et al., 2017; Runkler et al., 2017; Tolga et al.,
2020).

2.5.3. Illustration
The transmitter location is now represented by GB [m(𝜆)]. The

communication zone becomes a TGS [[Z(𝜆)]], 𝜆 ∈ [0, 1], which is
shown in Figs. 14 and 15 for three chosen values of 𝜆 (0, 0.5, and 1).
Nevertheless, the proposed computational method applies irrespective
of the value of 𝜆 in [0, 1].

The colors in Fig. 15 are only used to differentiate the 𝜆 levels. The
case of 𝜆 = 0 corresponds to the situation presented in Section 2.3.2,
and for each 𝜆 level, the communication zone is computed using the
same methodology. Furthermore, the case of 𝜆 = 1 refers to the
situation presented in Section 2.1 where the location of the transmitter
is crisp and known with certainty. According to these results, we
can confirm that if the location of the transmitter is uncertain, the
communication zone is a TS. However, if its location is crisp, the
communication zone is a CS (see Fig. 14), i.e., Zsup(1) = Zinf(1) = Z(1).
In this application, we can confirm that Zsup(1) ⊂ Zsup(0.5) ⊂ Zsup(0)
see Fig. 15(a)]. More generally, we can verify that the monotonicity
consistency) condition, i.e., (18), is observed for Zsup(𝜆). In this case,
pper bound Zsup(𝜆) can be regarded as a T1FS. This situation of
onotonicity (consistency) is a special case of the GS representation.
ore generally, no constraint of monotonicity is imposed on the GS

nd TGS representations. In contrast to Zsup(𝜆), GS Zinf(𝜆) does not
bey constraint (18), i.e., Zinf(1) ⊄ Zinf(0.5) ⊄ Zinf(0). In reality, we
ather have the opposite condition, i.e., Zinf(0) ⊂ Zinf(0.5) ⊂ Zinf(1) [see
ig. 15(b)]. Therefore, Zinf(𝜆) is a pure GS and cannot be represented
y a T1FS. Thus, JZ(𝜆)K, 𝜆 ∈ [0, 1], is a TGS and cannot be interpreted
s a T2FS.

.6. Combination and fusion of TGSs

.6.1. Definitions
Let us consider a collection of CSs {X𝑖}𝑖∈Ω. Smallest TS, which is

enoted by Ⓢ{X𝑖}𝑖∈𝛺 that encloses collection {X𝑖}𝑖∈𝛺, is defined by

{X𝑖}𝑖∈𝛺 =
[[

∩
𝑖∈𝛺

X𝑖, ∪
𝑖∈𝛺

X𝑖

]]

. (26)

The Ⓢ operator makes possible extension of the operators initially
roposed for CSs to TSs (Desrochers and Jaulin, 2017; Desrochers,
018). Indeed, given an operator ⋅ ∈ {∩,∪, ∖,…}, its extension to TS
s expressed as

[[X]] ⋅ [[Y]] = Ⓢ{T|∃X ∈ [[X]] ,∃Y ∈ [[Y]] ,T = X ⋅ Y}. (27)

Eq. (27) states that the result of an operation among TSs is defined
s smallest TS computed from the operands. Knowing that at each
level, a TGS is a TS, the operations on TGSs can be computed as

perations on TSs. For instance, according to the monotony property
f the intersection, union, difference, and addition operators, we have

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[[X(𝜆)]] ∩ [[Y(𝜆)]] =
[[

Xinf (𝜆) ∩ Yinf (𝜆),Xsup(𝜆) ∩ Ysup(𝜆)
]]

[[X(𝜆)]] ∪ [[Y(𝜆)]] =
[[

Xinf (𝜆) ∪ Yinf (𝜆),Xsup(𝜆) ∪ Ysup(𝜆)
]]

[[X(𝜆)]] ∖ [[Y(𝜆)]] =
[[

Xinf (𝜆)∖Ysup(𝜆),Xsup(𝜆)∖Yinf (𝜆)
]]

[[X(𝜆)]] + [[Y(𝜆)]] =
[[

Xinf (𝜆) + Yinf (𝜆),Xsup(𝜆) + Ysup(𝜆)
]]

. (28)

These operations are simply operations among TSs that are parame-
terized by 𝜆. More generally, for a given function f from R𝑛 to R𝑚, the
image of TS [[X(𝜆)]] = [[Xinf(𝜆),Xsup(𝜆)]] by f is evaluated by

𝒇 ([[X(𝜆)]]) = Ⓢ{𝒇 (X(𝜆))|X(𝜆) ∈ [[X(𝜆)]]} =
[[

𝒇 (Xinf (𝜆)),𝒇 (Xsup(𝜆))
]]

. (29)

The image of a TS JX(𝜆)K by f is also a TS in which its bounds are
the images by f of the bounds of JX(𝜆)K. This extension of functions
allows the propagation of TSs and TGSs in linear and nonlinear models
where the inputs, outputs, states, and/or parameters can be represented

by TGSs.

10
2.6.2. Illustration
Let us reconsider the application of an autonomous vehicle and

assume that three uncertain transmitters exist. The location of these
transmitters is given by 2D GBs

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[𝒎1(𝜆)] = [−1 + 2𝜆, 3 − 2𝜆] × [1 + 2𝜆, 5 − 2𝜆],

[𝒎2(𝜆)] = [11 − 3𝜆, 16 − 8𝜆] × [−15 + 6𝜆,−5 − 4𝜆]

[𝒎3(𝜆)] = [8 + 2𝜆, 12 − 2𝜆] × [−3 + 2𝜆, 1 − 2𝜆].

, (30)

We need to note that the proposed method can be applied regardless
of the number of transmitters and their locations. Gradual zones Zinf(𝜆)
and Zsup(𝜆) are computed as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Zsup(𝜆) = {𝒙|∀𝑖 ∈ {1,… , 3},∃𝒎 ∈ [𝒎𝑖(𝜆)], ‖𝒙 −𝒎‖ ≤ 20}

= ∩𝑖∈{1,…,3}{𝒙|∃𝒎 ∈ [𝒎𝑖(𝜆)], ‖𝒙 −𝒎‖ ≤ 20},

Zinf (𝜆) = {𝒙|∀𝑖 ∈ {1,… , 3},∀𝒎 ∈ [𝒎𝑖(𝜆)], ‖𝒙 −𝒎‖ ≤ 20}

= ∩𝑖∈{1,…,3}{𝒙|∀𝒎 ∈ [𝒎𝑖(𝜆)], ‖𝒙 −𝒎‖ ≤ 20}

= ∩𝑖∈{1,…,3}{𝒙|∃𝒎 ∈ [𝒎𝑖(𝜆)], ‖𝒙 −𝒎‖ > 20}.

(31)

Eq. (31) is simply a version of (15) in the presence of three transmit-
ters instead of one. Thus, the communication zone is the intersection
among the three zones where each one is obtained for a transmitter.
TSs that represents the uncertain communication zone for 𝜆 = 0, 0.5,
and 1 is shown in Fig. 16.

The superposition of CSs Zinf(𝜆) and Zsup(𝜆) (each of them sepa-
ately considered) leads to that shown Fig. 17. We need to note that the
ethod applies regardless of the value of 𝜆. Fig. 17 shows that Zinf(𝜆)

and Zsup(𝜆) are pure GSs (no monotonicity constraint is imposed).
Consequently, communication zone [[Z(𝜆)]] is a TGS.

As presented in Section 2.5.3, at each level 𝜆, the uncertain location
of the transmitters induces a TS. The uncertainty (ignorance) is exhib-
ited by penumbra Zsup(𝜆)\Zinf(𝜆), which is shown in orange colors in
Fig. 16. In contrast, when the transmitters are located with precision,
i.e., 𝜆 = 1, the communication zone is a CS, where Zinf(𝜆) = Zsup(𝜆).

3. Applications of TGSs

In this section, applications for solving fuzzy SoEs and fuzzy regres-
sion are provided to illustrate the usefulness and interest of the TGS
concept. Many other applications of the TGS approach can be envi-
sioned in uncertain control and modeling and uncertain optimization,
among others.

3.1. Solving fuzzy SoEs

For the sake of simplicity, linear fuzzy SoEs are considered. How-
ever, the method can be applied in whatever equation forms. Further-
more, for ease in three-dimensional (3D) illustration, only SoEs with
two variables are considered. However, the method remains applicable
regardless of the number of variables.

