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SUMMARY

The problem considered here is state estimation in the presence of unknown but bounded state perturba-
tions and measurement noise. In this context, most available results are for linear models, and the purpose of
the present paper is to deal with the non-linear case. Based on interval analysis and the notion of set
inversion, a new state estimator is presented, which evaluates a set estimate guaranteed to contain all values
of the state that are consistent with the available observations, given the perturbation and noise bounds and
a set containing the initial value of the state. To the best of our knowledge, it is the "rst estimator for which
this claim can be made. The precision of the set estimate can be improved, at the cost of more computation.
Theoretical properties of the estimator are studied, and computer implementation receives special attention.
A simple illustrative example is treated. Copyright � 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper is devoted to recursive non-linear state estimation for discrete-time systems in the
presence of bounded state perturbation and measurement noise. The problem here is to charac-
terize the set of all the state vectors of a given model that are compatible with the information
available. Unknown and possibly time-varying parameters can also be considered.

In the context of bounded errors, the model is usually assumed to be linear, and ellipsoids can
then be computed at each step, guaranteed to contain the present state, see, e.g. References [1}7].
The computation of these ellipsoids closely parallels Kalman "ltering, alternating prediction and
correction phases. For non-linear models, the problem is much more di$cult, since the set is
usually non-convex and may even be non-connected, and relatively few results are available.



Assuming a linear observation equation, and linearizing the state equation, Shamma and
Kuang-Yang Tu [8] enclose the set of all possible state values in a polytope. The linearization
error may be included in the state perturbation. Techniques bounding the state of systems with
poorly known state equations and inputs are presented in References [9, 10], with applications in
waste processing. These results require a special structure of the state equation and noise-free
outputs. Lichtenberg and Lunze [11] propose a description of the state, input and output of the
model using qualitative values. A qualitative observer is then obtained, providing a state estimate
that may consist of several numerical vectors. The main limitations of this technique are that the
transformation of a non-linear model into a qualitative model does not allow the estimates to be
guaranteed and that the complexity of the description grows very fast with the number of
qualitative values, even when the number of state variables is small.

Our purpose here is to characterize the set of all the state vectors that are consistent with the
information available, and to do so recursively, thus facilitating real-time implementation. This
characterization will be performed with the help of interval analysis, by computing outer
approximations by unions of boxes, or subpavings, which can, in principle, be made as accurate as
desired as we shall see. Interval techniques have already been applied to building interval Kalman
"lters for uncertain linear models [12], but no guarantee was given that the state would belong to
the set estimate computed. In contrast, the technique to be presented here guarantees its results.
To the best of our knowledge, it is the "rst one that can make this claim in the context of
non-linear state bounding when the state is perturbed and the measurements are noisy. Prelimi-
nary results concerning this estimator were presented in Reference [13].

In Section 2, an idealized state estimator is presented and an illustrative example is introduced.
The basic notions of interval arithmetic are recalled in Section 3. They are then used to build an
approximate but guaranteed non-linear state estimator using the notion of subpaving presented
in Section 4. The correction and prediction steps of this estimator are, respectively, presented in
Sections 5 and 6. Section 7 summarizes the algorithm and establishes theoretical properties of the
corresponding estimator, which is then applied to the illustrative example of Section 2. Con-
clusions are presented in Section 8, followed by three appendices.

2. IDEALIZED STATE ESTIMATOR

This state estimator is based on interval computation. A scalar interval [x] is a closed, connected
and bounded subset of �. It may be characterized by its lower bound x and upper bound xN . Thus,
[x]"�x3� �x)x)xN �. An n-dimensional box (or vector interval ) [x] is the Cartesian product
of n scalar intervals [x

�
].

Consider non-linear and possibly time-varying system de"ned by

xl��
"fl (xl , wl),

yl"hl (xl)#vl ,
l"0, 1,2 (1)

where xl3�� and yl3�� are, respectively, the state and output vectors. The initial state x
�

is
assumed to belong to some prior compact set X

�
L�� . �wl� and �vl� are unknown state

perturbation and measurement noise sequences, respectively, assumed to belong to the known
box sequences �[w]l� and �[v]l�. fl and hl are known functions (possibly de"ned by "nite
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algorithms). The problem to be considered is the recursive estimation of the smallest set
guaranteed to contain all values of xl compatible with the information available just after the lth
measurement, i.e. with

Il"�X
�
, �[w]

�
�l��
���

, �y
�
, [v]

�
�l
���

� (2)

Remark 1

The function fl may, of course, depend on a vector of deterministic inputs ul3��, omitted in (1)
for the sake of simplicity. In such a case, Il should also include u

�
, i"0,2, l!1.

Remark 2

To simplify the presentation, the bounded measurement noise is supposed to be additive in (1).
Other observation equations such as yl"hl (xl , vl) or gl (yl , vl )"hl (xl) can also be considered,
provided that the characterization of the set of all the state vectors at time l that are consistent
with the output vector yl and the bounds on vl can be formulated as a set-inversion problem, see
Section 5.

Remark 3

The more general problem of joint state and parameter estimation can easily be treated. It
su$ces to replace xl by an extended state x�l"(x�l , p�l )� incorporating the unknown parameter
vector pl3�� , assumed to belong to some prior compact set P

�
L�� . An evolution equation for

the parameters is then needed; it may, for instance, be pl��
"pl#w�l , with �w�l� included in some

known interval sequence �[w�]l�. Thus, an extended state equation can be written as

x�l��
"�

xl��
pl��

�"�
fl (x�l , wl , w�l )

pl#w�l �"f �l (x�l , w�l),

yl"h�l (x�l )#vl ,

l"0, 1,2 (3)

where w�l"(w�l , (w�l)�)�3[w�]l"([w]�l , [w�]�l )� and x�
�
3X�

�
"X

�
�P

�
L����� . When speci-

"c knowledge about some deterministic dependency of pl��
in pl and xl is available, this

knowledge can readily be incorporated in (3).

2.1. Idealized algorithm

Assume that Xl is some set guaranteed to contain xl . De"ne the predicted set Xl�
as

Xl�
"fl (Xl , [w]l)"�fl (x, w) �x3Xl , w3[w]l� (4)

This predicted set is guaranteed to contain xl��
. Moreover, let Yl��

be the set of all possible
values of the noise-free output, when the value of the measured output is yl��

Yl��
"yl��

![v]l��
"�yl��

!v �v3[v]l��
� (5)
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and letX�l��
be the set of all values of the state at time l#1 that could have led to an observation

y in Yl��

X�l��
"h��l��

(Yl��
)"�x3�� �hl��

(x)3Yl��
� (6)

Then, the corrected set

Xl��
"Xl�

�X�l��
(7)

is also guaranteed to contain xl��
.

Procedure (4)}(7) can be applied recursively starting from X
�
, assumed to be available a priori .

This is summarized in the following idealized algorithm.

