
An Interval Space Reducing Method for Constrained
Problems with Particle Swarm Optimization

T. M. Machado-Coelho, A. M. C. Machado, L. Jaulin, P. Ekel, W. Pedrycz, G.
L. Soares

Abstract

In this paper, we propose a method for solving constrained optimization prob-
lems using Interval Analysis combined with Particle Swarm Optimization. A
Set Inverter Via Interval Analysis algorithm is used to handle constraints in
order to reduce constrained optimization to quasi unconstrained one. The al-
gorithm is useful in the detection of empty search spaces, preventing useless
executions of the optimization process. To improve computational efficiency,
a Space Cleaning algorithm is used to remove solutions that are certainly not
optimal. As a result, the search space becomes smaller at each step of the
optimization procedure. After completing pre-processing, a modified Particle
Swarm Optimization algorithm is applied to the reduced search space to find
the global optimum. The efficiency of the proposed approach is demonstrated
through comprehensive experimentation involving 100,000 runs on a set of well-
known benchmark constrained engineering design problems. The computational
efficiency of the new method is quantified by comparing its results with other
PSO variants found in the literature.

Keywords: Interval Analysis, Evolutionary computation, Particle Swarm
Optimization, Constrained Optimization

1. Introduction

There are many optimization problems for which it is very hard to find
the best possible solution within a reasonable amount of time. One way of
solving these problems is to use evolutionary algorithms, which are a class of
computational intelligence methods guided by the use of stochastic heuristics
[4].

Particle Swarm Optimization (PSO) is an evolutionary algorithm inspired
by the movement of particles on a n-dimensional space. It works by generating
many different possible solutions, searching for the best one and moving the
values of the others in a manner similar to the movement of a flock of birds. It
can be used to solve unconstrained as well as constrained optimization problems.
However, the use of PSO for solving constrained problems may generate many
invalid candidate solutions, negatively affecting the efficiency of the method.

In this paper, we present [I]PSO, a novel hybrid interval PSO method di-
rected to the solution of constrained optimization problems. The method uses
Interval Analysis [30] in order to eliminate the consideration of the invalid can-
didate solutions that can be generated by PSO. Instead of using conventional
penalty functions [32], [I]PSO applies the Set Inverter Via Interval Analysis
(SIVIA) algorithm [23, 34, 31], that allows for the removal of some invalid re-
gions of the search space, so that PSO can be applied as if it were almost
unconstrained. As SIVIA exhibits a high computational cost, a space clean-
ing algorithm was created to eliminate the intervals that do not contain the
optimum, reducing the total number of function calls made by SIVIA.

[I]PSO was validated using a set of benchmark engineering design problems
[29, 20, 1, 6, 7, 37, 22, 26, 5, 39] and comparing the results with other PSO vari-
ants found in the literature [1, 7, 5]. The experiments have shown that [I]PSO
achieves better or similar results when compared to the ones obtained by other
studies. The paper’s main contribution and its originality lie in the formation of
a new optimization environment bringing together interval computing and evo-
lutionary techniques, in order to create an efficient constraint handling method
for constrained optimization problems.

The paper is structured as follows. Section 2 presents background knowledge
of Interval Analysis, Constrained Optimization and Particle Swarm Optimiza-
tion. Section 3 presents the proposed method and Section 4 the metrics used to
evaluate the experiments. Section 5 presents a simple illustrative example of the
pre-processing step of the proposed method. Section 6 presents the experiments
and results, followed by conclusion and future works. Finally, the Appendix
presents the problems used in the experiments and the best results found for
each one.

2. Background and Related Work

2.1. Constrained Optimization Problems

Let x be the design parameter and X the search space, x ∈ X ⊆ IRnx . Let
also g(x) : IRnx → IRng be the vector of constraint functions. Then the feasible
search space X′ can be defined as

X′ = {x ∈ X | g(x) ≤ 0}. (1)

Alternatively, X′ = g1 (x) ∩ g2 (x) ∩ · · · ∩ gng
(x). For instance, Fig.1 shows

a search space X′ considering the constraints 0 ≤ x1 ≤ 40, 0 ≤ x2 ≤ 60,
g1(x) = x1+x2−70 ≤ 0, g2(x) = −5x1−2x2+100 ≤ 0, g3(x) = x2−x1−40 ≤ 0
and g4(x) = x1−x2 ≤ 0. If f(x) : IRnx → IRn is the objective function, then an
unconstrained minimization problem on X′ leads to the solution in the form:

x∗ = arg min f(x), x∗ ∈ X′. (2)

The maximization problem can be described analogously. In this paper, only
minimization problems are considered.

2

Figure 1: Example of search space X = [0, 40]× [0, 60]. The unconstrained space X′ is shown
in white.

2.2. Interval Analysis

Interval Analysis deals with interval processing. It uses branch-and-bound
algorithms [23] to solve global optimization problems and was first used by
Moore [30] to deal with rounding errors. The use of interval methods was
further extended to solve problems with imprecise parameters and to handle
different kinds of uncertainty [23]. In this work, interval analysis techniques
were used to construct a wrapper over constraint functions, partitioning the
search space into feasible, unfeasible, and indeterminate regions. This section
addresses some important interval concepts needed to understand the handling
of constraint functions considered in this paper.

Interval numbers (intervals), such as [x], are sets consisting of all numbers
delimited by a minimum x and a maximum x values. The domain of all interval
numbers is denoted by IIR. Real intervals can be defined [34] as

[x, x] = {x ∈ IR|x ≤ x ≤ x} . (3)

An interval’s width w[x] is calculated as:

w[x] = (x− x) . (4)

If f(x) is a IR→ IR function, it’s interval extension is defined as:

f([x]) , [{f(x)|x ∈ [x]}] . (5)

Concatenated intervals or boxes [x] ∈ IIRnx are used to represent nx-

3

dimensional environments, and can be defined as a Cartesian product:

[x,x] = [x1, x1]× [x2, x2]× . . .×
[
xnx

, xnx

]
. (6)

The interval function f([x]) equivalent to its f(x) counterpart can be obtained
by replacing the x vector for [x], such that x ∈ [x].

The box center c[x], width w[x] and its hyper-volume H[x] are defined as:

c[x] =

[
(x1 + x1)

2
, . . . ,

(xi + xi)

2
, . . . ,

(
xnx

+ xnx

)
2

]
, (7)

w[x] = max
(
w[xi]

)
, i = 1 . . . nx, (8)

H[x] =

nx∏
i=1

w[xi]. (9)

For instance, considering [x] = [0.5, 3]×[2, 5], we have c[x] = (1.75, 3.5), w[x] = 3
and H[x] = 2.5× 3 = 7.5.

Considering the distance between two points y ∈ IR and x ∈ IR, dy,x = |x−y|,
the distance between y and an interval [x], dy,[x], can be defined as follows:

dy,[x] =

{
0, if y ∈ [x],
min

(
dy,x; dy,x

)
.

(10)

Then, the distance between y ∈ IRn and [x] ∈ IIRn, dy,[x], is defined as

dy,[x] =

√√√√ n∑
i=1

dyi,[xi]
2. (11)

For instance, Fig.2 shows an example of the distance between y = (2.5, 2.5)
and the boxes [x] = [0.5, 3] × [2, 5], [u] = [5, 8] × [3, 6], [w] = [2, 4] × [4, 8.5],
[z] = [1, 2]× [0.5, 1]. Then, dy,[x] = 0, dy,[u] = 2.5495, dy,[w] = 1.5 and dy,[z] =
1.5811.

A bisection is an operation that divides a box into two boxes of the same
size, by dividing the box’s largest interval. Formally, bisect ([x]) is

[x]1, [x]2 ← bisect ([x]) , where (12)

[x]
1

= [x1]× . . .×
[
xj ,

xj + xj

2

]
× . . .× [xnx

],

[x]
2

= [x1]× . . .×
[
xj + xj

2
, xj

]
× . . .× [xnx].