Solving linear SoEs 𝐴×𝒙 = 𝑏 where the parameters of matrix 𝐴(𝑛×𝑛)
and vector 𝑏(1×𝑛) are crisp values has a very long history. This problem
has been extended to the fuzzy case where the parameters are often
represented by IV-T1FSs (Allahviranloo et al., 2011; Friedman et al.,
1998; Landowski, 2019; Lodwick and Dubois, 2015). For example,
linear SoEs whose parameters are IV-T1FS are often denoted by its 𝜆-cut
representation, i.e.,

[𝐴(𝜆)] × 𝒙 = [𝑏(𝜆)],∀𝜆 ∈ [0, 1], (32)

where [𝐴(𝜆)] =

⎛

⎜

⎜

⎜

⎜

⎝

[𝑎11(𝜆)] … [𝑎1𝑛(𝜆)]

⋮ ⋱ ⋮

[𝑎𝑛1(𝜆)] ⋯ [𝑎𝑛𝑛(𝜆)]

⎞

⎟

⎟

⎟

⎟

⎠

, [𝑏(𝜆)] =

⎛

⎜

⎜

⎜

⎜

⎝

[𝑏1(𝜆)]

…

[𝑏𝑛(𝜆)]

⎞

⎟

⎟

⎟

⎟

⎠

and 𝒙 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑥1

…

𝑥𝑛

⎞

⎟

⎟

⎟

⎟

⎠

.
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Fig. 16. Communication zone [[Z(𝜆)]] for 𝜆 = 0, 0.5, and 1 (using three transmitters).
Fig. 17. Zones Zinf(𝜆) and Zsup(𝜆) for 𝜆 = 0, 0.5, and 1 (using three transmitters).
Conceptually, fuzzy SoEs, i.e., (32), have often been approached
as interval SoEs via the concept of 𝜆-cuts (Allahviranloo et al., 2011;
Allahviranloo and Ghanbari, 2012; Friedman et al., 1998). Solving
SoEs that involve CIs and IV-T1FSs has been investigated for quite a
long time (e.g. Allahviranloo et al. (2011), Allahviranloo and Ghanbari
(2012), Dymova et al. (2013), Friedman et al. (1998), Horcik (2008),
Popova and Hladík (2013), Rzezuchowski and Wasowski (2008), Shary
(2002), and Shary (2020)). Although significant advances have been
achieved in solving these fuzzy SoEs, two important considerations
11
deserve special attention. The first consideration concerns the algebraic
solution of (32). The second consideration is related to the meaning and
significance associated with this solution, more particularly the united
and tolerable solutions. These two considerations are addressed using
the following two applications.

3.1.1. Example 1
Generally, the algebraic solution of (32) corresponds to the exact

solution (sometimes called the formal solution) (Allahviranloo et al.,
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2011; Dymova et al., 2013). This solution is usually too restrictive and
sometimes even fails to exist. Generally, embedded approaches accord-
ing to the Kaucher interval arithmetic (Kaucher, 1980) are used to
solve these SoEs (Friedman et al., 1998; Rzezuchowski and Wasowski,
2008). Therefore, when they exist, the solutions are computed at each
level 𝜆. However, the resulting solutions can sometimes be non-nested
according to the vertical 𝜆 dimension. In this case, although the param-
ters of (32) are IV-T1FSs, the resulting solutions can be purely gradual
uantities and cannot be regarded as fuzzy quantities (Allahviranloo
t al., 2011; Boukezzoula et al., 2014; Fortin et al., 2008; Lodwick and
ubois, 2015).

Let us consider the 2 × 2 fuzzy linear SoEs, which have been
onsidered in Allahviranloo et al. (2011), as a counter-example of the
uzzy approach proposed in Friedman et al. (1998) with the following
arameters:

=
⎛

⎜

⎜

⎝

𝑎11 𝑎12

𝑎21 𝑎22

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

1 −1

1 3

⎞

⎟

⎟

⎠

, [𝑏(𝜆)] =
⎛

⎜

⎜

⎝

[𝑏1(𝜆)]

[𝑏2(𝜆)]

⎞

⎟

⎟

⎠

and𝒙 =
⎛

⎜

⎜

⎝

𝑥1

𝑥2

⎞

⎟

⎟

⎠

, (33)

where

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[𝑏1(𝜆)] = [𝑏−1 (𝜆), 𝑏
+
1 (𝜆)] =

⎧

⎪

⎨

⎪

⎩

[8𝜆 − 14,−1 − 13𝜆], if 0 ≤ 𝜆 ≤ 0.5,

[2𝜆 − 11,−6 − 3𝜆], if 0.5 ≤ 𝜆 ≤ 1,

[𝑏2(𝜆)] = [𝑏−2 (𝜆), 𝑏
+
2 (𝜆)] =

⎧

⎪

⎨

⎪

⎩

[12𝜆 − 24,−18𝜆 − 2], if 0 ≤ 𝜆 ≤ 0.5,

[6𝜆 − 21,−7 − 8𝜆], if 0.5 ≤ 𝜆 ≤ 1.

In (33), the elements of A are crisp values, and those of [b(𝜆)] are
triangular IV-T1FSs, which are represented by their 𝜆-cuts. IV-T1FSs
of [b(𝜆)] are shown in Figs. 18(a) and (b). At each 𝜆-cut, these IV-
T1FSs are considered as box [b(𝜆)] = [𝑏1(𝜆)]×[𝑏2(𝜆)] in plane (𝑏1, 𝑏2).
The stacking of boxes [b(𝜆)] according to 𝜆 leads to BV-T1FS shown in
Fig. 18(c) using a sampling step size of 0.05 on 𝜆, i.e.,

sup
𝜆∈[0,1]

𝜆𝜇[𝒃(𝜆)](𝒙),∀𝒙 ∈ R2; where [𝒃(𝜆)] = [𝑏1(𝜆)] × [𝑏2(𝜆)]. (34)

The algebraic solution of the fuzzy SoEs, i.e., (33), which is ad-
dressed in Allahviranloo et al. (2011), is expressed as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[𝑥1(𝜆)] = [𝑥−1 (𝜆), 𝑥
+
1 (𝜆)], with 𝑥−1 (𝜆) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

4𝜆 − 4, if 0 ≤ 𝜆 ≤ 1∕4,

−3, if 1∕4 ≤ 𝜆 ≤ 3∕8,

−8𝜆, if 3∕8 ≤ 𝜆 ≤ 1∕2,

2𝜆 − 5, if 1∕2 ≤ 𝜆 ≤ 1,

;

𝑥+1 (𝜆) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−8𝜆, if 0 ≤ 𝜆 ≤ 1∕3,

4𝜆 − 4, if 1∕3 ≤ 𝜆 ≤ 1∕2,

−8𝜆 − 1, if 1∕2 ≤ 𝜆 ≤ 1,

[𝑥2(𝜆)] = [𝑥−2 (𝜆), 𝑥
+
2 (𝜆)] = [4𝜆 − 10,−1 − 5𝜆].

.

(35)

Solutions [𝑥1(𝜆)] and [𝑥2(𝜆)] are shown in Figs. 19(a) and (b),
respectively. We can state that if [𝑥2(𝜆)] is an IV-T1FS, [𝑥1(𝜆)] is a pure
GI and cannot be represented by an IV-T1FS. Therefore, profiles 𝑥−2 (𝜆)
and 𝑥+2 (𝜆) are non-decreasing and non-increasing, respectively, i.e., the
consistency condition, namely, (18), is not followed. Furthermore, at
each level 𝜆, solutions [𝑥1(𝜆)] and [𝑥2(𝜆)] can be represented by box
[x(𝜆)] = [𝑥1(𝜆)]×[𝑥2(𝜆)] in plane (𝑥1, 𝑥2). Fig. 19(c) shows that when
a sampling step size of 0.05 on 𝜆 is used, the stacking of boxes [x(𝜆)]
according to 𝜆 cannot be interpreted as a BV-T1FS but as a pure GB.
Therefore, boxes [x(𝜆)], 𝜆 ∈ [0, 1] are not always nested according
to the 𝜆 dimension, i.e., the monotonicity (consistency) condition,
namely, (18), is not satisfied. Although the parameters of fuzzy SoEs,
namely, (33), are IV-T1FS (a BV-T1FS), the solution is not a BV-T1FS
and cannot be regarded as a fuzzy set.