Algorithm 1

For l"0 to lM , do

1. Prediction: Xl�
"fl(Xl , [w]l).

2. Correction: Xl��
"h��l��

(Yl��
)�Xl�

. �

It is easy to show that Xl as evaluated by Algorithm 1 is the smallest set guaranteed to contain
xl that can be computed from Il and (1).

Except in very particular cases, it is not possible to evaluate the sets Xl�
and Xl��

exactly. Our
purpose will therefore be to get guaranteed outer approximations of these sets, as accurate as
possible. Before presenting the basic blocks of an algorithm for this task, a simple illustrative
example will be introduced, which will be treated in Section 7.

2.2. The bouncing-ball example

Estimating the state of a bouncing ball is not as simple as it may seem, because of the
discontinuity in the state equation introduced by the bounce. This problem is representative of
a number of di$culties encountered, e.g. when describing the motion of walking robots or various
hybrid systems [14]. The solution presented, in what follows, could easily be transposed to more
complex systems.

Consider an idealized ball with radius � bouncing on the #oor. The motion of this ball is
assumed to be one dimensional, and its state is characterized by its height x

�
and speed x

�
"x�

�
.

Our purpose is to estimate x"(x
�
,x

�
)� when the ball is dropped with an initial state x

�
only

known to belong to X
�
. The discrete-time measurements of its height, are assumed to satisfy

yl"hl(xl)#vl"(1 0)xl#vl (8)

with vl belonging to some known interval. Neglecting friction with the atmosphere, the motion of
the ball is described by

x�
�
"x

�

x�
�
"!g

(9)
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during the fall, and

x
�
Px

�

x
�
P!�(1!�)x

�

(10)

when the ball hits the #oor. The portion � of the energy lost during the bounce is unknown but
assumed to belong to some known interval. So � can be viewed as a bounded perturbation
entering non-linearly in the state equation. By exact discretization, a "nite algorithm f evaluating
xl��

for a given numerical value of xl and � is easily constructed, see Table A1 in Appendix A.

3. INTERVAL ARITHMETIC

The prediction and correction steps of Algorithm 1 can be implemented in an approximate but
guaranteed way using interval computation and subpavings, which provide powerful tools for the
description of sets. The aim of this section is to recall the few basic notions needed. For a more
detailed presentation of interval arithmetic, see, e.g. Reference [15] or [16].

An important characteristic of an interval [x] is its width w ([x])"x� !x . The width of an
n-dimensional box [x] is w ([x])"max

���,2, �
w([x

�
]).

Interval arithmetic extends the usual arithmetical operations on real numbers to intervals
through the generic formula

∀
3
3�#,!,�, /�, [x]

3
[y]"�x

3
y �x3[x] and y3[y]� (11)

All these operations are inclusion monotonic [16]:

if [x	]L[x] and [y	]L[y], then [x	]
3
[y	]L[x]

3
[y] (12)

This means that uncertainty on their results cannot deteriorate if uncertainty on their arguments
is decreased, which suggests algorithms where intervals may be split into subintervals to increase
precision. An extension to vector and matrix intervals, necessary for state estimation, can be
found in References [15, 16].

Let f be a real function of a real variable, de"ned on DL�. The de"nition of this function is
extended to intervals [x]LD as follows:

f ([x])"� f (x) �x3[x]� (13)

In general, it is not possible exactly to characterize the image set f ([x]), which is not even
necessarily an interval. The fundamental notion of an inclusion function makes it possible to
compute an interval guaranteed to contain this image set. An inclusion function associated with
f will be denoted by f

� 	
; for any [x]LD, it should satisfy

f ([x])-f
� 	
([x]) (14)

NON-LINEAR STATE BOUNDING 197

Copyright � 2002 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2002; 16:193}218



In addition to being inclusion monotonic, it is desirable that f
� 	
([x]) converge to f ([x]) when

w ([x]) tends to zero. When f
� 	
([x]) possesses this property, it is said to be convergent. Among the

in"nitely many inclusion functions associated with any given real function f, it is of interest to
obtain one that is as accurate as possible.

Various methods for building a convergent inclusion function from the real function f are
available. The simplest one is to replace all the occurrences of x in the formal expression of f by
[x] and all operators and elementary functions by their interval counterparts. One thus gets
a natural inclusion function. Usually, however, this inclusion function is far from accurate,
because of the pessimism introduced by interval computations as soon as there are several
occurrences of x. The accuracy can often be improved by rewriting f so as to decrease the number
of occurrences of x in its formal expression. Various other techniques of obtaining e$cient
inclusion functions are available, especially when the width of [x] is small enough [16].

4. SUBPAVINGS

4.1. Dexnition and properties

An n-dimensional subpaving XK is a union of non-overlapping boxes of ��. The set of all the
subpaving of �� is denoted by K(��). To characterize the precision with which a subpaving may
approximate a compact subset of ��, it is necessary to introduce a distance between such sets. Let
A and B be compact subsets of ��. The Hausdor+ distance based on the in"nity norm is
d(A, B)"max�d

�
(A, B), d

�
(B, A)�, where d

�
(A, B)"maxa
A

d
�
(a, B), with d

�
(a, B)"minb
B

d
�

(a, b) and d
�

(a, b)"max
���,2, �

��a
�
!b

�
��. Hausdor+ distances such as d(. , .) are metrics for the

set of compact subsets of �� [17].
Let A, B, and C be three compact subsets of �� and let [x] be a box of ��. The following

properties are straightforward to prove.

Property 1. If x3[x], then w([x])/2)d(x, [x]))w([x]).
Property 2. If BL[x] and w ([x]))
, then d(B, [x]))
.
Property 3. If w([x]))
 and d

�
([x], A)'
, then [x]�A"�.

Property 4. If BLC, then d
�
(B, C)"0 and d

�
(A, C))d

�
(A, B).

Property 5. If A�BO� and A�CO�, then d(A�B, A�C))d(B, C).
Property 6. If CO�, then d (A�C, B�C)"d (A, B).

The following result shows that outer approximations of compact subsets of �� can be obtained
at any desired precision using subpavings.

Proposition 1

For any compact subset A of �� and positive real 
'0, there exists XK �3K(��) such that
ALX�

Y and d (A, X�
Y ))
.

Proof. As A is compact, it is bounded and there exists a box [x]AL�� such that AL[x]A .
Let X�A

Y be a subpaving built by successive bisections of [x]A into subboxes [x]
�
, i"1,2, iN , all
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Figure 1. Set X (in dark grey) described using the subpaving XK (in light grey).

with width less than 
. Assume X�
Y is built by the following algorithm

For i"1 to iM
if d

�
([x]

�
, A )'
, remove [x]

�
from X���A

Y to get X�A
Y ,

else, X�A
Y
"X���A

Y

X�
Y "X�

N
A
Y

If d
�
([x]

�
, A)'
, then from Property 3, [x]

�
�A"�. For each i"1,2, iN , ALX�A

Y , so
d
�
(A, X�

Y )"0 from Property 4. Moreover,

d
�
(X�

Y , A)"max
x3X�

Y
d
�
(x, A)

" max
[x]

�
3X�

Y �max
x3[x]

�

d
�
(x, A)�)


by construction and thus d(A, X�
Y ))
. �

As subpavings consist of boxes, interval operations are easily extended to subpavings. The way
in which subpavings are described will, however, have a direct impact on the complexity of these
operations and must therefore be designed carefully.

