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Abstract. When implementing a non-continuous controller for a cyber-
physical system, it may happen that the evolution of the closed-loop system
is not anymore piecewise differentiable along the trajectory, mainly due to
conditional statements inside the controller. This may lead to some unwanted
chattering effects than may damage the system. This behavior is difficult to
observe even in simulation. In this paper, we propose an interval approach to
characterize the sliding surface which corresponds to the set of all states such
that the state trajectory may jump indefinitely between two distinct behav-
iors. We show that the recent notion of thick sets will allows us to compute
efficiently an outer approximation of the sliding surface of a given class of
hybrid system taking into account all set-membership uncertainties. An ap-
plication to the verification of the controller of a child swing is considered to
illustrate the principle of the approach.

1 Introduction

The verification of the properties of cyber-physical systems [17, 31] is a funda-
mental problem for which set membership techniques have provided original
and efficient results [27] [26].

Different types of such approaches have been studied for the verification.
Some require the integration of nonlinear differential equations [30][32][20].
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Others are based on positive invariance approaches [1][19]. For the numerical
resolution some methods build a grid of the state space [29][8] which makes
them computationally expensive. Lyapunov-based methods [25], level-set
methods [21], or barrier functions [4] are attractive, since they do not per-
form any integration through time. Now, these methods generally require
a parametric expression for candidate Lyapunov-like functions which is not
always realistic.

This paper considers the verification of controlled cyber-physical systems
[23] which include both a physical system and a control algorithm. The
verification requires approaches coming from invariance approaches [3], static
analysis [15] and abstract interpretation [7].

To detect the discontinuities, we propose in this paper to characterize the
set of states around which undesirable switching phenomena could occur.
The corresponding zone is called a sliding surface which may become thick
in case of uncertainties. In practice, the system can be trapped inside the
sliding surface without any possibility to escape.

In [16][28], it has been shown that sliding surfaces can be characterized
rigorously using interval techniques [22][18] for hybrid systems without any
uncertainties. In this paper, we extend this approach to uncertain hybrid
systems.

The paper is organized as follows. Section 2 provides the formalism and
defines sliding surfaces. Section 3 introduces thick sets that will allow us
to extend the concept of sliding surfaces to the case of uncertainty. Section
4 shows how our approach can be used to validate the controller of a child
swing. Section 5 concludes the paper.

2 Formalism

2.1 Hybrid system

In this paper, we consider a specific class of hybrid dynamical systems of the
form

S (A) :

{
ẋ = fa (x) if x ∈ A
ẋ = fb (x) if x ∈ B = A (1)

where

� fa, fb :Rn → Rn are continuous and differentiable,

� A is a closed subset of Rn that can be defined by inequalities linked by
Boolean operators.
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Figure 1: Automaton representing our Cyber Physical System

This definition is illustrated by the automaton of Figure 1, taking the con-
ventions used for hybrid systems [2, 14]. The red arrows show transitions
which may generate the sliding phenomena that are studied in this paper.

2.2 Algebra of closed sets

Given a set X ⊂ Rn, we denote by cl(X) the smallest closed subset of Rn

which contains X. The intersection of closed sets and the finite union of
closed sets if still a closed set. We define the closed complementary A of the
closed set A as

A = cl{x|x /∈ A}.
The boundary of the closed set A is denoted by ∂A. The closed set A is
topologically stable if ∂A = ∂A.

For instance, the disk of D = {x ∈ R2|‖x‖ ≤ 1} is topologically stable
with D = {x ∈ R2|‖x‖ ≥ 1} and ∂D = ∂D = {x ∈ R2|‖x‖ = 1}. But the
circle C = {x ∈ R2|‖x‖ = 1} is not topologically stable. Indeed C = cl{x ∈
R2|‖x‖ 6= 1} = R2 and ∂C = {x ∈ R2|‖x‖ = 1} 6= ∂C = ∅.

In this paper, we will assume that

1. closed sets A involved in the formulation (1) are topologically stable,
i.e., they have the same boundary as their interior.

2. the closed sets can be defined as a finite composition (with unions,
intersections) of sets of the form

A = {x ∈ Rn | c(x) ≤ 0}

where c is a smooth function.

2.3 Lie derivative

We recall the notion of Lie derivative that will be used to define the sliding
surfaces. Consider a function c : Rn → R. The Lie derivative of c with
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respect to the field f : Rn → Rn as

Lc
f (x) =

dc

dx
(x) · f (x) . (2)

We also define the Lie set as

Lc
f = {x|Lc

f (x) ≤ 0} . (3)

In our context, the field depends on i ∈ {a, b} (see 1). We will write

Lc
i (x) = Lc

fi
(x)

Lc
i = Lc

fi

(4)

2.4 Sliding surface

The sliding surface S (A) [12] for S (A) (see Equation 1) is defined as the
largest subset (with respect to the inclusion ⊂) of the boundary ∂A of A
such that the system can stay inside for a non-degenerate interval of time.