In this case and as stated in Allahviranloo et al. (2011), a fuzzy
solution of (33) does not exist, and the solution proposed in Friedman
12
et al. (1998) cannot be considered as a fuzzy solution. Therefore, we
can state that the solution given in Allahviranloo et al. (2011) is a
GB, which is a particular case of a GS. In this context, the GB and GS
concepts provide a new outlook for interpreting the solutions of fuzzy
SoEs when the results are not fuzzy quantities.

Let us reconsider the SoEs, namely, (33), where the parameters of
[b(𝜆)] are no longer IV-T1FSs but IV-T2FSs. Each IV-T2FS [𝑏̃𝑖(𝜆)] is
defined by two IV-T1FSs, namely, lower [𝑏inf𝑖 (𝜆)] and upper [𝑏sup𝑖 (𝜆)] IV-
T1FSs, with inclusion constraint [𝑏inf𝑖 (𝜆)] ⊆ [𝑏sup𝑖 (𝜆)] (Boukezzoula and
Coquin, 2020). In this case, SoEs, i.e., (33), become
(

1 −1

1 3

)

× 𝒙 =

(

[𝑏̃1(𝜆)]

[𝑏̃2(𝜆)]

)

,∀𝜆 ∈ [0, 1], with

𝒙 =

(

𝑥1

𝑥2

)

;

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

[𝑏inf1 (𝜆)] = [𝑏1(𝜆)],

[𝑏inf2 (𝜆)] = [𝑏2(𝜆)],

[𝑏sup1 (𝜆)] =

{

[10𝜆 − 17, 2 − 16𝜆], if 0 ≤ 𝜆 ≤ 0.5,

[6𝜆 − 15,−3 − 6𝜆], if 0.5 ≤ 𝜆 ≤ 1,

[𝑏sup2 (𝜆)] =

{

[16𝜆 − 27,−22𝜆 + 1], if 0 ≤ 𝜆 ≤ 0.5,

[8𝜆 − 23,−5 − 10𝜆], if 0.5 ≤ 𝜆 ≤ 1.

(36)

IV-T2FS SoEs, i.e., (36), can be viewed as lower and upper IV-T1FS
SoEs in the form of (33). IV-T2FSs are shown in Figs. 20(a) and (b). We
can state that a 𝜆-cut on each IV-T2FS is a TI, i.e.,
[[

𝑏𝑖(𝜆)
]]

=
[[

[𝑏inf𝑖 (𝜆)], [𝑏sup𝑖 (𝜆)]
]]

, 𝑖 = 1, 2. (37)

Therefore, each IV-T2FS can be interpreted as a TIV-T1FS, which is
expressed as
[[

sup
𝜆∈[0,1]

𝜆𝜇[𝑏inf𝑖 (𝜆)](𝒙), sup
𝜆∈[0,1]

𝜆𝜇[𝑏sup𝑖 (𝜆)](𝒙)
]]

, 𝑖 = 1, 2. (38)

Furthermore, at each level 𝜆, IV-T2FSs can be regarded as a TB in
plane (𝑏1, 𝑏2), i.e.,

[[𝒃(𝜆)]] =
[[

𝑏1(𝜆)
]]

×
[[

𝑏2(𝜆)
]]

=
[[

[𝒃inf (𝜆)], [𝒃sup(𝜆)]
]]

, (39)

with [𝒃inf (𝜆)] = [𝑏inf1 (𝜆)] × [𝑏inf2 (𝜆)] and [𝒃sup(𝜆)] = [𝑏sup1 (𝜆)] × [𝑏sup2 (𝜆)].
The stacking of these TBs according to 𝜆 leads to TBV-T1FS, which

is shown in Fig. 20(c), using a sampling step size of 0.05 on 𝜆. By
applying the approach proposed in Allahviranloo et al. (2011), the
lower and upper algebraic solutions of (36) are

{

[𝑥inf1 (𝜆)] = [𝑥1(𝜆)],

[𝑥inf2 (𝜆)] = [𝑥2(𝜆)],
;

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[𝑥sup1 (𝜆)] =

{

[4𝜆 − 7, 3 − 10𝜆], if 0 ≤ 𝜆 ≤ 0.5,

[4𝜆 − 7,−1 − 2𝜆], if 0.5 ≤ 𝜆 ≤ 1,

[𝑥sup2 (𝜆)] =

{

[6𝜆 − 10,−1 − 6𝜆], if 0 ≤ 𝜆 ≤ 0.5,

[2𝜆 − 8,−2 − 4𝜆], if 0.5 ≤ 𝜆 ≤ 1.

(40)

At each level 𝜆, the solutions can be expressed as TIs J𝑥𝑖(𝜆)K =
J[𝑥inf𝑖 (𝜆)], [𝑥sup𝑖 (𝜆)]K, i =1, 2. As shown in Figs. 21(a) and (b), we can
state that if J𝑥2(𝜆)K can be considered as an IV-T2FS, J𝑥1(𝜆)K cannot
be represented by an IV-T2FS because its lower bound is not an IV-
T1FS. Moreover, at each 𝜆, these solutions can be represented by a
TB Jx(𝜆)K = J𝑥1(𝜆)K×J𝑥2(𝜆)K in plane (𝑥1, 𝑥2). Fig. 21(c) shows that
when a sampling step size of 0.05 on 𝜆 is used, the stacking of TBs
Jx(𝜆)K cannot be interpreted as a TBV-T1FS but as a TGB. Although
the parameters of the fuzzy SoEs, i.e., (36), are IV-T2FSs (a TBV-T1FS),
the solution is not a TBV-T1FS and cannot be considered as a T2FS. In
this context, the TGB shown in Fig. 21(c), which is a particular case
of a TGS, can be used to interpret some uncertain type-2 fuzzy SoEs
whose solutions are not T2FSs.

3.1.2. Example 2
As presented in Example 1, the algebraic solution of fuzzy SoEs

is restrictive or even empty. Therefore, solving (32) using an embed-
ded approach can turn out to be unrealistic (improper IV-T1FSs, for
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Fig. 18. Representations of IV-T1FSs [𝑏1(𝜆)] and [𝑏2(𝜆)] and BV-T1FS [b(𝜆)].

Fig. 19. Representation of the solutions of fuzzy SoEs (33).

Fig. 20. Representations of IV-T2FSs and TBV-T1FS.

13
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Fig. 21. 2D and 3D representations of the BV-T1FS. Algebraic solution of the system, i.e. (36).
a

[

example). Another way of solving (32), which represents a dominant
approach in the literature, is based on treating the SoEs as a set of
crisp SoEs whose parameters belong to the corresponding IV-T1FSs
(inclusion problem). In this case, at each 𝜆-level, SoEs are considered as
interval SoEs (Allahviranloo and Ghanbari, 2012; Lodwick and Dubois,
2015; Sevastjanov and Dymova, 2009; Shary, 1999, 2020), i.e.,

𝐴 × 𝒙 = 𝑏 with 𝐴 ∈ [𝐴(𝜆)] and 𝑏 ∈ [𝑏(𝜆)],∀𝜆 ∈ [0, 1]. (41)

Therefore, (41) interprets (32) not as a strict equality between the
left- and right-hand sides but as a family of crisp SoEs A × x =b of the
same structure with A ∈ [A(𝜆)] and b ∈ [b(𝜆)] (Shary, 2004). In solving
(32), the popular ideas are the concept of a united set solution (USS)
and a tolerable set solution (TSS) (Dymova et al., 2013; Popova and
Hladík, 2013; Shary, 2002, 2020). USS is formalized using universal
quantifier (∀) and is defined as

XUSS(𝜆) = {𝒙 ∈ R𝑛
|∃𝐴 ∈ [𝐴(𝜆)],∃𝑏 ∈ [𝑏(𝜆)], 𝐴 × 𝒙 = 𝑏}. (42)

Eq. (42) can be written as (Shary, 2020)

XUSS(𝜆) = {𝒙 ∈ R𝑛
|∃𝐴 ∈ [𝐴(𝜆)], 𝐴 × 𝒙 ∈ [𝑏(𝜆)]}. (43)