4.2. Description

To illustrate how subpavings will be represented, consider the two-dimensional example in
Figure 1. The compact set X (in dark grey), included in the box [x

�
]"[0, 8]��, is represented by

the subpaving XK (in light grey).
The subboxes of XK , as described by Figure 1, can be enumerated in the list

L"�[0, 2]�[0, 4], [4, 6]�[2, 4], [4, 6]�[4, 8]� (15)
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Figure 2. Tree representation of XK of Figure 1. The leaf at the end of the branch in
bold corresponds to the box [4, 6]�[2, 4].

As all these boxes are obtained from [x
�
] by a succession of bisections and selections, one may

alternatively store the initial box together with the history of these operations. It is then necessary
to introduce a notation to describe how boxes are bisected and selected. If [x] is an n-dimensional

box and if the midpoint of [x]
�

is denoted by m([x]
�
)"( x

�
#x

�
)/2, then

¸
�
[x]"([x]

�
,2, [x]

���
, [x

�
, m([x]

�
)], [x]

���
,2, [x]

�
) (16)

R
�
[x]"([x]

�
,2, [x]

���
, [m([x]

�
), x

�
], [x]

���
,2, [x]

�
) (17)

will, respectively, be called the left and right subboxes resulting from the bisection of [x] across its
jth dimension. One may then write the list (15) as

L"�¸
�
¸
�
¸
�
[x

�
], R

�
¸

�
¸

�
R

�
[x

�
], ¸

�
R

�
R

�
[x

�
]� (18)

This description is obviously not unique. For instance, R
�
¸
�
¸
�
[x

�
]"¸

�
R

�
¸
�
[x

�
]. This

ambiguity can be avoided by agreeing on some canonical bisection rule. The canonical rule used
in this paper is to cut any box [x]L�� across its main dimension j, de"ned as

j"inf�i"1,2, n �w ([x]
�
)"w ([x])� (19)

but other canonical rules could of course be used.
A subpaving will be called regular if it can be obtained from some initial box by applying the

canonical rule. Note that the subpaving built in the proof of Proposition 1 is regular, so this
proposition holds true for regular subpavings. For such subpavings, the direction of cut can easily
be retrieved, so indexing of ¸ and R is no longer necessary and the list (15) can be written as
�¸¸¸[x

�
],R¸¸R[x

�
], ¸RR[x

�
]�.

Any regular subpaving XK can be viewed as an ordered binary-tree [18], i.e. a "nite set of nodes,
which is either empty or consists of one node, the root of the tree, and two disjoint ordered binary
trees, the left and right subtrees. The notion of regular subpaving is particularly interesting for the
many interval algorithms that are based on bisection.

The binary tree associated with XK of Figure 1 is represented by Figure 2.
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Node A is the root of the tree. Nodes B and C are, respectively, the left and right children of A;
they are siblings because they have the same parent A. A has left and right subtrees; B has an empty
right subtree. Any node with two empty subtrees, such as D, is called a leaf.

This tree is constructed using the list (15). The growth of the branches is determined by the way
in which the initial box [x

�
], corresponding to the root, is bisected. For example, the leaf at the

end of the bold branch in Figure 2 corresponds to the subbox R¸¸R[x
�
]"[4, 6]�[2, 4].

A node indicates that the associated subbox has been bisected according to the canonical
bisection rule. Any subbox corresponding to a leaf is entirely in the subpaving. The depth of
a subbox corresponds to the number of bisections applied to get this subbox from the root box.
Thus, the depth of the box [4, 6]�[2, 4] is 4.

A tree (subpaving) is said to be minimal if it has no siblings leaves (subboxes). Such siblings
leaves should be eliminated, with their parent node becoming a leaf instead.

The notions of binary trees and regular subpavings are equivalent, so the vocabulary for trees
will be used for regular subpavings. In what follows, the tree representation will be adopted to
take advantage of its natural recursivity. But the equivalence between the tree and its list of boxes
should be kept in mind.

Details on how regular subpavings and algorithms for manipulating them are implemented on
a computer can be found in Appendix C.

5. IMPLEMENTABLE CORRECTION STEP

The implementable counterpart of Algorithm 1 (Section 2) also alternates prediction and
correction. As the correction step is simpler, it will be presented "rst. It requires characterizing
Xl��

"�x3Xl�
�hl��

(x)3Yl��
�. This task belongs to the class of set-inversion problems,

formulated as follows: given two sets XL��, YL�� and a function h :��P��, characterize the
set h��X (Y)"�x3X �h(x)3Y�.

This problem is solved in an approximated but guaranteed way by using the algorithm SIVIA

(for Set Inversion Via Interval Analysis), presented in the context of parameter estimation in
References [19, 20]. This algorithm brackets h��X (Y) between inner and outer subpavings. Here,
a new recursive version will be presented. This new version evaluates only an outer subpaving but
allows the computation on subpavings.

Assume that X and Y are, respectively, enclosed in the subpavings XK and YK . The task of
SIVIA is to enclose the set S"h��XK (YK )"�x3XK �h(x)3YK � in a subpaving yL , with the help
of an inclusion function h

� 	
of h. For this purpose, a recursive structure will be used to scan

all nodes of XK . Let [x] be the box corresponding to a given node M of XK . If h
� 	
([x])LYK , then

the whole subpaving stemming from M is included in the solution set S and stored in SK .
If h

� 	
([x])�yL "�, then [x]�S"�. Therefore, M and the subpavings stemming from it

can be discarded from further consideration. If the results of the two preceding tests are
negative and if w ([x])'
, then the subtrees stemming from M have to be tested, else the box
corresponding to M is considered small enough to be incorporated in SK . The positive real
number 
 is chosen by the user to specify the desired accuracy in the description of the set to be
characterized.

The C## code of this recursive version of SIVIA is given in Appendix C. SIVIA (XK , h
� 	
, YK , 
)

returns a subpaving containing h��XK (YK ). This outer approximation of h��XK (YK ) can, in principle, be
made as accurate as desired, as indicated by the following proposition.
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Figure 3. C
�
Y as computed by SIVIA for Example 1.

Proposition 2

Consider a subpaving YK L�� and a function h :��P�� with a convergent inclusion function
h
� 	

in XK L��. For any �'0, there exists 
'0 such that

d(SIVIA(XK , h
� 	
, YK , 
), h��XK (YK )))� (20)

Proof. Similar to that presented in Reference [20] for the case YK "[y]. �

In practice, there is of course a limit to the accuracy that can be achieved, because of the
complexity of the resulting description.