If A is defined by the inequality c (x) ≤ 0, then B = A is defined by
c (x) ≥ 0 and the boundary by c (x) = 0 (see Subsection 2.2). The sliding
surface is

S (A) = ∂A ∩ {x | Lc
a (x) ≥ 0 ∧ Lc

b (x) ≤ 0}
= ∂A ∩ Lc

a ∩ Lc
b.

(5)

Figure 2, taken from [16], illustrates the principle of this proposition in
the case where A is described by one inequality c (x) ≤ 0. The boundary ∂A
of A is composed of four parts :

∂A ∩ Lc
a (q) ∩ Lc

b (q) → magenta

∂A ∩ Lc
a (q) ∩ Lc

b (q) → red
∂A ∩ Lc

a (q) ∩ Lc
b (q) → yellow

∂A ∩ Lc
a (q) ∩ Lc

b (q) → black

One trajectory (dotted line) x(t) is also represented. Before the yellow arc,
c (x) is positive and decreases. When it crosses the yellow arc, c (x) = 0 for
some isolated time point t1. Then x(t) remains inside A until it reaches the
red arc. It slides in the red arc for some non-degenerate time interval. When
x(t) reaches the magenta arc, it leaves A.

We recall the following result that has been proved in [16].

Proposition 1. Consider two closed sets A1 and A2. As illustrated by Figure
3, we have

(i) S (A1 ∩ A2) = (S (A1) ∩ A2) ∪ (S (A2) ∩ A1)

(ii) S (A1 ∪ A2) =
(
S (A1) ∩ A2

)
∪
(
S (A2) ∩ A1

) (6)
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Figure 2: Sliding surface S (A) (red) for A = {x|c (x) ≤ 0}

Figure 3: Illustration of Proposition 1, the sliding surfaces are painted red
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Figure 4: Sliding surfaces for A = A1 ∪ (A2 ∩ A3)

Proposition 1 can be used to compute the sliding surface of a set A as
soon as A can be defined by inequalities connected by Boolean operators such
as and, or, not. The proposition is illustrated by Figure 4 in the case where
A = A1 ∪ (A2 ∩ A3) and Ai = {x|ci (x) ≤ 0}. The trajectory (green) slides
twice, first on ∂A1, then it slides on ∂A2. The sliding surfaces are painted
red.

2.5 Sliding surface in case of uncertainties

In case of uncertainties, the system defined in (1) can be described as

Sp :

{
ẋ = fa (x) if x ∈ A
ẋ = fb (x) if x ∈ A

but now, A, fa, fb are uncertain. For instance, they may depend on a parame-
ter vector p ∈ [p] which models the uncertainties. Recall that from Equation
5, the sliding surface satisfies

S = ∂A ∩ Lc
a ∩ Lc

b

Assume that 
A⊂ ⊂ A ⊂ A⊃

Lc⊂
a ⊂ Lc

a ⊂ Lc⊃
a

Lc⊂
b ⊂ Lc

b ⊂ Lc⊃
b

The sliding surface satisfies

∂A⊂ ∩ Lc⊃
a ∩ Lc⊂

b︸ ︷︷ ︸
S⊂

⊂ S ⊂ ∂A⊃ ∩ Lc⊂
a ∩ Lc⊃

b︸ ︷︷ ︸
S⊃
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Figure 5: The set S⊃ (red) is an upper approximation of the sliding surface
Sp to be enclosed

and we can write

S ∈ [[S⊂,S⊃]] = ∂[[A⊂,A⊃]] ∩ [[Lc⊂
a ,Lc⊃

a ]] ∩ [[Lc⊂
b ,Lc⊃

b ]]

using the thick set formalism described in the following section. In our ap-
plication, is is clear that S⊂ = ∅, since the set to be enclosed is a surface
that has no volume. The set S⊃ is an upper approximation of this surface as
illustrated by Figure 5.

3 Thick sets

When dealing with uncertainties, the evolution equation involved in Equation
1 and the sets A,B become uncertain. The sliding surface to be computed
becomes thick and now has an interior. To compute an inner and an outer
approximation of this approximation, we now introduce the recent concept
of thick set with the associated algebra [10].