The solution, i.e., (43), refers to understanding what the solution
of the fuzzy SoEs, i.e., (32), is. This USS is a set of solutions such
that at least one A ∈ [A(𝜆)] exists in which left-hand side A × x
falls into right-hand side [b(𝜆)]. Another solution, which is called TSS,
ensures strong compatibility between the parameters and data (Shary,
2020). TSS is rarely treated in a fuzzy context. It is formalized using
existential quantifier (∃) and refers to the set of solutions in which left-
hand side A×x falls into right-hand side [b(𝜆)] for any A ∈ [A(𝜆)]. TSS
is expressed as

XTSS(𝜆) = {𝒙 ∈ R𝑛
|∀𝐴 ∈ [𝐴(𝜆)],∃𝑏 ∈ [𝑏(𝜆)], 𝐴 × 𝒙 = 𝑏}. (44)

Eq. (44) can be reformulated as

XTSS(𝜆) = {𝒙 ∈ R𝑛
|∀𝐴 ∈ [𝐴(𝜆)], 𝐴 × 𝒙 ∈ [𝑏(𝜆)]}. (45)

These two solutions can be combined and lead to a new interpreta-
tion of the solution of the fuzzy SoEs, namely, (32). Indeed, because the
parameters in the left- and right-hand sides of (32) are uncertain, the
set of solutions should also be uncertain. Therefore, for each level 𝜆, the
set of solutions is not CS X but an uncertain set that can be represented
by TS JX(𝜆)K = JXinf(𝜆), Xsup(𝜆)K. The bound Xinf, which coincides with
TSS, is considered as a set of certain solutions. The bound Xsup, which
refers to USS, is considered as a set of plausible solutions. Difference
Xsup\ Xinf represents plausible but uncertain solutions. The stacking of
14
TSs JX(𝜆)K leads to a TGS. If the monotonicity constraint, i.e., (23), is
guaranteed, TGS becomes a TFS, i.e., a T2FS. In the case when [A(𝜆)] is

crisp matrix, the TGS is reduced to a GS (TFS to T1FS, respectively).
Let us consider the 2 × 2 fuzzy linear SoEs where the elements of

A] and [b] are IV-T1FSs, which are defined by

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

[𝐴(𝜆)] =

(

[𝑎11(𝜆)] [𝑎12(𝜆)]

[𝑎21(𝜆)] [𝑎22(𝜆)]

)

=

(

[2 + 𝜆, 4 − 𝜆] [−2 + 1.5𝜆, 1 − 1.5𝜆]

[−1 + 1.5𝜆, 2 − 1.5𝜆] [2 + 𝜆, 4 − 𝜆]

)

,

[𝑏(𝜆)] =

(

[𝑏1(𝜆)]

[𝑏2(𝜆)]

)

=

(

[−2 + 2𝜆, 2 − 2𝜆]

[−2 + 2𝜆, 2 − 2𝜆]

)

.

(46)

At 𝜆 = 0, (46) corresponds to the popular interval linear SoEs,
which are repeatedly used by many authors (e.g. Dymova et al. (2013),
Horcik (2008), Keyanpour et al. (2018), Lodwick and Dubois (2015),
Mohaghegh Tabar et al. (2019), and Shary (2002)). The set of solutions
of (46) provided in Horcik (2008), Keyanpour et al. (2018), Lodwick
and Dubois (2015), and Mohaghegh Tabar et al. (2019) (for 𝜆 = 0)
is a CS, which is shown in Fig. 22(a). This solution corresponds to
USS produced by interval solvers such as the Intlab solver (Keyanpour
et al., 2018; Mohaghegh Tabar et al., 2019) (see http://www.ti3.tu-
harburg.de/intlab/). Furthermore, we can state that this solution is not
a box even though elements [A(0)] and [b(0)] are CIs. The stacking of
CSs X(𝜆) leads to consonant GS (T1FS), as shown in Fig. 22(b), when
a sampling step size of 0.1 on 𝜆 is used.

This type of result is generally presented in solving fuzzy SoEs
according to USS (Horcik, 2008). Our approach differs from those
conventionally proposed in the literature. Therefore, at each level 𝜆,
the solution of (46) is not CS X(𝜆) but TS JX(𝜆)K = JXinf(𝜆), Xsup(𝜆)K.
By stacking TSs JX(𝜆)K according to the 𝜆 dimension, the solution is
not a GS but a TGS. The certain and plausible solutions are shown
in Fig. 23(a) for 𝜆 = 0. It is computed using the same methodology
detailed in Sections 2.3.2 and 2.6.2, i.e.,

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

Xsup(𝜆) = {𝒙|∃𝐴 ∈ [𝐴(𝜆)], 𝐴 × 𝒙 ∈ [𝑏(𝜆)]}

= ∩
𝑖,𝑗∈{1,2}

{𝒙|∃𝑎𝑖𝑗 ∈ [𝑎𝑖𝑗 (𝜆)], 𝐴 × 𝒙 ∈ [𝑏(𝜆)]},

Xinf (𝜆) = {𝒙|∀𝐴 ∈ [𝐴(𝜆)], 𝐴 × 𝒙 ∈ [𝑏(𝜆)]}

= ∩
𝑖,𝑗∈{1,2}

{𝒙|∀𝑎𝑖𝑗 ∈ [𝑎𝑖𝑗 (𝜆)], 𝐴 × 𝒙 ∈ [𝑏(𝜆)]}

= ∩ {𝒙 |

|

|

∃𝑎𝑖𝑗 ∈ [𝑎𝑖𝑗 (𝜆)], 𝐴 × 𝒙 ∉ [𝑏(𝜆)] }.

(47)
⎩

𝑖,𝑗∈{1,2}

http://www.ti3.tu-harburg.de/intlab/
http://www.ti3.tu-harburg.de/intlab/
http://www.ti3.tu-harburg.de/intlab/
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Fig. 22. Solution of SoEs, i.e., (46), using Intlab solver.
Fig. 23. TS and TGS solutions of SoEs, i.e., (46).
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Solutions Xsup(𝜆) and Xinf(𝜆) are equivalent to the USS and TSS
olutions proposed in Dymova et al. (2013) and Shary (2002), respec-
ively. We can verify that GSs Xsup(𝜆) and Xinf(𝜆) obey the monotonicity
ondition, namely, (18), and they can be considered as T1FSs. In this
ase, TGS shown in Fig. 23(b) is a TFS and can be interpreted as a T2FS.

.2. Uncertain fuzzy regression

In the literature, fuzzy regression has often been approached using
parametric paradigm where the estimation of the fuzzy parameters

emains a major objective. Fuzzy regression is usually addressed us-
ng IV-T1FS models where the inputs, outputs, and parameters are
epresented by IV-T1FSs (e.g., Bisserier et al. (2010), Boukezzoula
t al. (2018), Chen and Nien (2020), Diamond (1988), and D’Urso
nd Gastaldi (2000)). In this framework, the fuzzy regression can
e considered as a generalization of the interval regression in which
he CI specificity is enriched through the vertical 𝜆 dimension. This
inding is consistent with the works published in the literature where
uzzy regression has been generally addressed as an interval regression
sing the concept of 𝜆-cuts (e.g., Bisserier et al. (2010), Boukezzoula
15
t al. (2018), Chen and Nien (2020), Diamond (1988), and D’Urso
nd Gastaldi (2000)). Therefore, fuzzy regression uses two dimensions
horizontal and vertical). The horizontal dimension is similar to that
sed in the interval regression. The vertical dimension is related to the
elevance degrees and is limited to the unit interval [0, 1] (𝜆-cuts).

Although significant advances have been achieved using fuzzy-
regression approaches, two important considerations deserve more at-
tention. The first consideration is related to the horizontal dimen-
sion and focuses on how to handle inputs depending on whether
they are crisp or uncertain. Furthermore, in the fuzzy-regression lit-
erature, different types of data have been considered, i.e., crisp in-
puts/uncertain outputs (CI/UO) and uncertain inputs/uncertain out-
puts (UI/UO) (Boukezzoula et al., 2011, 2018; Cerny and Hladik,
2018; Diamond, 1988; D’Urso and Gastaldi, 2000). However, both
situations are approached using the same formalism, which results in
the same nature, i.e., the parameters are CIs (IV-T1FSs). Nevertheless,
when certain and plausible reasoning are considered, the CI/UO and
UI/UO data involve two different situations and do not lead to the
same results in the parameter-estimation problem. This phenomenon
is illustrated in Application 3. The second consideration refers to the
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Table 1
CI inputs and CI outputs.