Example 1

Consider the subpavings AK"�[!3, 3]��� and B
�
Y
"�[2, 4]�, and the function

h
�
(x

�
, x

�
)"(x

�
!1)�#(x

�
!1)�

The set C
�
LAK such that h

�
(C

�
)"B

�
Y is guaranteed to belong to C

�
Y "SIVIA (AK , h

�� 	
, B

�
Y , 
),

shown in Figure 3. Consider now the subpaving B
�
Y "�[2, 4]� and the function

h
�
(x

�
, x

�
)"(x

�
#1)�#(x

�
#1)�

The set C
�
LC

�
Y such that h

�
(C

�
)"B

�
Y is guaranteed to belong to C

�
Y " SIVIA (C

�
Y , h

�� 	
, B

�
Y , 
),

shown in Figure 4. In this example, h
��	

and h
��	

were taken as the natural inclusion functions for
h
�

and h
�
.
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Figure 4. C
�
Y as computed by SIVIA for Example 1.

6. IMPLEMENTABLE PREDICTION STEP

The prediction step requires characterizing

Xl�
"�fl (x, w) �x3Xl , w3[w]l� (21)

This can be included in the more general problem of direct image evaluation, which is at the core
of interval arithmetic: given two compact sets XL�� and Y

�
L�� and a function f : ��P��,

characterize the set YLY
�

such that Y"�f(x)3Y
�
�x3X�. When r"1, it has been shown

[16, 21], that the approximation could be made as precise as desired, provided that the inclusion
function f

�	
be Lipschitz [16]. When r'1, we shall see that it is still possible to approximate the

image set with arbitrary precision, under techniques that depend on whether f can be inverted. In
the context of state prediction, Xl�[w]l plays the role of X, and Xl�

that of Y.

6.1. Prediction when f is not invertible

When f is not invertible (e.g. for state prediction in the presence of state perturbations), the
approximate image of an initial set X can be computed by using a description of X by
a non-minimal subpaving consisting of P boxes [x]

�
each with width less than 
. The images of all

these boxes are evaluated using an inclusion function f
�	

of f and stored in a list L� . One thus gets
P image boxes, each of which contains the image set of the associated initial box. The image Y of
X is therefore included in the union of all of them. Finally, these boxes are merged into
a subpaving to allow further processing.

The C## code of the corresponding function IMAGESP (for IMAGE SubPaving evaluation) is
given in Appendix C.Y�

Y "IMAGESP([s]� , f
�	
, XK , 
) returns an outer approximationY�

Y of the image
of the subpaving XK by the function f, or rather of the part of it that is included in some prior
search box [s]� .

The quality of the resulting approximation of the image set depends, of course, on that of the
inclusion function f

�	
of f and on the precision parameter 
. The next proposition will show that
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the precision can, at least in principle, be made arbitrarily good. It involves the following
de"nition of a Lipschitz function, inspired from Reference [16, p. 34].

Dexnition 1

Consider f : ��P�� and D a compact subset of ��. f is ¸ipschitz in D if there exists a constant
� such that for all compact sets ALD and BLD, d (f(A), f(B)))� d(A, B).

Let us prove that any function f : ��P�� satisfying the classical Lipschitz condition in
a compact set DL�� is also ¸ipschitz in D in the sense of De"nition 1. If A and B are compact
subsets of D and f is Lipschitz in D, then f(A) and f(B) are compact sets and there exists a

�
3A,

b
�
3B and a constant � such that d(f(A), f(B))"d

�
(f(a

�
), f(b

�
)))� d

�
(a

�
, b

�
). Since

d
�

(a
�
, b

�
))d(A, B), this implies that d (f(A), f (B)))�d(A, B). Moreover, it is straightforward

to prove that if f is Lipschitz in D, then its natural inclusion function f
�	

is also Lipschitz in D and
thus convergent (see Lemma 2).

Proposition 3

Consider a subpaving XK L��, a function f : ��P��, with an inclusion function f
�	

that is
Lipschitz in XK , and [s]�L�� such that f(XK )L[s]�. For any �'0, there exists 
'0 such that
d(IMAGESP([s]�, f

�	
, XK , 
), f(XK )))�.

Proof. See Appendix B. �
For any given function f with a Lipschitz inclusion function, IMAGESP thus provides a conver-

gent subpaving inclusion function.

6.2. Prediction when f is invertible

When f is invertible, prediction may be cast in the formalism of set inversion, as the problem of
"nding S"�x3S

�
�f��(x)3X�. The search set S

�
should be taken large enough to be

guaranteed to contain the set of interest. If S
�
Y and XK are subpavings enclosing S

�
and X, then

S can be approximated by

S�
Y "SIVIA(S

�
Y , f��

�	
, XK , 
) (22)

provided that an inclusion function is available for f��. Assuming that f is invertible may seem
rather strong, but in many models based on physical laws this only amounts to changing the sign
of time in the equations.

7. GUARANTEED STATE ESTIMATOR

An approximate but guaranteed version of Algorithm 1 can now be proposed, where it is assumed
that [s] is a (possibly very large) search box in state space where the state vector is assumed to
stay from l"0 to l"lM .
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Algorithm 2

For l"0 to lM , do

1. Guaranteed prediction: Compute the set estimate for the state at step l#1 before measure-
ment as

Xl�
Y

"IMAGESP([s], fl�	
, X�l

Y , 
) (23)

where X�l
Y is an extended subpaving containing Xl

Y �[w]l .
If the state perturbations are negligible and fl is invertible, then (23) may be replaced by

Xl�
Y

"SIVIA([s], f��l �	
, Xl

Y , 
) (24)

2. Guaranteed correction: Discard all elements of Xl�
Y that can be proved to be incompatible

with measurements at step l#1 by computing

Xl��
Y

"SIVIA(Xl�
Y , hl �	

, Yl��
, 
) (25)

Some properties of the estimator provided by Algorithm 2 will now be established.

7.1. Prediction by IMAGESP

Assume that
(A1) A prior search box [s] in state space is available, large enough to containXl

Y for any l*0.
(A2) Inclusion functions are available for fl and hl for l"0, 1,2, lM , and these inclusion

functions are Lipschitz, which implies that fl and hl are also Lipschitz.
For the sake of simplicity, it will also be assumed that the set of all possible initial states X

�
is

a subpaving, so X
�
Y can be taken equal to X

�
.

Proposition 4 (Guaranteedness)

For l"0,2, lM , xl3Xl
Y .