3.1 Definition

If an interval of R is an uncertain real number, a thick set is an uncertain
subset of Rn. More precisely, a thick set is an interval of the powerset of Rn

equipped with the inclusion ⊂ as an order relation.
A thin set is a subset of Rn. It is qualified as thin because its boundary

is thin.
Denote by (P(Rn),⊂), the powerset of Rn equipped with the inclusion

⊂ as an order relation. A thick set [[X]] of Rn is an interval of (P(Rn),⊂).
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If [[X]] is a thick set of Rn , there exist two subsets of Rn , called the subset
bound and the superset bound such that

[[X]] = [[X⊂,X⊃]] = {X ∈ P(Rn)|X⊂ ⊂ X ⊂ X⊃}. (7)

The subset X⊃\X⊂ is called the penumbra and plays an important role
in the characterization of thick sets [9]. Thick sets can be used to represent
uncertain sets (such as an uncertain map [11]) or soft constraints [6]. It can
also can also be extended to fuzzy sets as shown in [13][5].

3.2 Algebra

We now show how we can define operations for thick sets (as a union, inter-
section, difference, etc.). The main motivation is to be able to compute with
thick sets.

Consider two thick sets [[X]] = [[X⊂,X⊃]] and [[Y]] = [[Y⊂,Y⊃]]. We define
the following operations [9] which corresponds to an interval extension in the
sense of Moore [22] applied to thick sets:

[[X]] ∩ [[Y]] = [[X⊂ ∩ Y⊂,X⊃ ∩ Y⊃]]
[[X]] ∪ [[Y]] = [[X⊂ ∪ Y⊂,X⊃ ∪ Y⊃]]

[[X]] = [[X⊃,X⊂]]

∂[[X]] = [[X]] ∩ [[X]]
f([[X]]) = [[f(X⊂), f(X⊃)]]

f−1([[X]]) = [[f−1(X⊂), f−1(X⊃)]]

(8)

We could also have defined these operations as follows:

[[X]] � [[Y]] = [[
⋂
{X � Y,X ∈ [[X]],Y ∈ [[Y]]} ,

⋃
{X � Y,X ∈ [[X]],Y ∈ [[Y]]}]]

where � is a binary operator on sets such as ∪,∩, \, . . . , and

φ[[X]] = [[
⋂
{φ(X),X ∈ [[X]]} ,

⋃
{φ(X),X ∈ [[X]]}]]

where φ is a unary operator on sets such as ∂X,X, . . .
Some of these operations are illustrated by Figure 6. The first subfigure

represents the thick set [[X]] = [[X⊂,X⊃]]. The lower bound X⊂ is painted red;
the penumbra X⊃\X⊂ is painted orange; and all x outside the upper bound
X⊃ of [[X]] is in blue.
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Figure 6: Operations between two thick sets. Red means inside, Blue means
outside and Orange is for the penumbra
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3.3 Atoms

To compute with thick sets, we first need to generate elementary thick sets,
called the atoms. They can be given by geometrical sets such as boxes,
polygons or disks. They can also constructed from an expression of the form
f(x,p) ≤ 0, where f : Rn × Rm → R and p ∈ [p] is the parameter vector.
This can be done by the following operator

[[σ]](f, [p]) = [[X⊂,X⊃]]

with
X⊂ = {x|∀p ∈ [p]f(x,p) ≤ 0}
X⊃ = {x|∃p ∈ [p]f(x,p) ≤ 0}.

4 Characterizing the sliding surface of an un-

certain controlled child swing

In this section, we propose an original academical example which illustrates
how the thick set algebra can be used to characterize sliding surfaces of
uncertain hybrid systems.

4.1 Pendulum

Consider a pendulum depicted in Figure 7, left. Its state representation is(
ẋ1
ẋ2

)
=

(
x2

− sinx1 + p1 + u

)
The pendulum represents a child swing, u is a security break and p1 is

a perturbation which can be associated to the force generated by the child.
In a nominal behavior, we have, u = 0 but when the energy of the swing
becomes too large, the controller generates a friction u = −x2 to slow down
the swing. More precisely, the following controller is:

if c(x) < 0 then u = 0 else u = −x2,

where c(x) = x21 + x22 − 1 plays the role of the energy. The corresponding
vector field is represented in Figure 7, right with two different trajectories
(red) for p1 = 0.

10



Figure 7: Child swing with state vector x = (x1, x2)

4.2 Thick approximation of the sliding surface

Assume that, when the controller alternates indefinitely between u = 0
(break off) and u = −x2 (break on), the controller may be damaged. We
want to compute the sliding states which can be difficult to detect with sim-
ulations.