Index Interval input [𝑥𝑖] Interval output [𝑦𝑖] Index Interval input [𝑥𝑖] Interval output [𝑦𝑖]

1 [−2.0216, −2.0129] [3.0747, 5.5086] 11 [−1.0307, −1.0093] [−0.2289, 1.4711]

2 [−1.9833, −1.8472] [2.6593, 5.3167] 12 [−0.9254, −0.8637] [−0.5381, 1.1247]

3 [−1.8708, −1.7937] [2.1659, 4.6264] 13 [−0.8846, −0.8294] [−0.6047, 1.0183]

4 [−1.6856, −1.6597] [1.7191, 3.9269] 14 [−0.7296, −0.5908] [−1.0032, 0.5606]

5 [−1.6573, −1.6264] [1.6099, 3.8040] 15 [−0.6068, −0.5678] [−1.0037, 0.3751]

6 [−1.5110, −1.4405] [0.9350, 3.0874] 16 [−0.5190, −0.4943] [−1.1321, 0.1756]

7 [−1.3539, −1.3405] [0.6322, 2.5689] 17 [−0.3495, −0.3467] [−1.2932, −0.1293]

8 [−1.3019, −1.1915] [0.3766, 2.3968] 18 [−0.2990, −0.2970] [−1.3375, −0.2122]

9 [−1.1970, −1.1836] [0.1969, 2.0139] 19 [−0.2048, −0.1976] [−1.4083, −0.3533]

10 [−1.0913, −1.0495] [−0.0819, 1.6821] 20 [−0.1416, −0.1000] [−1.4504, −0.4383]
Fig. 24. Representation of CS P in plane (𝑝1, 𝑝2) and its approximation by box [p].
vertical dimension. Therefore, if the estimation problem is addressed
without any constraint of consistency between the 𝜆 levels, the results
can be not nested according to the 𝜆 dimension and cannot be regarded
as fuzzy quantities. This situation is illustrated in Application 4. For
simplicity of illustration, the model is considered as linear. However,
the approach is applicable regardless of the nonlinear form of the
regression model.

3.2.1. Example 3
Let us consider the availability of a linear model 𝑴(𝑥,𝒑), where p

= (𝑝1, 𝑝2) is the vector of the parameters, which can fit input data x
and output data y, i.e.,

𝑦 = 𝑴(𝑥,𝒑) = 𝑝1 + 𝑝2𝑥. (48)

Let this model be uncertain with CI inputs [𝑥𝑖] and CI outputs [𝑦𝑖].
A part of the CI input–output data set used in Boukezzoula et al. (2018)
and Chuang (2008) is considered (see Table 1).

In fuzzy and interval regressions, the parameter-estimation problem
is traditionally approached by minimizing an objective function (with
or without a penalty term and sometimes under constraints). The vector
of the parameters that minimizes this objective function is viewed
as the optimal one. In this framework, possibilistic and least square
approaches (Diamond, 1988; Tanaka and Ishibushi, 1991) are the most
dominant in the literature (see Chukhrova and Johannssen (2019) for a
16
good survey). In contrast to the conventional fuzzy and interval regres-
sion approaches, our approach is not based on the minimization of an
objective function. Therefore, instead of determining a single optimal
vector of parameters, the proposed approach aims at determining the
set of all feasible vectors of parameters. Once the set of all possible
parameters has been determined, practitioners can choose a vector of
parameters based on a desired criterion. Therefore, our objective is to
determine the set of all feasible parameters such that for inputs 𝑥𝑖 in
[𝑥𝑖], the outputs produced by 𝑴 are in [𝑦𝑖], i.e., 𝑴(𝑥𝑖, p) ∈ [𝑦𝑖]. To
highlight the influence of uncertain inputs, we first assume that the
inputs are crisp and given by their midpoints, i.e., the midpoint of [𝑥𝑖].
In this case, the set of all feasible parameters is a CS, which is expressed
as

P = {𝒑 = (𝑝1, 𝑝2)|∀𝑥𝑖, 𝑖 ∈ {1,… , 20},𝑴(𝑥𝑖,𝒑) ∈ [𝑦𝑖]}

= ∩
𝑖∈{1,…,20}

{𝒑 = (𝑝1, 𝑝2)|∀𝑥𝑖,𝑴(𝑥𝑖,𝒑) ∈ [𝑦𝑖]}. (49)

The set of parameters P in plane (𝑝1, 𝑝2), which is obtained using
the PyIbex solver, and its approximation by box [p] is shown in Fig. 24.
Furthermore, if the CI regression approaches were used, to avoid miss-
ing feasible parameters, box [p], which is shown in Fig. 24(b), can
be obtained. This box is an approximate solution to the parameter-
estimation problem and generates a loss of information. Now, because
of the uncertainties stored in the inputs (CIs), the set of parameters is no
longer CS P but TS JPK = JPinf, PsupK, where Pinf and Psup are expressed
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Fig. 25. Representation of TS JPK in plane (𝑝1, 𝑝2) and its approximation using TB JpK.
Table 2
Triangular fuzzy inputs and trapezoidal fuzzy outputs.

i [𝑥𝑖(𝜆)] [𝑦𝑖(𝜆)]

1 [0.5 + 0.1𝜆, 0.7 − 0.1𝜆] [5 + 2𝜆, 12 − 𝜆]

2 [1.25 + 0.25𝜆, 1.75 − 0.25𝜆] [9 + 2𝜆, 23 − 4𝜆]

3 [2 + 0.5𝜆, 3 − 0.5𝜆] [18 + 2𝜆, 40 − 7𝜆]

4 [3 + 0.5𝜆, 4 − 0.5𝜆] [23 + 4𝜆, 48 − 4𝜆]

5 [3.5 + 0.5𝜆, 4.5 − 0.5𝜆] [26 + 4𝜆, 54 − 5𝜆]

as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Psup = {𝒑|∀𝑖 ∈ {1,… , 20},∃𝑥𝑖 ∈ [𝑥𝑖],𝑴(𝑥𝑖,𝒑) ∈ [𝑦𝑖]}

= ∩
𝑖∈{1,…,20}

{𝒑|∃𝑥𝑖 ∈ [𝑥𝑖],𝑴(𝑥𝑖,𝒑) ∈ [𝑦𝑖]},

Pinf = {𝒑|∀𝑖 ∈ {1,… , 20},∀𝑥𝑖 ∈ [𝑥𝑖],𝑴(𝑥𝑖,𝒑) ∈ [𝑦𝑖]}

= ∩
𝑖∈{1,…,20}

{𝒑|∀𝑥𝑖 ∈ [𝑥𝑖],𝑴(𝑥𝑖,𝒑) ∈ [𝑦𝑖]}

= ∩
𝑖∈{1,…,20}

{𝒑 |
|

∃𝑥𝑖 ∈ [𝑥𝑖],𝑴(𝑥𝑖,𝒑) ∉ [𝑦𝑖] }.

(50)

CS Pinf represents a set of certain parameters, i.e., ∀ 𝑥𝑖 ∈ [𝑥𝑖], 𝑴(𝑥𝑖,
p) ∈ [𝑦𝑖], and CS Psup refers to a set of plausible (possible) parameters,
i.e., ∃ 𝑥𝑖 ∈ [𝑥𝑖], 𝑴(𝑥𝑖, p) ∈ [𝑦𝑖]. CSs Pinf and Psup are computed by
a projection method using the PyIbex solver, as previously detailed. TS
JPK = JPinf, PsupK in plane (𝑝1, 𝑝2) is shown in Fig. 25(a). Although the
inputs are uncertain (CIs), the CI regression leads to a set of parameters
in the form of box [p], i.e., a CI for each parameter 𝑝1 and 𝑝2.