Index j is associated with the first component that presents maximum width,
i.e., j = min{i | w[xi] = w[x])}. For instance, Fig.3 shows an example of a box

[x] ∈ IIR2 that was bisected twice: a) after bisection 1, [x] = [x]1∪ [x]2; b) after

4

bisection 2, [x] = [x]2 ∪ [x]11 ∪ [x]12. The Bisection is an important interval
operation for reducing uncertainty in interval based methods.

As defined by Jaulin et al. [23], an interval function [f] ([x]) is an inclusion
function of f([x]) if:

∀[x], f([x]) ⊂ [f] ([x]) . (13)

Considering [x]k ⊆ [x]k−1 ⊆ · · · ⊆ [x]m ⊆ · · · ⊆ [x]0, two properties of the
inclusion functions are of special interest here:

a) monotonicity,
[x]k ⊆ [x]m ⇒ [f] ([x]k) ⊆ [f] ([x]m) ; (14)

b) convergence,
lim
k→∞

w[x]k = 0⇒ lim
k→∞

w[f]([x]k) = 0. (15)

Fig.4 and Fig.5 show these properties of inclusion functions. As a result,
monotonic and convergent inclusion functions guarantee reduced uncertainties
when used together with bisections. For example, if [x] = [x]1 ∪ [x]2, then
[f]([x]1) ∪ [f]([x]2) ⊆ [f]([x]).

The inclusion test [t] ([x]) is defined as:

[t] ([x]) =

 1, t (x) = 1, ∀ x ∈ [x],
0, t (x) = 0, ∀ x ∈ [x],
[0, 1], otherwise.

(16)

where [0, 1] stands for an indeterminate conclusion for an inclusion test. The
comparison between two boxes [x] and [y] can be described using inclusion tests.

[t]([x] ≤ [y]) =

1, x ≤ y
0, x > y
[0, 1], otherwise.

(17)

The comparison operators ≥, < and > are described analogously.
Finally, the comparison between a point x ∈ IRnx and a box [y] ∈ IIRnx is

given by:

[t](x ≤ [y]) =

1, x ≤ y
0, x > y
[0, 1], otherwise.

(18)

As an example, using the boxes and point shown in Fig.2, for Eq.16 and Eq.17,
[t]([x] ≤ [u]) = [0, 1], [t]([z] > [w]) = 0, [t]([w] ≥ [x]) = [0, 1], [t]([z] ≤ [u]) = 1.
For Eq.18, [t](y ≤ [u]) = 1, [t](y ≤ [x]) = [0, 1], [t](y ≤ [w]) = [0, 1] and
[t](y ≤ [z]) = 0.

Notice that if [t]([z] < [u]) = 1, then ∀z ∈ [z], ∀u ∈ [u], z < u. As a result,
the method proposed in this work is able to remove [u] from the search space.
Also, considering [u] and [z] as in Fig.2, if [f]([x]) = [z] and [f]([y]) = [u], then

5

Algorithm 1 Adapted SIVIA algorithm

Input: V[X], I[X], ε
Output: V[X], I[X]

1: [x]← I[X].dequeue()
2: while w[x] < ε and I[X] 6= ∅ do
3: [t] ([x])← [g] ([x]) ⊆ [−∞, 0]
4: if [t] ([x]) = 1 then
5: V[X].enqueue ([x])
6: else if [t] ([x]) = [0, 1] then
7: I[X].enqueue (bisect ([x]))
8: end if
9: [x]← I[X].dequeue()

10: end while
11: I[X].enqueue ([x])
12: return V[X], I[X]

∀x ∈ [x], ∀y ∈ [y], f(x) < f(y). In this case the method is able to remove [y]
from the search space.

2.3. SIVIA

Set Inverter Via Interval Analysis (SIVIA) [23] is an algorithm that uses
inclusion tests and inclusion functions to validate the set relationship between
two boxes. In this work, SIVIA was applied to test which parts of the search
space are compatible with the constraint functions. SIVIA’s inputs are an initial
box [X] ⊆ IRn that contains the search space X and an accuracy parameter ε
that defines a stopping criterion. SIVIA’s outputs form a queue with valid boxes
V[X] and a queue with indeterminate boxes I[X]. Boxes that are guaranteed to
be invalid are deleted.

SIVIA works by initially obtaining [X] and adding it to I[X]. An inclusion
test is made to verify if the constraint functions satisfy the condition [g]([x]) ⊆
[−∞,0]. This is equivalent to testing whether g([x]) ≤ 0, ∀ x ∈ [x]. If the
condition is satisfied, [x] is added to V[X], otherwise [x] is deleted. Finally, if
the output is [0,1], [x] is bisected yielding [x]1 and [x]2, that are added to I[X].
This is repeated until I[X] is empty or w[x] is lower than ε, returning V[X] and
I[X]. Although SIVIA originally uses [X] as its input, in this work the inputs
are V[X] and I[X], as shown in Alg. 1.

SIVIA can be used as a deterministic branch-and-bound algorithm for global
optimization [17], with some minor modifications. It is able to always find the
global optimum, if it exists, for any problem in which [f] ([x]) and [g] ([x]) can
be written as inclusion functions. It is also able to determine if a problem has
no feasible solution. However, it has a very high computational cost when used
alone. To overcome this problem, a hybrid method will be presented in Section
3.

6

2.4. Particle Swarm Optimization

PSO was proposed by Kennedy and Eberhart [24], with the purpose of simu-
lating the movement of a flock of birds. After some improvements of the original
idea, the authors concluded that PSO was very efficient for optimizing uncon-
strained non-linear functions [25]. In PSO, a set of discrete [38] or continuous
variables is defined as a particle and a group of particles forms a swarm. In the
first step, the PSO algorithm generates a random position (s) and velocity (v),
for each particle, and uses an objective function to evaluate a fitness value for
every particle. The values of s and v evolve during each iteration. PSO saves
the particles with the best individual fitness in a pbest (particle best) swarm,
and saves the best particle as a gbest (global best) particle.

In order to determine the updated values of a particle, PSO first determines
a weight hi for each iteration i which is used to calculate the velocities of the
particles and their new positions in the space. After this, the fitness of each
particle is computed and the value of pbest re-evaluated. When all particles
have been inspected, the particle with the best fitness is chosen as the new
gbest. The process is repeated until a pre-defined number of iterations has
been reached.

The computation of the velocity and position of a particle j at iteration i is
ruled by the following set of assignments:

hi ← hmax − i (hmax − hmin) /itmax, (19)

vji ← hi

[
vji−1 + c1rand()�

(
pbestj − sji−1

)
+ (20)

+ c2rand()�
(
gbest− sji−1

)]
,

sji ← sji−1 + vji , (21)

where hmin, hmax, itmax, c1, c2 and ssize are user-defined parameters. In par-
ticular, hmin and hmax are the minimum and maximum of the possible weights,
itmax is the maximum number of iterations, and sji is the j-th particle in a
swarm of size ssize, at iteration i. The parameters c1 and c2 are constants that
make the particles move preferentially in the direction of either gbest or pbest.
Function rand() returns a n-dimensional vector of random numbers from 0 to
1 and the � operator denotes the Hadamard element-wise product between two
vectors. The maximum number of iterations for each problem is itmax.

2.5. Constrained Optimization using PSO

Although PSO was designed to deal with unconstrained optimization, it can
be modified in order to solve constrained problems as well. For example, it is
possible to adapt PSO by using penalty functions [32, 14, 8]. Penalty functions
can be classified as being stationary or non-stationary [33]. Stationary functions
take the fitness value of an unfeasible solution found in an iteration and multiply

7

this value by a constant penalty factor, depending on the degree of violation of
the constraints. Non-stationary penalties multiply the fitness by a factor that
changes depending on the iteration number. The new fitness values are then
used in the original PSO algorithm.