We have the two fields

fa =

(
x2

p1 − sinx1

)
, fb =

(
x2

p1 − sinx1 − x2

)
where p1 ∈ [p1] is an uncertain variable. We have

Lc
a (x) = dc

dx
(x) · fa (x)

=
(

2x1 2x2
)
·
(

x2
p1 − sinx1

)
= 2x1x2 + 2x2(p1 − sinx1)

(9)

and
Lc

b (x) = dc
dx

(x) · fb (x)

=
(

2x1 2x2
)
·
(

x2
p1 − sinx1 − x2

)
= 2x1x2 + 2x2(p1 − sinx1 − x2)

To take into account the fact that x1 and x2 are given to the controller
with a given bounded error p2 ∈ [p2], p3 ∈ [p3], we take

A =
{
x| (x1 + p2)

2 + (x2 + p3)
2 − 1 ≤ 0

}
.
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Figure 8: The orange zone corresponds to the outer approximation S⊃ of the
sliding surface S

To compute the paving associated to the expression (5), we need to build
the atoms [[A]], [[Lc

a]], [[Lc
b]] as explained in Subsection 3.3.

If we choose [pi] = [−0.1, 0.1],∀i, we get the approximation represented
by Figure 8, Left. It is obtained by the following statements

1 [p1] := [p2] := [p3] := [−0.1, 0.1]
2 [[Lc

a]] := [[σ]](2x1x2 + 2x2(p1 − sinx1), [p1])
3 [[Lc

b]] := [[σ]](2x1x2 + 2x2(p1 − sinx1 − x2), [p1])
4 [[A]] := [[σ]]((x1 + p2)

2 + (x2 + p3)
2 − 1, [p2]× [p3])

5 [[S]] := ∂[[A]] ∩ [[Lc
a]] ∩ [[Lc

b]]

We note that S⊂ = ∅, which is consistent with the fact that the surface to be
approximated has no volume. This is the reason why the outer approximation
S⊃ of the surface S corresponds to the penumbra of the thick set [[S]].

4.2.1 One more condition

We extend our example by adding another condition in order to illustrate
the facility of using thick set algebra to compute with uncertain sets.

To avoid to frighten the child on the swing, we want that when the swing
goes strongly backward, the break does not switch on. More precisely, the
controller becomes

if x21 + x22 − 1 ≤ 0︸ ︷︷ ︸
c1(x)

≤ 0 or x2 + 0.2︸ ︷︷ ︸
c2(x)

≤ 0 then u = 0 else u = −x2.

The or condition can be treated using Proposition 1. We have
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Lc2
a (x) = dc2

dx
(x) · fa (x) = p1 − sinx1 (10)

and
Lc2

b (x) = dc2
dx

(x) · fb (x) = p1 − sinx1 − x2 (11)

An enclosure [[S]] for the sliding surface S is represented by Figure 8,
Right. It is obtained by the following statements

1 [p1] := [p2] := [p3] := [−0.1, 0.1]
2 [[Lc1

a ]] := [[σ]](2x1x2 + 2x2(p1 − sinx1), [p1])
3 [[Lc1

b ]] := [[σ]](2x1x2 + 2x2(p1 − sinx1 − x2), [p1])
4 [[Lc2

a ]] := [[σ]](p1 − sinx1, [p1])
5 [[Lc2

b ]] := [[σ]](p1 − sinx1 − x2, [p1])
6 [[A1]] := [[σ]]((x1 + p2)

2 + (x2 + p3)
2 − 1, [p2]× [p3])

7 [[A2]] := [[σ]](x2 + 0.2 + p3, [p3])

8 [[S1]] := ∂[[A1]] ∩ [[Lc1
a ]] ∩ [[Lc1

b ]]

9 [[S2]] := ∂[[A2]] ∩ [[Lc2
a ]] ∩ [[Lc2

b ]]

10 [[S]] :=
(

[[S1]] ∩ [[A2]]
)
∪
(

[[S2]] ∩ [[A1]]
)

A Python program associated with this example can be tested here:

www.ensta-bretagne.fr/jaulin/swing.html

5 Conclusion

In this paper, we have presented a new approach based on thick sets to
enclose the sliding surfaces of a cyber-physical system in case of interval
uncertainties. If the state of the system is on this sliding approximation,
it may hesitate indefinitely between two different strategies. As a result,
the system may be trapped on the sliding surface and the system may be
damaged. It is thus important to compute an approximation of the sliding
surface.

An expression given with thick sets can also be written as a quantified
constraint satisfaction problem [24]. The main advantage of using a thick
set expressions is that it corresponds to an interval extension of the thin set
expression we want to compute. Thick sets is thus an interval representation
of the uncertainties attached to the set we want to compute. Thick set
arithmetic can also be interpreted as an interval arithmetic used to compute
with uncertain subsets of Rn, where as the classical interval arithmetic is
used to compute with uncertain real numbers.
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