Proof. The proof is by induction. X
�
Y contains x

�
by assumption. Assume that XlLXl

Y . For the
prediction step, IMAGESP ensures that Xl�

LXl�
Y . For the correction step, SIVIA returns Xl��

Y ,
which is guaranteed to contain h��(Yl��

)�Xl�
Y . As Xl��

"h��(Yl��
)�Xl�

, it follows from the
two preceding inclusions that Xl��

Lh��(Yl��
)�Xl�

Y
LXl��

Y . Since Xl��
is obtained by the

idealized algorithm, xl��
belongs to Xl��

and thus to Xl��
Y . �

Proposition 5 (Arbitrary precision)

For l"0,2, lM , and for any �'0, there exists 
'0 such that Xl
Y as computed by Algorithm

2 satis"es d (Xl
Y , Xl))� .
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Proof. As fl is Lipschitz in [s]�[w]l , for l"0,2, lM there exists Kl*0 such that for any
AL[s]�[w]l and BL[s]�[w]l , d (fl (A), fl (B)))Kld (A, B). Let

K"max(1, K
�
,2,KlM ) (26)

We shall prove by induction that, for any �'0, there exists 
l'0 such that d(Xl
Y , Xl))�l , with

�l"�/(3K)lM �l
)�. The 
 of Proposition 5 will then be taken equal to min(


�
,2, 
lM ).

Since X
�
Y

"X
�
, d (X

�
Y , X

�
)"0

�
, assume that at time index l*1, there exists 
l'0 such that

d(Xl
Y , Xl))�l)�. We shall then show that at time index l#1)lM , d (Xl��

Y , Xl��
))�l��

)� .
Since fl is Lipschitz in [s]�[w]l ,

d (fl (X�l
Y ), fl (X�l

Y ))"K d(X�l
Y , X�l

Y ) (27)

where K is de"ned by (26), X�l"Xl�[w]l and X�l
Y
"Xl

Y �[w]l . Property 6 implies that

d (X�l
Y , X�l)"d (Xl

Y , Xl) (28)

thus

d (fl (X�l
Y ), fl (X�l)))K d (Xl

Y , Xl))K�l (29)

According to Proposition 3, there exists 

�
'0 such that the outer approximation Xl�

Y of the
prediction set computed by IMAGESP satis"es

d(Xl�
Y , fl (X�l

Y )))K�l (30)

with Xl�
Y evaluated using (23). According to Proposition 2, there exists 


�
'0 such that the outer

approximation Xl��
Y of the corrected set computed by SIVIA satis"es

d (Xl��
Y , h��l��

(Yl��
)�Xl�

Y ))K�l (31)

where Xl��
Y is computed using (25). Since Xl��

"h��l��
(Yl��

)�Xl�
,

d (Xl��
Y , Xl��

)"d (Xl��
Y , h��l��

(Yl��
)�Xl�

) (32)

The triangular inequality then yields

d(Xl��
Y , Xl��

))d(Xl��
Y , h��l��

(Yl��
)�Xl�

Y )#d(h��l��
(Yl��

)�Xl�
Y , h��l��

(Yl��
)�Xl�

)

and (31) implies that

d (Xl��
Y , Xl��

))K�l#d (h��l��
(Yl��

)�Xl�
Y , h��l��

(Yl��
)�Xl�

) (33)
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Using Property 5, one can deduce from (33) that

d (Xl��
Y , Xl��

))K�l#d (Xl�
Y , Xl�

) (34)

Apply the triangular inequality again to get

d (Xl��
Y , Xl��

))K�l#d(Xl�
Y , fl(X�l

Y ))#d (fl (X�l
Y ), Xl�

) (35)

As Xl�
"fl(X�l ), (29) and (30) then imply that

d(Xl��
Y , Xl��

))K�l#K�l#K�l"3K�l (36)

The variable �l should therefore satisfy the recurrence equation �l��
"3K�l , with the terminal

condition �lM "�. The solution of this recurrence equation is then

�l"�/(3K)lM �l
)�, l"0,2, lM (37)

So there exists 
l��
"inf (


�
, 


�
) such that d(Xl��

Y , Xl��
))�l��

)�. �

Remark 4

The sizes of the predicted and corrected sets do not depend on the width of the prior search set
[s], provided that it is large enough for (A1) to be satis"ed and that the precision parameter 
 is
taken small enough.

Remark 5

The properties of guaranteedness and arbitrary precision mean that when � tends to zero the
sets Xl

Y computed by the estimation algorithm converge from the outside to the actual sets Xl for
any "nite value of l. This convergence thus di!ers from that usually considered in statistics, where
one is interested in the asymptotic properties of point estimators when the number of data points
tends to in"nity.

7.2. Prediction by SIVIA

When f is invertible, and the state perturbations are negligible, (24) may be used instead of (23) for
the prediction step. Propositions 4 and 5 can still be guaranteed under assumptions (A1) and

(A2	) Inclusion functions are available for f��l and hl for l"0, 1,2, lM , and these inclusion
functions are Lipschitz in their arguments.

The proof of Proposition 4 is unchanged. The poor of Proposition 5 simpli"es because it is no
longer necessary to introduce X�l and X�l

Y , since, according to Proposition 2, there exists 

�
'0

such that the outer approximation Xl�
Y of the predicted set computed by (24) satis"es

d (Xl�
Y , fl (Xl

Y )))K�l (38)

which replaces (30).
Remarks 4 and 5 of course remain valid.
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Figure 5. Ball motion. The predicted sets are in light grey and corrected sets in dark grey. At time t"1 s
(step l"10), the bounce may or may not have taken place, so the speed may be positive or negative.

7.3. Example

Algorithm 2 has been applied to the bouncing ball example. The sampling period is ¹"0.1 s,
�"0.2 m, g is taken as 10 m s��. The initial state is only known to belong to
[x

�
]"[3 m, 6 m]�[!3 ms��, 3 m s��] and the state perturbation � is assumed to belong to

[0.1, 0.25]. The search box [s] is taken equal to [0 m, 8 m]�[!12 m s��, 12 m s��]. At each
time t"l¹, l"0, 1,2, 24, the position of the ball is measured, with the measurement noise
vl assumed to belong to [!0.1 m, 0.1 m]. The observation equation is yl"xl#vl . Table A2
describes an inclusion function for the function of Table A1, evaluating the position at time
(l#1) ¹ from that at time l¹.

Figure 5 displays the predicted subpaving Xl�
Y in light grey and the corrected subpaving

Xl��
Y in dark grey. The data were generated by the algorithm of Table A1 with x

�
"(5 m,

0 m s��)� and �"0.2.

Remark 6

If X
�
Y does not contain the actual initial state, or if bounds on the measurement noise or state

perturbations are violated, then the set estimate may become empty, thus proving that at least
one of the assumptions is erroneous.

8. CONCLUSIONS

A new recursive non-linear discrete-time state estimator has been presented. At any given
time, it returns a set guaranteed to enclose all the values of the state vector that are consistent
with the information available so far. To the best of our knowledge, it is the "rst one for which
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this claim can be made in the presence of bounded state perturbations and measurement
noise.