Constraints can also be handled without penalty functions. One way to
do it is by removing invalid particles and replacing them by new ones, when
generating particles in the first iteration. The process is repeated until a valid
particle has been generated for every member of the population. For subsequent
iterations, only pbest and gbest are updated when feasible solutions are found
[20]. The main disadvantage of this method is that, depending on the problem,
it may take a long time to generate new particles[25]. Some other strategies to
handle constraints include resetting the particles to their former pbest values
whenever they represent an unfeasible solution, as used by El-Gallad et al. in
[12], or moving them back to their previous positions, as used by He et al. in
[18]. These strategies, however, may force PSO to converge towards a local
optimum [25]. A way to lower the likelihood of reaching local optima is by
increasing the diversity of the swarm, changing the standard behavior of the
particle [40, 36, 16, 27]. As an example, a mutation operator similar to the
one used in genetic algorithms may be included at each iteration [19, 3, 21, 27].
Mazhoud et al.[28] present a constraint handling mechanism that consists of
a closeness evaluation of the solutions to the feasible region, and uses Interval
Arithmetic to normalize the total evaluations.

Another way to handle constraints, as proposed in this work, is to exclude
the constrained space and force the optimizing tool to search for answers that lie
exclusively within the feasible portion of the search space. This can be achieved
using Interval Analysis, as shown by Soares in [34]. Solau et al. [35] use a
method similar to the one discussed in this paper, although presenting a high
computational cost when used with complex expressions, such as the ones found
in some engineering problems.

Based on this rationale, we propose some changes to the methods in order
to improve constraint handling in optimization by PSO.

3. Proposed Method - [I]PSO

[I]PSO is a hybrid method that combines Interval Analysis and PSO. Fig.6
shows the outline of the proposed method with the pre-processing block (see
Alg. 2) composed by SIVIA and the Space Cleaning algorithm.

The SIVIA algorithm (see Alg. 1) takes V[X] and I[X] and bisects their
elements in many smaller boxes [x] until a required precision εmin is reached:

εmin =
1

2`
w[X], (22)

where ` is an integer effort parameter. The size of the resulting queues are then
reduced, using Alg. 3, by finding a valid point x for each box in V[X] and I[X],
using Alg. 4, and by removing the boxes for which f([x]) > f(x). Note that, due

8

to the property shown by Eq.18, Interval Analysis guarantees that the optimal
region will never be removed from the search space. Once the pre-processing
is completed, the boxes in I[X] are joined with V[X], generating a “clean” space

X
′′
:

X
′′
, V[X] ∪ I[X]. (23)

Therefore, from Eq.22 and Eq.23 it can be concluded that

`→∞⇒ X
′′
→ x∗. (24)

A high ` value, however, implies a high computational cost. The value of `
is thus limited and the adapted PSO is used in order to find x∗, as shown in
Alg. 5 and Alg. 6.

A common question when optimization algorithms are proposed is the com-
putational complexity (also called computational cost or effort, CE) [9]. Usu-
ally, the CE of swarm methods like PSO is measured using the number of ob-
jective function calls. However, [I]PSO is a hybrid method and the overall CE
is composed of the sum of objective function calls made by the pre-processing
and PSO parts.

Eq.25 and 26 show the CE of the pre-processing in the worst case scenario,
that is, when no boxes are removed from the search space. CEf is measured in
terms of objective function calls, with nx being the dimensionality of the search
space. CEg measures the computational effort in terms of constraint func-
tion calls, with ng being the number of constraint functions. Usually, the high
computational cost is a drawback of Interval Analysis, and the Space Cleaning
algorithm aims to rectify it.

CEf = 2×
∑̀
i=0

2nx×i. (25)

CEg = 2ng ×
∑̀
i=0

2nx×i. (26)

After pre-processing, PSO (Alg. 6) is applied to the clean search space X
′′
.

Fitness function calls are made once for each particle in the swarm per iteration,
so the computational cost of PSO can be considered O(itmax ∗ ssize).

4. Metrics for optimization methods

Different performance metrics have been proposed for comparing evolution-
ary algorithms. In this paper, the following metrics were used: (a) the remaining
percentual hyper-volume H% of X; (b) the obtained best fitness (f∗); and (c) the
obtained average of the best fitnesses (f∗). Note that metric (a) was developed
for describing the method’s performance. Metrics (b) and (c) are usually used to
compare the performance of Evolutionary Algorithms [1, 2, 6, 7, 11, 20, 29, 26].

9

Algorithm 2 Pre-processing

Input: X
Parameters: εmin
Output: X

′′

1: ε← 1
2wX

2: Add X to I[X]

3: while ε > εmin do
4: V[X], I[X] ← SIV IA

(
V[X], I[X], ε

)
5: V[X], I[X] ← spaceCleaning

(
V[X], I[X]

)
6: ε← 1

2ε
7: end while
8: X

′′ ← V[X] ∪ I[X]

9: return X
′′

Algorithm 3 Space Cleaning

Input: V[X], I[X]

Output: V[X], I[X]

1: for all [x] ∈ V[X] ∪ I[X] calculate f([x])
2: for all [x] ∈ V[X] ∪ I[X] do
3: Search for a x ∈ [x],x ∈ X′ (Alg. 4)
4: if x is found then
5: Calculate f(x)
6: Remove all [x] from V[X] ∪ I[X], f(x) < f([x])
7: end if
8: end for
9: return V[X], I[X]

H% shows the relationship between X
′′

and X’s hyper-volume. It can be
computed as

H% =
HX′′

HX
× 100, (27)

where HX′′ is the sum of the hyper-volumes of all its boxes

HX′′ =
∑

H[x], ∀[x] ∈ X
′′
, (28)

and HX is the hyper-volume of [X] (See Eq.9).
The term f∗ measures gbest with respect to its closeness to the objective

function’s fitness f(x∗) using the benchmark global optimum x∗. Since this
work only uses minimization, f∗ is achieved when

f∗ ≤ (1 + ε)f(x∗), (29)

where ε is the required precision. Similarly, a sub optimum fitness f∗s is reached

10

Algorithm 4 Interval local search algorithm

Input: [x]
Parameters: wmin
Output: x

1: Compute c[x] and w[x]

2: if g(c[x]) ≤ 0 or w[x] < wmin then
3: x← c[x]
4: return x
5: end if

6: if
ng∑
j=1

gj(x) ≤
ng∑
j=1

gj(x) then

7: [x]← [x, c[x]]

8: else if
ng∑
j=1

gj(x) >
ng∑
j=1

gj(x) then

9: [x]← [c[x],x]
10: end if
11: go to step 1

Algorithm 5 Generate New Particle

Input: X
′′

Output: x

1: [x]← random box from X
′′

2: x← random particle from [x]
3: while [t] ([x]) = [0, 1] and g (x) > 0 do
4: [x]← random box from X

′′

5: x← random particle from [x]
6: end while
7: return x

when
f∗ < f∗s ≤ (1 + kε)f(x∗), (30)

where k is a constant. The values of both ε and k are defined by the user.
Remark: f(x∗) is the minimum possible value. However, considering “build
limitations” and possible rounding errors, our metrics consider f∗ and f∗s valid
solutions.