For comparison purpose, when the possibilistic interval regression
proposed in Boukezzoula et al. (2018) is used, the set of parameters
is box [p] = [−1.99, −0.866]×[ −3.162, −1.67] [see Fig. 25(a)]. This
result does not introduce any specificity because of the uncertain inputs
and represents only an approximation of the set of parameters. Usually,
approximating uncertain solution JPK = JPinf, PsupK is always possible
using TB JpK = J[pinf], [psup]K, as shown in Fig. 25(b). However, this
approximation implies a loss in information.
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3.2.2. Example 4

Let us consider again the linear model, i.e., (48). Let us assume
that this model remains uncertain with fuzzy inputs/outputs that are
represented by IV-T1FSs. A process is realized where at fuzzy input
[𝑥𝑖(𝜆)], a fuzzy output [𝑦𝑖(𝜆)] is collected. This process is repeated five
times. The data are listed in Table 2 where the inputs are triangular
IV-T1FSs and the outputs are trapezoidal IV-T1FSs.

Because of the uncertainties stored in the inputs, at each 𝜆 level, the
set of parameters is no longer CS P(𝜆) but TS JP(𝜆)K=JPinf(𝜆), Psup(𝜆)K,
where Pinf(𝜆) and Psup(𝜆) are expressed as

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Psup(𝜆) = {𝒑(𝜆)|∀𝑖 ∈ {1,… , 5},∃𝑥𝑖 ∈ [𝑥𝑖(𝜆)],𝑴(𝑥𝑖,𝒑(𝜆)) ∈ [𝑦𝑖(𝜆)]}

= ∩
𝑖∈{1,…,5}

{𝒑(𝜆)|∃𝑥𝑖 ∈ [𝑥𝑖(𝜆)],𝑴(𝑥𝑖,𝒑(𝜆)) ∈ [𝑦𝑖(𝜆)]},

Pinf (𝜆) = {𝒑(𝜆)|∀𝑖 ∈ {1,… , 5},∀𝑥𝑖 ∈ [𝑥𝑖(𝜆)],𝑴(𝑥𝑖,𝒑(𝜆)) ∈ [𝑦𝑖(𝜆)]}

= ∩
𝑖∈{1,…,5}

{𝒑(𝜆)|∀𝑥𝑖 ∈ [𝑥𝑖(𝜆)],𝑴(𝑥𝑖,𝒑(𝜆)) ∈ [𝑦𝑖(𝜆)]}

= ∩
𝑖∈{1,…,5}

{𝒑(𝜆) |
|

∃𝑥𝑖 ∈ [𝑥𝑖(𝜆)],𝑴(𝑥𝑖,𝒑(𝜆)) ∉ [𝑦𝑖(𝜆)] },

(51)

where 𝒑(𝜆) = (𝑝1(𝜆), 𝑝2(𝜆)). For instance, TSs [[P(𝜆)]] = [[Pinf(𝜆),Psup(𝜆)]]
for 𝜆 = 0 and 𝜆 = 1 in plane (p1, p2) are shown in Fig. 26. Furthermore,
our method can be applied regardless of the value of 𝜆. According to
these results, we can state that if the inputs are uncertain (fuzzy), the
set of parameters is a TS [see Fig. 26(a)]. However, if the input is
crisp (at 𝜆 = 1 because the inputs are triangular IV-T1FSs), the set of
parameters is a CS, i.e., Pinf(1) = Psup(1) = P(1) [see Fig. 26(b)]. The
superposition of CSs Pinf(𝜆) and Psup(𝜆) (each is separately considered)
leads to that shown in Fig. 27. The stacking of TSs [[P(𝜆)]] leads to TGS,
which is shown in Fig. 28, using a sampling step size of 0.1 on 𝜆.

Fig. 27 shows that GS Psup(𝜆) satisfies the consistency condition,
namely, (18), and can be regarded as a T1FS. In contrast, GS Pinf(𝜆) is
pure GS and cannot be represented by a T1FS [see Fig. 27(a), where
GSs are illustrated for three values of 𝜆]. In this case, TGS shown in
Fig. 28 cannot be considered as a T2FS because the lower bound is not
a T1FS.
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Fig. 26. TSs JP(𝜆)K for 𝜆 = 0 and 𝜆 = 1 in plane (𝑝1, 𝑝2).
Fig. 27. GSs Pinf(𝜆) and Psup(𝜆) for 𝜆 = 0, 0.5, and 1.
Fig. 28. TGS JP(𝜆)K using a sampling step size of 0.1 on 𝜆.
18
4. Application to a real-world underwater robot

In this section, an application of the TGS concept is provided
through a real experiment using the Daurade underwater robot (see
Fig. 29 for Daurade and its main characteristics). The Daurade robot
was built by ECA robotics and used by Direction Générale
de l’Armement–Techniques Navales–French Army and Service Hydro-
graphique et Océanographique de la Marine to perform Rapid Environ-
ment Assessment (REA) missions.

REA is designed to survey the environmental conditions of a particu-
lar location to identify any existing or potential dangers. The objective
of this application is to determine the zone explored by the Daurade
robot in an uncertain environment. The Daurade mission is related to
the counter-mine warfare context where the objective is to map the
seafloor using acoustic sensors. The main objective of the REA missions
is to determine if the area of interest has been completely explored.
Therefore, Daurade is equipped with a side scan sonar (Klein 5500),
which is used to detect potential mines. Owing to this sonar, data are
recorded on a line perpendicular to the path of the sensor, and images
are formed by drawing these lines side by side. The portside lateral
sonar antenna corresponds to a 1-m black segment at the bottom left
of the robot. The approach proposed in this paper is used to validate
that the zone to be explored is totally covered. For safety reasons, the
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Fig. 29. Daurade underwater robot and its characteristics.
application aims at covering the total seafloor that is visible by sonar,
which considers all uncertain trajectories of the robot. The uncertainty
of the trajectories is induced by some disturbances such as noise sensors
in a hostile environment, ocean currents, and weather conditions.

Daurade is an autonomous underwater vehicle (AUV). An AUV is a
type of intelligent robot that works in underwater conditions (Huang
et al., 2016). Daurade is equipped with an embedding localization
system. Therefore, in its navigation under the surface, Daurade does
not receive any electromagnetic waves. In this case, global-navigation-
satellite systems, which are often used in terrestrial and aerial appli-
cations, cannot be applied in the underwater situation. In the present
study, during a navigation mission, the depth is assumed to be fixed,
and the position of Daurade is given by its 2D horizontal coordinates x
= (x1, x2). This position is delivered through an embedded system that
integrates an inertial navigation system (INS) coupled with a Doppler
Velocity Log (DVL) sensing speed. Once under water, no GPS data are
available, and the estimated position of the robot drifts with time.
Therefore, because of disturbances, Daurade is subjected to drifting
effects on its speed and consequently its position.

4.1. Application context

The application proposed in this paper is a mission of 46 min, which
has been performed in the Roadstead of Brest (Brittany, France) using
Daurade. It realizes a classical survey pattern composed of a set of par-
allel tracks at a depth of approximately 10 m. At the beginning of the
mission, the robot position is exactly known owing to GPS localization.
Initial condition x(0) is assumed equal to (0, 0). Coordinates (0, 0) for
(x1, x2) are considered as our navigation origin.

The Daurade robot is controlled to follow the ideal 2D desired
trajectory shown in Fig. 30(a) (solid line). In this case, when the robot
dives under the surface, it does not receive electromagnetic waves
anymore, and GPS cannot be considered.

Daurade can estimate its successive positions using INS, which is
coupled to a DVL sensing speed. However, because of some distur-
bances (noise sensors, ocean currents, and weather conditions), the
robot is subjected to some drifting effects on its speed, its heading, and
consequently its position. For instance, an experiment process has led
to the trajectory shown in Fig. 30(a) (dashed line). Therefore, uncer-
tainties (errors) in the robot trajectory are induced by the speed- and
heading-drift effects. For instance, when a drift on the speed of up to
±0.2% is considered, the 2D robot trajectory shown in Fig. 30(a) (solid
line) becomes uncertain and can be represented by a 2D tube (Rohou
et al., 2017) [see Fig. 30(b)].
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The 2D tube shown in Fig. 30(b) represents all possible trajectories
of the robot when the speed error is within the interval [−0.2%,
+0.2%]. In this framework, for any considered operating conditions
that are compatible with a speed drift of ±0.2%, this tube certainly fol-
lows the true trajectory. Because the position of Daurade is obtained by
integration of its speed, the uncertainty of the trajectory can normally
increase over time. We must note that trajectories in the tube that are
not realizable by the robot may exist.