As in classical Kalman "ltering, this estimator alternates prediction and correction steps. The
prediction step uses either a direct image evaluator (IMAGESP) or a procedure for the computation
of inverse images based on the algorithm SIVIA. IMAGESP divides the boxes of the original
subpaving into smaller boxes and merges the images of all these boxes into an approximate image
subpaving. SIVIA proceeds in the opposite direction, starting from the image set, and may be more
e$cient when applicable. From the predicted subpaving thus obtained, the correction step
discards all the values of the state vector that are proved to be inconsistent with the newly
available observations. The important theoretical properties of guaranteedness and arbitrary
precision have been established. The estimator has been applied to a simple example, nevertheless
representative of some di$culties encountered by classical estimators when dealing with hybrid
systems.

It seems important to point out that this estimator does not require the set of all the values of
the state vector that are consistent with the information available to be connected. Ambiguous
situations where the state is not globally observable can therefore be dealt with, without any
modi"cation.

A key element for a recursive implementation of the estimator on a computer was the
introduction of subpavings, which allow the computation of outer approximations for sets, with
tunable precision. It is easy to extend all arithmetic operators and usual functions on #oating-
point numbers to the class of subpavings, in any language that allows operator overloading (such
as C##). It is thus possible to get a subpaving computation that approximates computation on
more general sets.

The main limitation of the estimator presented lies in the explosion of complexity with the
number of state variables. It is, nevertheless, possible to solve actual tracking problems, see the
localization and tracking of a mobile robot described in References [22, 23]. An interesting area
for further research is the use of contractors based on interval constraint propagation to struggle
against the curse of dimensionality (see References [24}26]).
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APPENDIX A: COMPUTATION OF THE MOTION OF THE BALL

The function described by Table A1 computes xl��
as a function of xl"(xl , x� l )� and �

�
g is the

acceleration of gravity, ¹ the sampling period and � the radius of the ball. x�
		

and x�

	

,
respectively, denote the speed of the ball just before and after the bounce. The height of the ball at
time (l#1)¹ is evaluated assuming free fall. Provided that it remains greater than �, the free-fall
model is still valid. Otherwise, the bounce speed x�


	
immediately after the bounce and the time

¹
	

of bounce are evaluated to compute the height and speed at time (l#1)¹.
When xl and � are only known to belong to some intervals, an inclusion function f

�	
, such as the

one described in Table A2, must be used instead of the function f of Table A1.
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Table A1. Function computing xl��
as a function of

xl"(xl , x� l)� and � for the ball motion

f (xl , xR l, �)

const g, ¹,�;

xl�
"xl#x� l¹!g

¹�

2
;

if (xl�
*�)

return �
xl�

x� l!g¹�;
x�
		

"�2g(xl!�)#(x� l)�;

¹
	
"

1

g
(x� l#x�

		
);

x�

	

"�1!�x�
		

;

return �
�#x�


	
(¹!¹

	
)!g

(¹!¹
	
)�

2

x�

	

!g(¹!¹
	
) �.

The interval [xl�
] enclosing all possible positions at the next step is "rst evaluated. If its lower

bound xl�
is greater than �, then the equations of free fall should be applied. Else, the ball may

have hit the #oor and the algorithm must evaluate all possible speeds [x�
		

] just before the bounce
and all possible bounce times [¹

	
], as well as all possible speeds [xR


	
] after the bounce, taking into

account the unknown but bounded portion of energy lost during the bounce. Advantage is taken
of the knowledge of the signs of the time of bounce and speed. The fact that the ball may not have

hit the #oor yet should not be forgotten. If the upper bound xl�
of [xl�

] is lower than �, then the
ball has de,nitely hit the #oor. Its position and speed are then evaluated using [x�


	
] and [¹

	
].

Otherwise, it is not known yet whether the ball has hit the #oor and the two hypotheses must be
taken into account by sending the union of the corresponding solutions, which only requires
a slight modi"cation of SIVIA.

APPENDIX B: PROOF OF PROPOSITION 3

Lemma B1

If an inclusion function f
�	

is ¸ipschitz in DL��, then there exists a constant K such that
w (f

�	
([x])))Kw([x]) for every [x]LD.

Proof. Consider [x]LD and x
�
3[x]. As f

�	
is an inclusion function, f

�	
([x]) is a box contain-

ing f
�	
(x

�
). Then, from Property 1, d(x

�
, [x]))w ([x]) and d (f

�	
(x

�
), f

�	
([x]))*w(f

�	
([x]))/2. As

f
�	

is ¸ipschitz in D, there exists � such that for any [x]LD and x
�
3[x],
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Table A2. Inclusion function for the function of Table A1

f
�	
([xl], [xR l], [�])

const g, ¹,�;

[xl�
]"[xl]#[x� l]¹!g

¹�

2
;

if (xl�
*�)

return �
[xl�

]

[x� l]!g¹�;
[x�

		
]"�(2g([xl]!�)#([x� l])�)�[0,#R[;

[¹
	
]"

1

g
([x� l]#[x�

		
])�[0, ¹[;

[x�

	

]"�1![�][x�
		

];

if (xl�
)�)

return �
�#[x�


	
](¹![¹

	
])!g

(¹![¹
	
])�

2

[x�

	

]!g(¹![¹
	
]) �;

else

return�
[xl�

]

[x� l]!g¹�
�
�#[x�


	
](¹![¹

	
])!g

(¹![¹
	
])�

2

[x�

	

]!g(¹![¹
	
]) �.

d(f
�	
(x

�
), f

�	
([x])))�d (x

�
, [x]). The three previous inequalities imply that w (f

�	
([x])))2�w ([x])

and K may thus be taken to be equal to 2�. �

Lemma B2

If f
�	

is an inclusion function of f :��P�� that is Lipschitz in XK L��, then for any �'0, there
exists 
 such that for any [x]LXK with w ([x]))
, d(f

�	
([x]), f([x])))� .

Proof. Since f
�	

is Lipschitz in XK , according to Lemma B1, there exists K such that, for any
[x]LXK , w (f

�	
([x])))Kw([x]). Take 
"�/K , and consider [x]

�
LXK such that w ([x]

�
))
;

then w(f
�	
([x]

�
)))Kw([x]

�
))�. Since f ([x]

�
)Lf

�	
([x]

�
), Property 2 implies that

d(f([x]
�
), f

�	
([x]

�
)))�. �

Proof of Proposition 3 (First part). IMAGESP of Appendix C divides XK into P boxes [x]
�

of
width less than 
, and stores their images by f

�	
in a list of image boxes L�� "�f

�	
([x]

�
)��

���
.
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Let us prove that for any given �'0, there exists 

�

such that if 
(

�

then
d(f (XK ), ��

���
f
�	
([x]

�
)))�/2.