Considering fi(gbest) being the best result found in simulation i, the mean
result found for all simulations is f∗ and can be written as

f∗ =
1

nrun

nrun∑
i=1

fi(gbest). (31)

11

Algorithm 6 Particle Swarm Optimization

Input: X
′′

Parameters: c1, c2, ssize, hmax, hmin, pm, itmax
Output: x∗

1: for j from 1 to ssize do
2: sj0 ← generateNewParticle(X

′′
) (Alg. 5)

3: update pbest and gbest
4: end for
5: for i from 1 to itmax do
6: for j from 1 to ssize do
7: if rand < pm then
8: sji ← generateNewParticle(X

′′
) (Alg. 5)

9: else
10: sji ← new position (Eq. 19, 20 and 21)
11: end if
12: if sji /∈ X

′′
then

13: [x]← arg min
[x]∈X′′

(
dsji , [x]

)
14: sji ← arg min

x∈[x]

(
dx, sji

)
15: end if
16: update pbest and gbest
17: end for
18: end for
19: return x∗

5. An illustrative example

This section presents a simple example to explain how the pre-processing
step of [I]PSO works, using the following function:

Minimize :

f(x) = 3(1− x1)2 exp
(
−x21 − (x2 + 1)

2
)
. . .

−10
(
x1

5 − x
3
1 − x52

)
exp

(
−x21 − x22

)
. . .

− 1
3 exp

(
− (x1 + 1)

2 − x22
)

;

subject to :
g1(x) = x21 + x22 ≥ 1;

g2(x) = x21 + x22 ≤ 4;

where :
−3 ≤ x ≤ 3;

According to subsection 2.1, X = {[−3 3], [−3 3]}, and X′ = g1 (X) ∩ g2 (X).
Fig.7 shows various instances of the example using contour lines, with f(x)×X

12

and f(x)×X′ shown in Fig.7b and Fig.7a, respectively. The results presented
in Fig.7b can be obtained using only SIVIA, with εmin=0.1875 (Eq.22, with ` =
5). In this case, SIVIA generates 264 blank boxes representing the valid search
space, 416 black boxes with the indeterminate valid/invalid search space, with
w[x] < εmin, and 284 light gray boxes of invalid search space. Fig. 7c to 7h show
each step of SIVIA with the space cleaning algorithm. In this case, it generates
18 blank boxes (valid) that are stored in V[X], 18 black boxes (indeterminate)
stored in I[X], and 29 light gray boxes (invalid). A total of 134 dark gray boxes
was excluded because the space cleaning algorithm found a point (shown as a
red spot) that presents a value better than any other possible values inside the
box. Since it is impossible to know if the optimum is on V[X] or I[X], they were

joined in the clean space X
′′

(see Eq.23). [I]PSO then jumps through the boxes
stored in X

′′
, shown in Fig.7h, searching for x∗.

6. Experiments

In order to test [I]PSO, an interval arithmetic library was implemented in
Java 8. The experiments consisted of: (a) solving benchmark optimization prob-
lems and comparing the results with the ones achieved by CiP-PSO [7], COPSO
[1], CVI-PSO[28] and IAPSO [5]; (b) verifying the number of runs that were able
to achieve global optimum or a value close to it; and (c) verifying the amount of
unfeasible space that was removed by [I]PSO for each problem. [I]PSO was not
compared to Solau et al.’s PSO [35] because the later did not present a com-
parable number of function evaluations. In this case, execution time would not
be a proper metric for comparison due to differences in the implementation and
the hardware used in the experiments. It should also be noted that there are
many ways to improve PSO’s performance that can be combined with [I]PSO.
However, we did not demonstrate them in order to highlight the improvements
made by [I]PSO.

Six benchmark problems were implemented in the experiments: the Pres-
sure Vessel (PV), Welded Beam (WB), Speed Reducer (SR), Compression String
(CS), Speed Reducer 2 (SR2) and Clutch Brake (CB) problems [2, 5, 7]. The
objective functions and constraints for these problems can be found in the ap-
pendices. In order to show an accurate representation of [I]PSO’s results, each
experiment was executed 100,000 times using random seeds, with a total of
20,000 objective function calls per run. The value of 20,000 calls was chosen to
allow for comparison with the previously published results. The parameters for
[I]PSO were chosen based on the characteristics of each problem and are shown
in Tab.1. Note that, due to the hybrid nature of the method, the maximum
number of iterations was calculated based on the desired number of function
calls, the number of function calls made in the pre-processing (shown in Tab.2)
and the swarm size, as shown by Eq.32, so that the experiments could have a
fair number of objective function calls when compared with other algorithms.
Also note that nf(x) is the computational effort for the pre-processing of each

13

Table 1: [I]PSO parameters used in the experiments for the Pressure Vessel (PV), Welded
Beam (WB), Speed Reducer (SR), Compression String (CS), Speed Reducer 2 (SR2) and
Clutch Brake (CB) problems.

Parameters SR PV WB CS SR2 CB

hmax 1 1 1 1 1 1
hmin 0.3 0.3 0.3 0.3 0.3 0.3
ssize 20 20 20 20 20 20
c1;c2 3;1 3;1 3;1 3;1 3;1 3;1
pm 0.015 0.015 0.015 0.015 0.015 0.015
` 3 6 6 4 3 3
k 10 10 10 10 10 10
ε 0.001 0.001 0.001 0.001 0.001 0.001
wmin 10−6 10−6 10−6 10−6 10−6 10−6

itmax 896 744 791 992 952 530

problem, as shown in Tab.2.

itmax = (20000− nf(x))/ssize, (32)

6.1. Space Cleaning Results

Tab.2 shows the results of the pre-processing, according to the metrics shown
in Section 4, and the total number of objective function calls nf(x), which repre-
sent the computational cost of the method for each problem. The εmin precision
values used for each problem, which were chosen based on the best results found
after several experiments, are shown in Tab.1. It can be seen that, for the WB,
PV, SR and SR2 problems, H% is lower than 1%, while for the CS problem it is
close to 2% and for the CB problem, close to 3%. This shows that the original
domain of the problems can be greatly reduced. The reduction of the search
space can be seen in Fig.8

6.2. PSO Results

Tables 3-8 show a comparison of the statistical results obtained for each
problem, with 30 runs for each. It can be seen that the results obtained by
[I]PSO are similar to the ones recently found in the literature, with the main
significant difference being the mean result for the PV problem. It should also be
noted that 30 runs are not enough to properly show the results of the algorithm,
and Tab.10 shows the statistical results obtained for 100,000 runs.

14

Table 2: Results of the pre-processing, with the original hyper-volume of the search space HX,
resulting hyper-volume after using SIVIA H

X
′′ , the percentage of the remaining hyper-volume

(H%), and the total number of number of objective function calls made in the pre-processing
nf(x)) for each problem.

HX HX′′ H% nf(x)

SR 0.275 6.14E-04 0.223302841 2069
PV 1354314.063 32.28936344 0.002384186 5300
WB 353.8161 0.026530066 0.007498264 4410
CS 26.6175 0.591355591 2.221679687 148
SR2 0.55 0.00318 0.579833984 954
CB 2560000 82343.75 3.216552734 9388

Table 3: Statistical results for the WB problem, showing best, mean and worst experimental
results for 30 runs, together with the standard deviation.

Algorithm Best Mean Worst Std.Dev

CiP-PSO[7] 1.724852 2.0574 NA 0.2154
COPSO[1] 1.724852 1.7248 NA 1.2E-05

CVI-PSO[28] 1.724852 1.725124 1.727665 6.12E-04
IAPSO[5] 1.724852 1.7248528 1.7248624 2.02E-06

[I]PSO 1.724852 1.7248787 1.7250002 3.28E-05

Tab.9 shows the number of global optima, sub-optima and failures achieved
by [I]PSO, for each optimization problem. The optimality of the results was
characterized based on Eq.29 and Eq.30. Therefore, in order to be considered
optimal, the achieved solution should not differ more than 0.1% from the best
found result. Sub-optimum solutions should differ less than 1%. All other
solutions were considered failures. The average value found by [I]PSO was
optimal according to these criteria, for all problems. The number of times the
global optimum or sub-optimum values were not achieved is negligible.