A tube over domain [t0, t𝑓 ] can be regarded as a family (envelope
or interval) of dynamic trajectories x(⋅) (Rohou et al., 2017). The dot
notation (⋅) is used to distinguish between a whole trajectory x(⋅) from
a local evaluation x(t). Therefore, a tube that is denoted as [x](⋅) =
[x−(⋅), x+(⋅)] is an interval of trajectories x(⋅) such that

𝒙−(𝑡) ≤ 𝒙+(𝑡),∀𝑡 ∈ [𝑡0, 𝑡𝑓 ] (52)

An example of a 1D tube [x](⋅) is shown in Fig. 31 with its interval
bounds and an arbitrary possible trajectory x(t).

Because uncertain real parameters x are represented by intervals
[x] and uncertain vectors x are represented by boxes [x], the uncertain
trajectories are represented by tubes [x](⋅). A trajectory x(⋅) belongs to
tube [x](⋅) if ∀ t∈[t0, t𝑓 ], x(⋅)∈[x](⋅).

4.2. Trajectory uncertainty formalization

First, only the speed drifts are considered. The other drifts will be
discussed later. Therefore, to determine the uncertainties related to the
speed drift, experiments are performed under adverse (pessimistic) and
favorable (optimistic) operating conditions. In the pessimistic case, a
drift of up to ±1% on the robot speed is observed. In the optimistic
case, the speed drift is limited to ±0.2%. In the pessimistic case,
the speed data are most imprecise but contain the highest degree of
certainty, i.e., a degree of confidence 1-𝜆 = 1 (level 𝜆 = 0). However,
the optimistic situation indicates that the data are most precise but
contains the highest degree of uncertainty. This case refers to 𝜆 = 1
(zero confidence level). For simplicity of implementation, the evolution
between levels 𝜆 = 0 and 𝜆 = 1 is assumed to be linear. This assumption
is only an approximation, and supplementary information can be used
to improve this assumption. Therefore, the uncertainty related to the
speed drift (speed error) is characterized by a distribution of possibility
which is represented by trapezoidal IV-T1FS (Bisserier et al., 2010):

[𝐸speed (𝜆)] = [−0.01 + 0.008𝜆, 0.01 − 0.008𝜆] (53)

IV-T1FS [E𝑠𝑝𝑒𝑒𝑑(𝜆𝑖)], which is shown in Fig. 32, can be considered
as a set of nested confidence intervals. The degree of necessity for
CI [E (𝜆 )] to contain the value of E is N([E (𝜆 )]) = 1-𝜆 .
𝑠𝑝𝑒𝑒𝑑 𝑖 𝑠𝑝𝑒𝑒𝑑 𝑠𝑝𝑒𝑒𝑑 𝑖 𝑖
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Fig. 30. Daurade trajectories. (a) 2D Crisp trajectories. (b) 2D tube trajectory (uncertain trajectory).
Fig. 31. Representation of a 1D tube.
Fig. 32. IV-T1FS representing speed error [𝐸𝑠𝑝𝑒𝑒𝑑 (𝜆)].
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herefore, the confidence interval [E𝑠𝑝𝑒𝑒𝑑(𝜆𝑖)] is interpreted as follows:
‘I am certain to a (1-𝜆𝑖) degree that E𝑠𝑝𝑒𝑒𝑑 is in [E𝑠𝑝𝑒𝑒𝑑(𝜆𝑖)]’’. We
an easily show that degree of possibility 𝛱([E𝑠𝑝𝑒𝑒𝑑 (𝜆𝑖)]) = 1. More
enerally, a set of nested confidence intervals [E𝑠𝑝𝑒𝑒𝑑(𝜆𝑖)] with degrees
f certainty (1-𝜆𝑖) is equivalent to a distribution of possibility. For
ach level 𝜆, [E𝑠𝑝𝑒𝑒𝑑(𝜆)] is an interval, and the 2D horizontal robot
oordinates depend on 𝜆 and is denoted by 𝒙𝜆 = (𝑥𝜆1 , 𝑥

𝜆
2). In this case,
0

20
he robot trajectory is uncertain and is represented by tube [x𝜆](⋅) [see
ig. 33)].

The initial condition is always assumed to be equal to (0, 0) irre-
pective of the value of 𝜆. For example, 2D tubes trajectories [x𝜆](⋅)
nduced by the speed drift at 𝜆 = 0, 0.5, and 1 are shown in Fig. 33.
y integrating dimension 𝜆∈[0, 1], the stacking of the tubes leads to a
radual tube, which is shown in Fig. 33(d), when a sampling step size of
.2 on 𝜆 is used. This gradual tube can be considered as an object that
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Fig. 33. Daurade tube trajectories and a gradual tube [x𝜆](⋅) (due to the speed drifts).
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integrates all possible tube trajectories according to confidence degree
𝜆 .

4.3. Uncertain explored zone induced by speed drifts

The objective presented in this section is the characterization of the
explored (visible) zone when the robot evolves in a gradual tube. The
purpose of the characterization of this zone is to detect the presence of
dangerous objects such as underwater mines. During its navigation, the
robot is equipped with a scanner to observe a part of its environment.
When a degree of confidence is specified (a given value of 𝜆), a subset
of the seafloor exists at each time, which is denoted by V(𝒙𝜆(𝑡)) ⊂
2, that is visible by the robot (at each time, the visibility zone can
e considered as a disk around the robot position). When the robot
rajectory is crisp, the explored zone can be considered as CS Z, which
s expressed as

= ∪
𝑡≥0

V(𝒙𝜆(𝑡)). (54)

Eq. (54) refers to the union of all disks around the dynamic robot
osition. Conventionally, the robot trajectory is considered as crisp.
owever, this crisp trajectory rarely corresponds to the observed reality
ecause of the drifts in the robot position. In this case, the characterized
avigation zone does not reflect reality, and no reliability can be associ-
ted with it. However, and in contrast to the conventional approaches,
ll possible trajectories are considered in our approach. Thus, because
f the uncertainty in the trajectory (the robot is assumed to evolve in
he tube), the explored zone becomes an uncertain set, i.e., TS JZ(𝜆)K
 i

21
= JZinf (𝜆), Zsup(𝜆)K, whose bounds are computed using

⎧

⎪

⎨

⎪

⎩

Zsup(𝜆) = ∪
𝒙𝜆(⋅)∈[𝒙𝜆](⋅)

∪
𝑡≥0

V(𝒙𝜆(𝑡)),

Zinf (𝜆) = ∩
𝒙𝜆(⋅)∈[𝒙𝜆](⋅)

∪
𝑡≥0

V(𝒙𝜆(𝑡)).
(55)

In (55), Zinf(𝜆) is called the certainly explored zone (lower bound).
t corresponds to the set of all points in the seafloor that have certainly
een observed by sonar irrespective of the position of the robot in its
ube (for all feasible trajectories). In the same manner, Zsup(𝜆), which
epresents the explored plausible zone (upper bound), refers to the
et of all points in the seafloor that have been observed by sonar for
ome feasible trajectories and unobserved by it in some other feasible
rajectories. Moreover, the points that are outside Zsup(𝜆) are certainly
ot observed by the sonar. Points in penumbra Zsup(𝜆) \ Zinf(𝜆) are
ossibly (but not certainly) observed by the sonar. Tube [x0](⋅) shown
n Fig. 33 indicates the least precise but the most certain observation. In
ontrast, tube [x1](⋅) is the most precise but the least certain observa-
ion. Therefore, the confidence degree associated with each tube [x𝜆](⋅)
s (1−𝜆). By separately considering certain zone Zinf(𝜆) or plausible
one Zsup(𝜆), each of these zones is a CS at each level 𝜆. For example,
inf(0) and Zsup(0) are shown in Fig. 34. Furthermore, in the absence
f uncertainty where the robot trajectory is known, the explored zone
ecomes a unique CS, i.e., Zinf = Zsup= Z.