The proof is inspired from References [16, 21]. Since f
�	

is a convergent inclusion function of f,
Lipschitz in XK , from Lemma B2, for any �'0, there exists 


�
such that d

�
(f
�	
([x]), f([x])))�/2

for any [x]LXK with w ([x]))

�
. Now, XK and ��

���
[x]

�
, the union of the P boxes with width

less than 

�

stemming from XK represent the same set, so f(XK )"��
���

f([x]
�
)L��

���
f
�	
([x]

�
) as

f
�	

is an inclusion function of f. Therefore, according to Property 4,

d
��

�
�
���

f ([x]
�
),

�
�
���

f
�	
([x]

�
)�"0 (B1)

and

d
��f�	 ([x]

�
),

�
�
���

f ([x]
�
)�)d

�
(f
�	
([x]

�
), f([x]

�
)) (B2)

)�/2 for i"1,2, P (B3)

Thus

d
��

�
�
���

f
�	
([x]

�
),

�
�
���

f([x]
�
)�" max

���,2,�

d
��f�	([x]

�
),

�
�
���

f ([x]
�
)�)�/2 (B4)

From (B1) and (B4), as f(XK )"��
���

f ([x]
�
), it follows that

d�f(XK ),
�
�
���

f
�	
([x]

�
)�)�/2 (B5)

Proof of Proposition 3 (Second part). IMAGESP of Appendix C builds a subpaving containing the
boxes ofL��� with the procedure BUILDSP (L��� , [s]�, 
�). This subpaving is assumed to be included
in some prior box [s]�. (The superscript k in L��� and [s]� indicates that these quantities are
associated with the kth node of the binary tree describing the image subpaving, with k"0
corresponding to the root.) If the subpaving is not equal to [s]�, [s]� is bisected into ¸[s]� and
R[s]�. BUILDSP then recursively calls itself on ¸L��� and RL��� , the lists containing the intersection
of the boxes of L��� with ¸[s]� and R[s]�, respectively. The resulting subpaving consists of the
union of the two subpavings returned by BUILDSP (¸L��� , ¸[s]�, 


�
) and BUILDSP (RL��� , R[s]�, 


�
).

We shall now prove that for any given �, there exists 

�

such that d (BUILDSP (L��� , [s]�, 
�),
��

���
f
�	
([x]

�
)))�/2.

The proof is by induction. The property will "rst be established for non-recursive calls to
BUILDSP, i.e. when BUILDSP returns a leaf of the subpaving. We shall then show that if the
property is true for the calls associated with leaves it remains so for all the earlier calls associated
with nodes, up to the root of the tree.

To simplify presentation, all the lists L��� "�[z]�
�
��
���

are assumed to have the same number
P of boxes, some of which may be empty. A list will be said to be empty if it contains only empty
boxes. In the actual implementation of the algorithm, these empty boxes are of course discarded.
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Take 

�
"�/2. Consider "rst a situation where the Nth call to BUILDSP has a non-recursive

treatment. Its parameters are L
�� "�[z]

�
��
���

, [s]
 and 

�
. Three cases have to be considered,

which correspond to the three conditional statements in the algorithm BUILDSP of Appendix C.

(i) If L
�� is empty (��
���

[z]

�
"�) then BUILDSP (L
�� , [s]
, 
�) returns an empty subpaving

and, by convention,

d�BUILDSP (L
�� , [s]
, 
�),
�
�
���

[z]

� �"d(�, �)"0 (B6)

(ii) If there exists some i such that [z]

�
"[s]
, then ��

���
[z]


�
"[s]
, and

BUILDSP (L
�� , [s]
, 

�
) returns the subpaving corresponding to [s]
. Therefore

d�BUILDSP (L
�� , [s]
, 
�),
�
�
���

[z]

� �"0 (B7)

(iii) At last, if L
�� does not represent an empty set, but w ([s]
))

�
"�/2, then

BUILDSP (L
�� , [s]
, 

�
) returns the subpaving corresponding to [s]
. As ��

���
[z]


�
LBUILDSP (L
�� , [s]
, 
�)"[s]
, and as w ([s]
))�/2, it follows from Property 2 that

d�BUILDSP (L
�� , [s]
, 
�),
�
�
���

[z]

� �)�/2 (B8)

In all three cases, d (BUILDSP (L
�� , [s]
, 
�), ��
���

[z]

�
))�/2. Assume now that during its kth

call BUILDSP (L��� , [s]�, 
�) recursively calls itself and that the two resulting subpavings satisfy

d�BUILDSP (¸L��� , ¸[s]�, 

�
),

�
�
���

[z]���
� �)�/2 (B9)

and

d�BUILDSP(RL��� , R[s]�, 

�
),

�
�
���

[z]���
� �)�/2 (B10)

where ¸[s]�
R[s]�"[s]�, L��� "�[z]�
�
��
���

, ¸L��� "�[z]���
�

��
���

"�[z]�
�
�¸[s]���

���
and RL���

"�[z]���
�

��
���

"�[z]�
�
�R[s]���

���
, and where some [z]���

�
and [z]���

�
may be empty. Let us prove

that d(BUILDSP (L��� , [s]�,
�), ��
���

[z]�
�
))�/2.

Let S���
Y
"BUILDSP (L��� , [s]�, 
�), S�����

Y
"BUILDSP (¸L��� , ¸[s]�, 


�
), and S�����

Y
"BUILDSP (RL��� ,

R[s]�, 

�
). Then S���

Y
"S�����

Y 
S�����
Y . As [z]���

�
"[z]�

�
�¸[s]�, we have [z]���

�
L[z]�

�
for i"1,2, P

and thus ��
���

[z]���
�

L��
���

[z]�
�
. So, from Property 4, d

�
(S�����

Y , ��
���

[z]�
�
))

d
�
(S�����

Y , ��
���

[z]���
�

). Now d
�
(S�����

Y , ��
���

[z]���
�

))�/2, so d
�
(S�����

Y , ��
���

[z]�
�
))�/2 and
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similarly d
�
(S�����

Y , ��
���

[z]�
�
))�/2. Therefore

d
�
(S���

Y ,
�
�
���

[z]�
�
)"max(d

�
(S�����

Y ,
�
�
���

[z]�
�
), d

�
(S�����

Y ,
�
�
���

[z]�
�
)))�/2 (B11)

Similarly, [z]�
�
L[s]� and [z]���

�

[z]���

�
"[z]�

�
for i"1,2, P, imply that d

�
(��

���
[z]���

�
,

S���
Y ))�/2 and d

�
(��

���
[z]���

�
, S���

Y ))�/2, which in turn imply

d
��

�
�
���

[z]�
�
, S���

Y )"max�d��
�
�
���

[z]���
�

, S���
Y �, d��

�
�
���

[z]���
�

, S���
Y ��)�/2 (B12)

From (B11) and (B12), it follows that d (��
���

[z]�
�
, S���

Y ))�/2.
It has thus been proved that the property holds true when BUILDSP returns a leaf of the

subpaving and remains so for all earlier calls, so it holds true for the root of the tree, i.e.