Reducing the search space by an arbitrary amount does not guarantee a
better mean value. As an example, Fig.9 shows the f∗ value found by [I]PSO
for the PV problem, while Fig.10 shows H%, for different nf(x) and ` values,
with ` = 0 meaning the pre-processing step is skipped. Note that for low `
values, [I]PSO did not get acceptable results. High ` values, however, imply
in a high computational cost, which is also unacceptable. Because of this, it is
necessary to find the ` value with the best possible cost-benefit, so that both
the computational cost and mean result are acceptable. It should be noted that
choosing the ` value depends on the precision degree required, and changes for
each problem. In our experiments, the ` value used for each was decided after
multiple tests so that it could offer the best possible results with the lowest

15

Table 4: Statistical results for the PV problem, showing best, mean and worst experimental
results for 30 runs, together with the standard deviation.

Algorithm Best Mean Worst Std.Dev

CiP-PSO[7] 6059.7143 6092.0498 NA 12.1725
COPSO[1] 6059.7143 6071.0133 NA 15.1011
IAPSO[5] 6059.7143 6068.7539 6090.5314 14.0057

[I]PSO 6059.7143 6059.7155 6059.7257 0.00232

Table 5: Statistical results for the SR problem, showing best, mean and worst experimental
results for 30 runs, together with the standard deviation.

Algorithm Best Mean Worst Std.Dev

CiP-PSO[7] 2996.348165 2996.3482 NA 0.0000
COPSO[1] 2996.372448 2996.4085 NA 0.0286
IAPSO[5] 2996.34816497 2996.3481 2996.34816497 6.88E-13

[I]PSO 2996.34816497 2996.3481 2996.34816509 2.43E-08

possible number of function evaluation calls.
Remark: It is important to note that the total number of function evaluation
calls used in the experiments was limited to 20,000, regardless of the ` value, so
the algorithm has roughly the same computational cost for all ` values.

These results validate [I]PSO, showing that it is able to find the global
optimum in most of the runs and that the reduction of the search space helps
the global optimization process.

7. Conclusions

A novel Constrained Optimization method, [I]PSO, was presented and vali-
dated on a set of benchmark engineering problems. [I]PSO has some advantages
that must be highlighted. 1. [I]PSO uses Interval Analysis to substantially re-
duce the search space and thereby the efforts needed to search for the optimum

Table 6: Statistical results for the CS problem, showing best, mean and worst experimental
results for 30 runs, together with the standard deviation.

Algorithm Best Mean Worst Std.Dev

CiP-PSO[7] 0.012665 0.0131 NA 4.1E-04
COPSO[1] 0.012665 0.0126 NA 1.2E-06

CVI-PSO[28] 0.0126655 0.0127310 0.0128426 5.58E-05
IAPSO[5] 0.01266523 0.013676527 0.01782864 1.573E-03

[I]PSO 0.01266567 0.012671486 0.01268312 3.89E-06

16

Table 7: Statistical results for the SR2 problem, showing best, mean and worst experimental
results for 30 runs, together with the standard deviation.

Algorithm Best Mean Worst Std.Dev

IAPSO[5] 2994.471066 2994.47106 2994.4710 2.65E-09
[I]PSO 2994.471067 2994.47108 2994.4711 9.27E-06

Table 8: Statistical results for the CB problem, showing best, mean and worst experimental
results for 30 runs, together with the standard deviation.

Algorithm Best Mean Worst Std.Dev

IAPSO[5] 0.313656 0.313656 0.313656 1.13E-16
[I]PSO 0.313656 0.313656 0.313656 0

are reduced, increasing the probability of finding the global optimum or a subop-
timal solution. This can be seen in Fig.10; 2. [I]PSO stops pursuing a solution
when the valid search space is empty; usually, when this happens, stochastic
algorithms that use standard constraint handling strategies may return invalid
solutions or enter infinite loops. 3. Although the pre-processing step is used
together with PSO, it is flexible enough to be used in combination with other
optimization techniques; 4. Finally, since the pre-processing is deterministic, it
only needs to be executed once for each problem.

[I]PSO was validated using four benchmark engineering problems whose ob-
jective and constraint functions were formulated as interval inclusion functions.
Each problem was run 100,000 times to ensure more precise evaluation. The
number of objective function calls made by [I]PSO was also limited in order
to allow for comparisons with other methods found in the literature. Tab.9
highlights the effectiveness of [I]PSO, showing that it can be considered a good
option in the solution of problems with similar characteristics. If the number
of function calls is not a limiting issue, [I]PSO is always able to find the global
optimum. It should also be noted that, although we limited the number of func-

Table 9: Number of experiments in which [I]PSO achieved global optimum, sub-optimum or
failed to converge.

Probl. f∗ f∗s failed

SR 99,772 200 28
PV 98,693 1,307 0
WB 99,453 546 1
CS 81,978 18,022 0
SR2 96,161 1,145 2,694
CB 100,000 0 0

17

Table 10: Statistical results for 100,000 runs, showing best, mean and worst experimental
results, together with the standard deviation.

Algorithm Best Mean Worst Std.Dev

WB 1.7248523273365091 1.7249294530346946 1.7391705694087012 0.00030214148342926588
PV 6059.7143350503729 6059.966809804203 6091.1301522511558 1.8472132251313591
CS 0.012665232841936448 0.012672868998827698 0.012723627431697459 5.5266747835980769E-06
SR 2996.3481649685305 2996.3737892120294 3035.625578659377 0.69778131505116459
SR2 2994.4710663190704 2995.6624564145163 3046.7136848521786 6.4699844474780095
CB 0.313656 0.313656 0.313656 1.13E-16

tion calls in our experiments to 20000, most design problems are not real-time
applications, so the number of function calls does not need to be limited, and
the ` precision parameter can be increased as much as the user needs.

[I]PSO has some drawbacks. First, the pre-processing has a high compu-
tational cost due of the number of bisections it performs for each variable and
due to its precision level, given by εmin. In other words, the computational cost
increases as the number of dimensions increases, or εmin decreases. Second,
when it is used with problems with a small restricted space, it acts as an ordi-
nary PSO, but may waste time in the pre-processing. Finally, since [I]PSO uses
Interval Analysis, it can only be applied with problems that can be modeled
with interval inclusion functions.

8. Future work

[I]PSO requires analytically expressed interval functions in order to be used.
There are many problems that have no analytical description. Besides, it may
take some effort to reduce a regular mathematical model to its interval counter-
part. Therefore, we plan to create a Genetic Programming algorithm to model
mathematical functions, simulations and measurements in the interval arith-
metic format that can be used together with [I]PSO. The method should also
be tested with high-dimensional problems.

[I]PSO can be further improved by changing the PSO topologies and mech-
anisms in order to improve global search. The use of the pre-processing step
allows each box in X

′′
to be handled as a different search space. The consider-

ation of other properties of Interval Arithmetic as well as the analysis of other
classes of problems may also reveal new aspects related to the proposed method
and are a field for future investigation. Another possibility is to use a local op-
timization tool in each box found in the pre-processing, rather than estimating
a valid point by the boxes’ center point. This might solve the issue of the result
not necessarily improving as the ` parameter is increased.

9. Appendix

The optimization problems used as a benchmarks in this work are shown
below. Tables 11-16 show the best results found by [I]PSO for each benchmark.