The stacking of CSs Zsup(𝜆) and Zinf(𝜆) according to the 𝜆 dimension
each of them separately considered) leads to GSs shown in Fig. 35. We
an state that these GSs obey the monotonicity (consistency) condition,
.e., (18), and can be regarded as T1FSs.
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Fig. 34. Lower and upper explored zones Zinf(0) and Zsup(0).
Fig. 35. Discrete representation of GSs Zinf(𝜆) and Zsup(𝜆) using a sampling step size of 0.1 on 𝜆.
Furthermore, for a given level 𝜆, merging two lower and upper
CSs Zinf(𝜆) and Zsup(𝜆) into a single entity results in an uncertain
explored zone, which is represented by TS JZ(𝜆)K = JZinf (𝜆), Zsup(𝜆)K.
For example, the resulting TSs at 𝜆 = 0, 0.5, and 1 are shown in
Figs. 36(a)–(c), respectively.

Moreover, TGS shown in Fig. 36(d) is obtained by the stacking of
TSs according to the 𝜆 dimension when a sampling step size of 0.1 on
𝜆 is used. This result could also have resulted from the fusion of GSs
shown in Fig. 35 in a unique entity, i.e., TGS. In this case, because lower
and upper GSs are T1FSs, the TGS is a TFS, which can be considered
as a T2FS.

Without going into some details, which are protected for con-
fidentiality reasons, the usefulness of this approach fits into a risk
decision-making strategy in an uncertain environment where zones
Zsup(𝜆) and Zinf(𝜆) can be considered as the higher and lower bounds of
uncertainty in the decision process. Therefore, a TGS can be considered
as a cartography which associates with each degree 𝜆, a certain (safest)
zone Zinf(𝜆), and a plausible safe zone Zsup(𝜆). Thus, decision makers
use some degree of confidence in formulating their decisions on the
safety of the submarine navigation (exploration) zone. Because Zsup(𝜆)
and Zinf(𝜆) are T1FSs, the certainty and reliability of the decision
can be quantified using the possibility theory (Boukezzoula et al.,
2018). Therefore, for chosen degree 𝜆 , which depends on the operating
𝑖

22
conditions (weather, sea currents, etc.), the degree of necessity for
Zinf(𝜆) is 1−𝜆𝑖. For instance, a decision maker can affirm that ‘‘I am
certain to a (1−𝜆𝑖) degree that certain zone Zinf(𝜆) is safe’’. The same
remark can be made on plausible zone Zsup(𝜆). From the methodologi-
cal perspective, we must note that the difference that can be achieved
between TGSs and GSs is similar to the difference that can be obtained
between T2FSs and T1FSs. Furthermore, in the TGS representation, no
consistency constraint is imposed for GSs. Therefore, TGSs can be used
to represent some uncertain quantities that are impossible to represent
by T2FSs. This point will be illustrated in the next section.

4.4. Uncertain explored zone induced by speed and heading drifts

In addition to the speed drifts shown by IV-T1FS in Fig. 32, we will
consider the heading drifts. To determine the uncertainty according
to the heading drifts, the same methodology presented in Section 4.2
is adopted where pessimistic and optimistic operating conditions are
considered. In the pessimistic situation, a drift of up to ±1.5% has been
observed on the robot heading. In the optimistic case, the heading drift
is limited to ±0.3%. In this case, the uncertainty (error) related to the
heading drifts is represented by trapezoidal IV-T1FS, i.e.,

[𝐸 (𝜆)] = [−0.015 + 0.012𝜆, 0.015 − 0.012𝜆]. (56)
heading
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For each level 𝜆, the underwater robot trajectory is in its tube. This
nduces an uncertain zone that is represented by a TS, as shown in
ig. 37, at 𝜆 = 0, 0.5, and 1.

Furthermore, 2D tube trajectories [x𝜆](⋅) induced by the speed and
eading drifts at 𝜆 = 0 and 𝜆 = 1 are shown in Fig. 38, which shows
hat the double uncertainty (speed and heading uncertainties) implies
large width of the tubes and, consequently, a significant overlap in

he trajectories. The stacking of these TSs leads to TGS, which is shown
n Fig. 37(d). According to these results, we can verify that if Zsup(𝜆)
s nested according to 𝜆, Zinf(𝜆) is not nested, and it does not obey
he consistency constraint [see Fig. 39(b)]. Therefore [and as shown
n Fig. 39(a)], we can observe that Zinf(1) ⊄ Zinf(0). This non-nesting
henomenon provides the GS and TGS concepts their full meanings. In
his case, the TGS, which is shown in Fig. 37(d), is an uncertain quantity
hat cannot be represented by a T2FS.

In this context, TGS shown in Fig. 37(d) can always be considered as
cartography that associates with each degree 𝜆, a certain safe explored
one Zinf(𝜆), and a plausible safe explored zone Zsup(𝜆). However,
he quantification of uncertainty using the possibility theory requires
Ss to be represented by T1FSs that are considered as distributions of
ossibility. Therefore, in a pure gradual framework, the uncertainty
 n

23
annot be quantified using the possibility measures but in terms of
elief functions (Boukezzoula et al., 2018).

For example, masses of belief m(Zinf(𝜆𝑖)) can be associated with
inf(𝜆𝑖), 𝜆𝑖∈ [0, 1], which are considered as focal elements. In this
ase, for a degree 𝜆𝑖, the belief function (Bel) represents the sum of
he masses that necessarily imply Zinf(𝜆). The plausibility measure (Pl)
efers to the sum of the masses that do not necessarily contradict
inf(𝜆). The Bel measure evaluates up to what extent it is certain that

he information represented by m(Zinf(𝜆𝑖)) implies that a point in the
eafloor ∈ Zinf(𝜆). The Pl measure evaluates up to what extent the
nformation represented by mass m(Zinf(𝜆𝑖)) does not contradict the
roposition: a point in the seafloor ∈ Zinf(𝜆). In this case, for a given
evel 𝜆𝑖, the safety probability of Zinf(𝜆) is in the interval bounded by
he Bel and Pl measures. The same reasoning can be used on Zsup(𝜆).
or more details, see Boukezzoula et al. (2018) on how uncertainty is
uantified using the possibility and belief-function theories in a gradual
ontext.

. Conclusion

In this paper, a new concept of TGSs is proposed. A TGS origi-
ates from the GS and TS concepts. TGS [[X(𝜆)]] = [[Xinf(𝜆),Xsup(𝜆)]]
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Fig. 37. TSs and TGS representations (due to the speed and heading drifts).
Fig. 38. Daurade tube trajectories due to the speed and heading drifts.
is an interval of GSs, which is delimited by two lower Xinf(𝜆) and
upper Xsup(𝜆) GS bounds. One originality of this approach is that it
24
can represent uncertain quantities that are not easily represented by
CSs, T1FSs, GSs, and/or T2FSs. Another originality is the provision
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Fig. 39. Representation of Zinf(𝜆).
of a new representation of uncertain GSs. Furthermore, logical and
arithmetical operations on uncertain GSs can be implemented using
the TGS formalism. The potential applicability of this approach has
been validated using application examples in solving fuzzy SoEs, fuzzy
regression contexts, and real-world application using an underwater
robot. Furthermore, the proposed method can be applied to more
complex real-world applications in several domains such as in uncer-
tain linear and nonlinear control and uncertain linear and nonlinear
optimization problems, among others. In their philosophy of represen-
tation, GSs and TGS are linked to T1FSs (Dubois and Prade, 2008)
and T2FSs (Mendel, 2001; Mittal et al., 2020), respectively. Therefore,
under some conditions, a GS can be considered as a T1FS. Similarly, a
TGS can be considered as a particular case of a T2FS. In a short term,
work will be devoted to a deep analysis and comparison between TGS
and T2FSs. Therefore, from the methodological perspectives, the TGS
and T2FS concepts are not contrary but rather complementary. Another
interesting objective is to deploy TSs and TGSs in fuzzy optimization
problems, synthesis of uncertain controllers, and stability study of
control structures. For instance, by assuming a dynamical system, if we
consider a controller and a Lyapunov function to study the stability of
a closed control loop, we can possibly quantify the zones of instability,
certain stability, and plausible stability. In the long term, we will focus
on the development of methodologies that are capable of explaining
existing links between multigranulation rough sets (Lu, 2020), T2FSs,
and TGSs so that they can be integrated to solve complex learning,
decision, and control problems. In this context, special attention will be
provided to fuzzy and gradual deep-learning methods. To achieve more
accurate results, this perspective will require a decade of research and
development.
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