d�BUILDSP (L��� , [s]�, 
� ),
�
�
���

f
�	
([x]

�
)�)�/2 (B13)

Proof of Proposition 3 (End) The results of the "rst two parts of the proof must now be
combined. Let 
"inf(


�
, 


�
). From (B5),

d�f(XK ),
�
�
���

f
�	
([x]

�
)�)�/2

and from (B13),

d� BUILDSP (L��� , [s]�, 
),
�
�
���

f
�	
([x]

�
)�)�/2

As IMAGESP returns S�
Y
"BUILDSP (L�� , [s]�, 
), then the triangular inequality implies that

d (f(XK ), S�
Y )"d (f(XK ), BUILDSP (L��� , [s]�, 
)))�/2#�/2"� (B14)

APPENDIX C: COMPUTER IMPLEMENTATION

The computer implementation of the algorithms presented in this paper is far from trivial and
impacts heavily on their performance. This is why we thought it useful to describe its key points in
this appendix. All functions and algorithms have been developed in the C-XSC framework [15],
and we choose to describe these algorithms using the syntax of this language. The source code is
available on request.

C.1. Representation of subpavings

Subpaving are represented by binary trees, using a C## class node. Each subpaving is coded as
a pointer to a node. This node contains the description of the root box of the subpaving and
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pointers to nodes representing the roots of the two subtrees stemming from it.

class node;
typedef node* spaving;
class node�

ivector box; // box corresponding to the root
spaving lchild; //pointer to the left subtree
spaving rchild; //pointer to the right subtree

�;

A NULL pointer corresponds to an empty subtree, thus leaves are identi"ed by NULL pointers
lchild and rchild. The function }box(spaving) gives access to the box represented by the root
of the subpaving; }lchild(spaving) and } rchild(spaving), respectively return the left and
right subtree; } spaving([s]) creates a subpaving consisting of the box [s].

C.2. Manipulation of subpavings

C.2.1. Basic functions. The following functions and operators are used in SIVIA and IMAGESP. To
improve readability, the variables and operators are those used in the text, not always at the
C## standard.

� union operator (spaving operator
(spaving XK , spaving YK )): returns the minimal sub-
paving corresponding to the union of two subpavings XK and YK .

� �-depth expansion function (spaving expand(spaving XK , int �)): creates a non-minimal
subpaving whose leaves are all at depth �. If the original tree XK has deeper leaves, then these
leaves are removed, else any leaf at depth i(�, is replaced by a subtree such that all its leaves
are at depth �!i.

� 
-width expansion function (spaving expand(spaving XK , double 
)): creates a non-minimal
subpaving whose leaves are all with width less than 
. This function is similar to the �-depth
expansion function; they are di!erentiated by the type of their second argument.

� box-inclusion test (bool operatorL(ivector [x], spavingXK )): checks whether the box [x] is
included in the subpaving XK .

As an example, the following function implements the box-inclusion test, assuming that at the "rst
call of the function, the box [x] to be checked is included in the box corresponding to the root of XK .

bool operatorL(ivector [x], spaving XK )
�

if ((isempty([x]))�isleaf(XK )) return true;
else if isempty(XK ) return false;

// Recursive treatment
bisect(}box(XK ), lcbox, rcbox);
return (([x]�lcbox)L} lchild(XK ))&&(([x]�rcbox))L}rchild(XK ));

�

A classical preorder traversal algorithm [18] is used; the root is "rst considered and then the
algorithm is recursively called on the left and right children.
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If [x] is empty, then it is included in XK , or if XK is a leaf, then the subpaving consists of a single
box, in which [x] is included, so the test returns true in both cases. If [x] is not empty but XK is
empty, [x] cannot be included inXK and the test returns false. In all other cases, if the intersection
of [x] with the box corresponding to the left child of XK is included in the left child of XK and if the
intersection of [x] with the box corresponding to the right child of XK is included in the right child
of XK , then the test is true, else it is false.

C.2.2. Recursive SIVIA. The main procedure of SIVIA is as follows:

spaving SIVIA (spaving XK , function}ptr h
�	
, spaving YK , float 
)

�
if isempty(XK ) return NULL;
if disjoint(h

�	
(}box(XK )), YK ) return NULL;

if (h
�	
(}box(XK ))LYK )��(w (}box(XK ))(
) return } spaving(}box(XK ));

// Recursive treatment
if isleaf(XK ) XK "expand(XK , 1);
return (SIVIA(} lchild(XK ), h

�	
, YK , 
)
SIVIA (} rchild(XK ), h

�	
, YK , 
));

�
C.2.3. IMAGESP. The following conceptual algorithm leads to high-complexity subpavings, only
needed to allow the procedure to reach any desired precision. In practice, a number of simpli"ca-
tions can be carried out to keep complexity at a manageable level. The price to be paid is a loss in
the precision achievable, but the results remain guaranteed.

The main procedure of IMAGESP is as follows:

spaving IMAGESP (ivector [s]�, function}ptr f
�	
, spaving XK , float 
)

�
XK "expand(XK , 
);
list L�"fill}list(f�	, X

K );
return(BUILDSP (L�, [s]�, 
));

�

It "rst modi"es the subpaving XK to get a non-minimal subpaving consisting only of boxes with
width lower than 
. The image of these boxes by f

�	
are put into the list L� by the basic function

fill}list, which will not be presented. The procedure BUILDSP is then called to merge all image
subboxes into a subpaving included in some (possibly very large) prior search box [s]� that will
constitute the root box of this subpaving. The basic idea of BUILDSP is similar to the Split and
Merge algorithms used in image segmentation [27]. This algorithm is as follows:

spaving BUILDSP (list L, ivector [s], float 
)
�

if isempty(L) return NULL;
if ([s]3L) return }spaving([s]);
if (w([s])(
) return }spaving([s]);

// Recursive treatment
bisect([s], ¸[s], R[s]);
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distribute(L, ¸[s], R[s], ¸L, RL);
return (BUILDSP (¸L, ¸[s], 
)
BUILDSP(RL, R[s], 
));

�

If the list L is empty, then an empty subpaving is returned. Else, BUILDSP checks whether the
box [s] corresponds to an element of the list L, which would mean that [s] belongs to the image
subpaving. Else, if w([s]) is less than 
, [s] also has to be stored in the approximate image
subpaving, because the algorithm has failed to prove that [s] and the image set are disjoint. If
none of these two conditions is ful"lled, the prior box [s] is bisected into ¸[s] and R[s], and the
list L is split by the procedure distribute into two sublists ¸L, and RL containing the
intersection of the elements of L with ¸[s] and R[s], respectively. The procedure BUILDSP is then
recursively called, with arguments corresponding to the two sublists just created. At last, BUILDSP

returns the subpaving corresponding to the union of those returned by the two recursive calls to
BUILDSP.
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