18

9.1. Welded Beam Design Optimization Problem (WB)

The Welded Beam Design Optimization Problem can be stated as

Minimize :
f(x) = 1.10471x21x2 + 0.04811x3x4(14 + x2);

subject to :
g1(x) = τ(x)− 13 600 ≤ 0;

g2(x) = σ(x)− 30 000 ≤ 0;

g3(x) = x1 − x4 ≤ 0;

g4(x) = 0.10471(x21) + 0.04811x3x4(14 + x2)− 5 ≤ 0;

g5(x) = 0.125− x1 ≤ 0;

g6(x) = δ(x)− 0.25 ≤ 0;

g7(x) = 6000− Pc(x) ≤ 0;

with :

τ(x) =
√

(τ ′)2 + (2τ ′τ ′′)x2/2R+ (τ ′′)2;

τ ′ = 6000/(
√

2x1x2);

τ ′′ = MR/J ;

M = 6000(14 + x2/2);

R =
√
x22/4 + (x1 + x3/2)2;

J = 2x1x2
√

2(x22/12 + (x1 + x3/2)2);

σ(x) = 504000/(x4x
2
3);

δ(x) = 65856000/(30× 106x4x
3
3);

Pc(x) = 4.013(30×106)
196

√
x23x

6
4/36

(
1− x3

28

√
30×106

4(12×106)

)
;

0.1 ≤ x1,x4 ≤ 2.0;

0.1 ≤ x2,x3 ≤ 10.0;

Remark: The value found in [13] was better than the previously found optimal
result, but is unfeasible.

9.2. Tension/Compression Spring Design Optimization Problem (CS)

The Tension/Compression Spring Design Optimization Problem can be stated
as

19

Minimize :
f(x) = (x3 + 2)x2x

2
1;

subject to :
g1(x) = 1− x32x3/(7.178x41) ≤ 0;

g2(x) =
4x2

2−x1x2

12566(x2x3
1)−x4

1
+ 1

5108x2
1
− 1 ≤ 0;

g3(x) = 1− 140.45x1/(x
2
2x3) ≤ 0;

g4(x) = (x2 + x1)/1.5 ≤ 0;

with : 0.05 ≤ x1 ≤ 2.0, 0.25 ≤ x2 ≤ 1.3 and
2.0 ≤ x3 ≤ 15.0

9.3. Speed Reducer Design Optimization Problem (SR)

The Speed Reducer Design Optimization Problem can be stated as

Minimize :
f(x) = 0.7854x1x

2
2(3.3333x23 + 14.9334x3 − 430934)−

−1.508x1(x26 + x27) + 7.4777(x36 + x37)+
+0.7854(x4x

2
6 + x5x

2
7);

subject to :
g1(x) = 27/(x1x

2
2x3)− 1 ≤ 0;

g2(x) = 397.5/(x1x
2
2x

2
3)− 1 ≤ 0;

g3(x) = 1.93x34/(x2x3x
4
6)− 1 ≤ 0;

g4(x) = 1.93x35/(x2x3x
4
7)− 1 ≤ 0;

g5(x) = 1.0
110x3

6

√(
745.0x4

x2x3

)2
+ 16.9× 106 − 1 ≤ 0;

g6(x) = 1.0
85x3

7

√(
745.0x5

x2x3

)2
+ 157.5× 106 − 1 ≤ 0;

g7(x) = x2x3/40− 1 ≤ 0;

g8(x) = 5x2/x1 − 1 ≤ 0;

g9(x) = x1/(12x2)− 1 ≤ 0;

g10(x) = (1.5x6 + 1.9)/x4 − 1 ≤ 0;

g11(x) = (1.1x7 + 1.9)/x5 − 1 ≤ 0;

with : 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8,
17 ≤ x3 ≤ 283, 7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3,
2.9 ≤ x6 ≤ 3.9 and 5.0 ≤ x7 ≤ 5.5

20

9.4. Speed Reducer Design Optimization Problem 2 (SR2)

SR2 is another version of the SR problem. SR2 differs from SR by changing
the bound of the design variable x5, so that 7.3 ≤ x5 ≤ 8.3.

9.5. Pressure Vessel Design Optimization Problem (PV)

The Pressure Vessel Design Optimization Problem can be stated as

Minimize :
f(x) = 0.6224x1x3x4 + 1.7781x2x

2
3 + 3.1661x21x4

+19.84x21x3
subject to :

g1(x) = −x1 + 0.0193x3 ≤ 0;

g2(x) = −x2 + 0.00954x3 ≤ 0;

g3(x) = −πx23x24 − 4
3πx

3
3 + 1 296 000 ≤ 0;

g4(x) = x4 − 240 ≤ 0;

with : x1 = 0.0625n1, x2 = 0.0625n2, where
1 ≤ n1 ≤ 99, 1 ≤ n2 ≤ 99, 10.0 ≤ x3 ≤ 200.0
and 10.0 ≤ x4 ≤ 200.0, n1, n2 ∈ N, x3, x4 ∈ R

Remark: The papers [15] and [13] claimed to have found better than the
previously found optimal. Such results, however, are unfeasible, since the values
they found for x1 and x2 are not discrete.

21

9.6. Multiple disk clutch brake design optimization problem (CB)
The Multiple Disk Clutch Brake Design Optimization Problem can be stated

as
Minimize :

f(x) = π(x22 − x21)x3(x5 + 1)ρ;
subject to :

g1(x) = x2 − x1 −∆R ≥ 0;
g2(x) = Lmax − (x5 + 1)(x3 + δ) ≥ 0;
g3(x) = pmax − prz ≥ 0;
g4(x) = pmax × V sr,max− prz × V sr ≥ 0;
g5(x) = V sr,max− V sr ≥ 0;
g6(x) = Tmax − T ≥ 0;
g7(x) = Mh − s×Ms ≥ 0;
g8(x) = T ≥ 0;

with :

Mh = 2
3µx4x5

x3
2−x

3
1

x2
2−x2

1
N·mm;

ω = πn/30 rad/s;
A = π(x22 − x21) mm2;
prz = x4

A N/mm2;
V sr = πRsrn

30 mm/s;

Rsr = 2
3
x3
2−x

3
1

x2
2−x2

1
mm;

∆R = 20mm; Lmax = 30mm;
µ = 0.5; pmax = 1MPa;
ρ = 0.0000078kg/mm3;
V sr,max = 10m/s; δ = 0.5mm;
s = 1.5; Tmax = 15s;
n = 250rpm; Iz = 55kg ·m2;
Ms = 40Nm; Mf = 3Nm;
60mm ≤ x1 ≤ 80mm;
90mm ≤ x2 ≤ 110mm;
1.0mm ≤ x3 ≤ 3mm;
0 ≤ x4 ≤ 1, 000N;
2 ≤ x5 ≤ 9;
x1, x2, x5 ∈ N;
x3 = 0.5n1;n1 ∈ N;
x4 = 10n2;n2 ∈ N;

Remark: The original CB problem had 1.5 ≤ x3 [10]. In order to compare
fairly with the literature [5], the lower bound of the design variable x3 was
changed, so that 1.0 ≤ x3.

References

[1] Aguirre, A.H., Zavala, A., Diharce, E.V., Rionda, S.B., 2007. COPSO: Con-
strained Optimization via PSO Algorithm. Technical Report I-07-04/22-
02-2007. Center for Research in Mathematics (CIMAT).

22

Table 11: Best result found by [I]PSO for the Pressure Vessel Problem

f(x∗) 6059.7143350503729

x1 0.8125
x2 0.4375
x3 42.098445595839479
x4 176.6365958426332

g1(x) -2.97983859809392E-13
g2(x) -0.035880829015691396
g3(x) -1.3562384992837906E-8
g4(x) -63.3634041573668

Table 12: Best result found by [I]PSO for the Compression String Problem

f(x∗) 0.012665232841936448

x1 0.051688394316786956
x2 0.35670169894030945
x3 11.289906277646015

g1(x) -2.0062300709611236E-9
g2(x) -9.813179158157936E-10
g3(x) -4.053753932941942
g4(x) -0.7277399378286025

[2] Akhtar, S., Tai, K., Ray, T., 2002. A socio-behavioural simulation model
for engineering design optimization. ENGINEERING OPTIMIZATION 34,
341–354. doi:10.1080/0305215021000001677.

[3] Arumugam, M., Chandramohan, A., Rao, M., 2005. Competitive ap-
proaches to PSO algorithms via new acceleration co-efficient variant with
mutation operators, in: Selvaraj, H and Verma, B and DeCarvalho, A
(Ed.), ICCIMA 2005: Sixth International Conference on Computational
Intelligence and Multimedia Applications, Proceedings, pp. 225–230.

[4] Back, T., Hammel, U., Schwefel, H.P., 1997. Evolutionary computation:
comments on the history and current state. IEEE Transactions on Evolu-
tionary Computation 1, 3–17. doi:10.1109/4235.585888.

[5] Ben Guedria, N., 2016. Improved accelerated PSO algorithm for mechanical
engineering optimization problems. APPLIED SOFT COMPUTING 40,
455–467. doi:10.1016/j.asoc.2015.10.048.

[6] Bernardino, H.S., Barbosa, H.J.C., Lemonge, A.C.C., 2007. A hy-
brid genetic algorithm for constrained optimization problems in me-
chanical engineering, in: 2007 IEEE CONGRESS ON EVOLUTION-
ARY COMPUTATION, VOLS 1-10, PROCEEDINGS, IEEE. pp. 646–653.
doi:10.1109/CEC.2007.4424532.

23

Table 13: Best result found by [I]PSO for the Speed Reducer Problem

f(x∗) 2996.3481649685305

x1 3.5
x2 0.69999999999999996
x3 17
x4 7.2999999999999998
x5 7.7999999999999998
x6 3.3502146660964498
x7 5.2866832297579167

g1(x) -0.07391528039787332
g2(x) -0.1979985271419492
g3(x) -0.4991722481024208
g4(x) -0.901471697615325
g5(x) -1.9984014443252818E-15
g6(x) -3.3306690738754696E-16
g7(x) -0.7025
g8(x) 0.0
g9(x) -0.5833333333333333
g10(x) -0.05132575354182545
g11(x) -0.010852365034139666

[7] Cagnina, L.C., Esquivel, S.C., Coello, C.A.C., 2008. Solving engineering
optimization problems with the simple constrained particle swarm opti-
mizer. Informatica 32, 319–326.

[8] Datta, R., Deb, K., 2016. Uniform adaptive scaling of equality and in-
equality constraints within hybrid evolutionary-cum-classical optimization.
SOFT COMPUTING 20, 2367–2382. doi:10.1007/s00500-015-1646-0.

[9] De Falco, I., Della Cioppa, A., Maisto, D., Scafuri, U., Tarantino, E., 2014.
An adaptive invasion-based model for distributed Differential Evolution.
INFORMATION SCIENCES 278, 653–672. doi:10.1016/j.ins.2014.03.083.

[10] Deb, K., Srinivasan, A., 2006. Innovization: Innovating design princi-
ples through optimization, in: Keijzer, M (Ed.), GECCO 2006: Genetic
and Evolutionary Computation Conference, Vol 1 and 2, ACM SIGEVO.
ASSOC COMPUTING MACHINERY, 1515 BROADWAY, NEW YORK,
NY 10036-9998 USA. pp. 1629–1636. 8th Annual Genetic and Evolutionary
Computation Conference, Seattle, WA, JUL 08-12, 2006.

[11] Eberhart, R., Shi, Y., 2001. Particle swarm optimization: Develop-
ments, applications and resources, in: PROCEEDINGS OF THE 2001
CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2,
IEEE. pp. 81–86.

24

Table 14: Best result found by [I]PSO for the Welded Beam Problem

f(x∗) 1.7248523273365091

x1 0.20572963082113713
x2 3.4704888677326489
x3 9.0366238866879289
x4 0.20572964102998761

g1(x) -1.4176112017594278E-7
g2(x) -2.4231234419858083E-5
g3(x) -1.0208850487192223E-8
g4(x) -3.432983762316975
g5(x) -0.08072963082113713
g6(x) -0.23554032255855922
g7(x) -9.850136666500475E-5

[12] El-Gallad, A., El-Hawary, M., Sallam, A., 2001. Swarming of intelligent
particles for solving the nonlinear constrained optimization problem. ENGI-
NEERING INTELLIGENT SYSTEMS FOR ELECTRICAL ENGINEER-
ING AND COMMUNICATIONS 9, 155–163.

[13] Garg, H., 2016. A hybrid PSO-GA algorithm for constrained optimization
problems. APPLIED MATHEMATICS AND COMPUTATION 274, 292–
305. doi:10.1016/j.amc.2015.11.001.

[14] Ghovvati, M., Khayati, G., Attar, H., Vaziri, A., 2016. Kinetic
parameters estimation of protease production using penalty function
method with hybrid genetic algorithm and particle swarm optimization.
BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT 30, 404–
410. doi:10.1080/13102818.2015.1134279.

[15] Gu, H.j., Xu, L., 2011. Perceptive particle swarm optimization algorithm
for constrained optimization problems. J. Comput. App 31, 85–88.

[16] Gu, J., Shi, X., 2014. An Adaptive PSO Based on Motivation Mecha-
nism and Acceleration Restraint Operator, in: 2014 IEEE CONGRESS
ON EVOLUTIONARY COMPUTATION (CEC), IEEE. pp. 1328–1336.

[17] Hansen, E., Walster, G.W., 2003. Global optimization using interval anal-
ysis: revised and expanded. volume 264. CRC Press.

[18] He, S., Prempain, E., Wu, Q., 2004. An improved particle swarm opti-
mizer for mechanical design optimization problems. ENGINEERING OP-
TIMIZATION 36, 585–605. doi:10.1080/03052150410001704854.

[19] Higashi, N., Iba, H., 2003. Particle swarm optimization with
Gaussian mutation, in: PROCEEDINGS OF THE 2003 IEEE
SWARM INTELLIGENCE SYMPOSIUM (SIS 03), IEEE. pp. 72–79.
doi:10.1109/SIS.2003.1202250.

25

Table 15: Best result found by [I]PSO for the Multiple disk clutch brake design optimization
Problem

f(x∗) 0.31365661053440497

x1 70
x2 90
x3 1
x4 1000
x5 3

g1(x) 0.0
g2(x) 24.0
g3(x) 0.9005281605675655
g4(x) 9.790581597222223
g5(x) 7.894696589781841
g6(x) 2.7585833547687812
g7(x) 60.624999999999986
g8(x) 12.241416645231219

[20] Hu, X., Eberhart, R., Shi, Y., 2003. Engineering optimization with parti-
cle swarm, in: PROCEEDINGS OF THE 2003 IEEE SWARM INTELLI-
GENCE SYMPOSIUM (SIS 03), IEEE. pp. 53–57.

[21] Hu, Y., 2010. A new evolutionary algorithm based on simplex crossover and
pso mutation for constrained optimization problems, in: Computational
Intelligence and Security (CIS), 2010 International Conference on, pp. 142–
146. doi:10.1109/CIS.2010.38.

[22] Huang, F.z., Wang, L., He, Q., 2008. A Hybrid Differential Evolution
with Double Populations for Constrained Optimization, in: 2008 IEEE
CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, IEEE.
pp. 18–25. doi:10.1109/CEC.2008.4630770.

[23] Jaulin, L., Kieffer, M., Didrit, O., Walter, E., 2001. Applied Interval Anal-
ysis. Springer London.

[24] Kennedy, J., Eberhart, R., 1995. Particle swarm optimization,
in: 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL
NETWORKS PROCEEDINGS, VOLS 1-6, IEEE. pp. 1942–1948.
doi:10.1109/ICNN.1995.488968.

[25] Levitin, G., Hu, X., Dai, Y.S., 2007. Particle swarm optimization in reliabil-
ity engineering, in: Computational Intelligence in Reliability Engineering.
Springer Berlin Heidelberg. volume 40 of Studies in Computational Intelli-
gence. chapter 4, pp. 83–112.

[26] Li, L.D., Li, X., Yu, X., 2008. A Multi-Objective Constraint-
Handling Method with PSO Algorithm for Constrained Engineer-

26

Table 16: Best result found by [I]PSO for the Speed Reducer 2 Problem

f(x∗) 2994.4710663190704

x1 3.5000000000424829
x2 0.69999999999999996
x3 17
x4 7.2999999999999998
x5 7.7153199169683742
x6 3.3502146661947205
x7 5.2866544649959746

g1(x) -0.07391528040911399
g2(x) -0.19799852715168376
g3(x) -0.49917224816118333
g4(x) -0.9046439043536426
g5(x) -8.800005169007363E-11
g6(x) -7.886691300029725E-12
g7(x) -0.7025
g8(x) -1.2138068328226836E-11
g9(x) -0.5833333333282757
g10(x) -0.05132575352163282
g11(x) -7.093419185366656E-10

ing Optimization Problems, in: 2008 IEEE CONGRESS ON EVO-
LUTIONARY COMPUTATION, VOLS 1-8, IEEE. pp. 1528–1535.
doi:10.1109/CEC.2008.4630995.

[27] Lin, L., Gen, M., Liang, Y., 2014. A Hybrid EA for High-dimensional
Subspace Clustering Problem, in: 2014 IEEE CONGRESS ON EVOLU-
TIONARY COMPUTATION (CEC), IEEE. pp. 2855–2860.

[28] Mazhoud, I., Hadj-Hamou, K., Bigeon, J., Joyeux, P., 2013. Particle swarm
optimization for solving engineering problems: A new constraint-handling
mechanism. ENGINEERING APPLICATIONS OF ARTIFICIAL INTEL-
LIGENCE 26, 1263–1273. doi:10.1016/j.engappai.2013.02.002.

[29] Mezura-Montes, E., Coello, C., Landa-Becerra, R., 2003. Engineering op-
timization using a simple evolutionary algorithm, in: Werner, B (Ed.),
15TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH AR-
TIFICIAL INTELLIGENCE, PROCEEDINGS, IEEE COMPUTER SOC.
pp. 149–156. doi:10.1109/TAI.2003.1250183.

[30] Moore, R.E., 1966. Interval analysis. volume 4. Prentice-Hall, Englewood
Cliffs.

[31] Neuland, R., Maffei, R., Jaulin, L., Prestes, E., Kolberg, M., 2014. Im-
proving the precision of AUVs localization in a hybrid interval-probabilistic
approach using a set-inversion strategy. Unmanned Systems 02, 361–375.

27

[32] Parsopoulos, K., Vrahatis, M., 2002. Particle Swarm Optimization method
for Constrained Optimization problems, in: Sincak, P and Vascak, J and
Kvasnicka, V and Pospichal, J (Ed.), INTELLIGENT TECHNOLOGIES
- THEORY AND APPLICATIONS: NEW TRENDS IN INTELLIGENT
TECHNOLOGIES, IOS PRESS. pp. 214–220.

[33] Rao, S., 2009. Engineering Optimization: Theory and Practice. Wiley,
Hoboken.

[34] Soares, G.L., 2008. Algoritmos Determińısticos e Evolucionares Intervalares
para Otimização Robusta Multi-Objetivo. Ph.D. thesis. Universidade Fed-
eral de Minas Gerais and École Nationale Supérieure d’Ingénieurs and Uni-
versité de Bretagne Occidentale.

[35] Solau, C., Marhic, B., Delahoche, L., Clerentin, A., Jolly-Desodt, A.M.,
Menga, D., 2011. Combination of interval analysis and PSO for opti-
mization, in: PROCEEDINGS OF THE 7TH CONFERENCE OF THE
EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY
(EUSFLAT-2011) AND LFA-2011, ATLANTIS PRESS. pp. 978–985.

[36] Vitorino, L.N., Ribeiro, S.F., Bastos-Filho, C.J.A., 2012. A Hybrid Swarm
Intelligence Optimizer based on Particles and Artificial Bees for High-
Dimensional Search Spaces, in: 2012 IEEE CONGRESS ON EVOLU-
TIONARY COMPUTATION (CEC), IEEE.

[37] Worasucheep, C., 2008. Solving Constrained Engineering Optimization
Problems by the Constrained PSO-DD, in: ECTI-CON 2008: PROCEED-
INGS OF THE 2008 5TH INTERNATIONAL CONFERENCE ON ELEC-
TRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOM-
MUNICATIONS AND INFORMATION TECHNOLOGY, VOLS 1 AND
2, IEEE. pp. 5–8.

[38] Wu, H., Nie, C., Kuo, F.C., Leung, H., Colbourn, C.J., 2015. A Dis-
crete Particle Swarm Optimization for Covering Array Generation. IEEE
TRANSACTIONS ON EVOLUTIONARY COMPUTATION 19, 575–591.
doi:10.1109/TEVC.2014.2362532.

[39] Yu, K., Wang, X., Wang, Z., 2016. Constrained optimization based on im-
proved teaching-learning-based optimization algorithm. INFORMATION
SCIENCES 352, 61–78. doi:10.1016/j.ins.2016.02.054.

[40] Zhu, H., Pu, C., Eguchi, K., Gu, J., 2009. Euclidean particle
swarm optimization, in: Intelligent Networks and Intelligent Systems,
2009. ICINIS ’09. Second International Conference on, pp. 669–672.
doi:10.1109/ICINIS.2009.171.

28

Figure 2: An example showing the point y and boxes [x], [u], [w] and [z]

Figure 3: Bisecting the box [x] yields the boxes [x]1 and [x]2. Bisecting [x]1 creates the boxes
[x]11 and [x]12.

29

Figure 4: An example of an inclusion function [23]

Figure 5: An example of a convergent monotonic inclusion function [23]

30

X, ε SIVIA

Space Cleaning
Algorithm

ε > εmin?

X
′′ 6= ∅?

PSO

@ x∗

x∗

V[X],I[X]

V[X],I[X]

V[X],I[X]

ε← 1
2ε

X ′′

no yes

pre-processing

wmin

εmin

yes

no

Figure 6: [I]PSO method. (Pre-processing: Alg. 1, Alg. 2, Alg. 3, Alg. 4. PSO: Alg. 5, Alg.
6)

31

(a) f(x) × X at
` = 0. H

X
′′ =

HX, H[x] = 36
and H% = 100.00.

(b) f(x) × X′,
X′ in blank boxes.
H

X
′′ = 14.45,

H% = 40.14.

(c) f(x) × X
′′

at
` = 1. H% =
100.00.

(d) f(x) × X
′′

at
` = 2,
H% = 68.75

(e) f(x) × X
′′

at
` = 3,
H% = 25.00.

(f) f(x) × X
′′

at
` = 4, H% =
10.16.

(g) f(x) × X
′′

at
` = 5, H% = 3.42.

(h) f(x) × X
′′

at
` = 6, H% = 0.93.

Figure 7: Pre-processing step of [I]PSO

32

0 1 2 3 4 5 6

0

20

40

60

80

100

`

H
%

SR
PV
WB
CS

Figure 8: H% remaining after each pre-processing iteration, for some problems. If the ` value
was high enough, the decision maker could select the remaining search space as the global
optimum

33

0 1,000 2,000 3,000 4,000 5,000
6,000

6,200

6,400

6,600

` = 0

` = 1

` = 2

` = 3

` = 4

` = 5
` = 6

nf(x)

f
∗

Figure 9: Number of function evaluations made during the pre-processing x f∗, for the PV
problem

0 1,000 2,000 3,000 4,000 5,000

0

20

40

60

80

100
` = 0

` = 1

` = 2

` = 3 ` = 4 ` = 5 ` = 6

nf(x)

H
%

Figure 10: Number of function evaluations made during the pre-processing x H%, for the PV
problem

34

