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Abstract—Uncertainties are commonly present in optimiza-
tion systems, and when they are considered in the design
stage, the problem usually is called a robust optimization
problem. Robust optimization problems can be treated as noisy
optimization problems, as worst case minimization problems, or
by considering the mean and standard deviation values of the
objective and constraint functions. The worst case scenario is
preferred when the effects of the uncertainties on the nominal
solution are critical to the application under consideration.
Based on this worst case scenario, we developed the [I]RMOEA
(Interval Robust Multi-Objective Evolutionary Algorithm), a
hybrid method that combines interval analysis techniques to
deal with the uncertainties in a deterministic way and a multi-
objective evolutionary algorithm. We introduce [I]RMOEA and
illustrate it on three robust test functions based on the ZDT
problems. The results show that [I]RMOEA is an adequate
way of tackling robust optimization problems with evolutionary
techniques taking advantage of the interval analysis framework.

Index Terms—genetic algorithms, evolutionary algorithms,
robust multi-objective optimization, robust Pareto front, robust
test functions, interval analysis.

I. INTRODUCTION

Real world problems are usually characterized by several

conflicting objectives. Solving these multi-objective prob-

lems consists in finding an estimate of the Pareto front whose

solutions are as close as possible to the true Pareto front

(usually unknown) and, in most cases, as diverse as possible.

Many methods were proposed to achieve an estimate of the

Pareto front with these desirable characteristics, such as the

NSGAII [1], the PAES [2] and the SPEA [3]. Following

the optimization process, the designer needs to choose a

final solution to be implemented. If the uncertainties cause

significant changes in the nominal solutions, the designer

may use some approach based on sensitivity analysis in

order to select the best solution according to the robustness

requirements. Another possibility to handle uncertainties is

by directly inserting them in the model, hence characterizing

a RMOOP (Robust Multi-Objective Optimization Problem),

which must be solved by an adequate optimization method

to find the robust Pareto front. With an estimate of the robust

Pareto front in hand, the designer can proceed to the decision-

making phase to select the best robust solution.

The nature of the uncertainties clearly depends on the

problem under analysis. Jin and Branke [4] mentioned noise,

robustness, fitness approximation and time-varying fitness
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functions as the sources of uncertainties, and they presented

a specific robust formulation for each case. From a method-

ological point of view, Calafiore and Campi [5], discussed

some aspects of the worst case design and the probabilistic

approach to solve robust convex optimization problems.

While the probabilistic approaches utilize a fixed amount of

samples to model the imprecision, the deterministic worst

case methods compute the complete influence of uncertain-

ties. Therefore, in a situation that involves critical conditions

such that the possibility of bringing about misfortune or loss

is real, the probabilistic methods should be avoided. In this

context, we have decided for the worst case philosophy using

Interval Analysis techniques to guarantee that the influence

of all uncertainties will be considered in the optimization

process.

Interval analysis was proposed by Moore [6] to deal

with rounding errors in numerical computation and it has

been successfully used to treat uncertainties in many real

applications, see Jaulin [7] for instance. In our approach,

the uncertainties are handled as additional parameters of the

fitness function, which are isolated from the search domain,

therefore it can be bounded and easily represented by in-

tervals. Computing uncertainties as interval fitness functions

has some advantages. First, the complete uncertainty space

can be computed using only its bounds. Second, the image

of any variable computed under uncertainties is guaranteed

to be enclosed by an inclusion function, which is a special

interval function explained later. Finally, if each interval

parameter occur at most one in the interval fitness function,

the worst case of a particular solution is obtained with only

one calculus. Common disadvantages related to intervals are

their wider interval results (nevertheless, the true solution

is guaranteed to be inside the interval) and the additional

computational effort of the interval methodologies. Hansen

and Walster [8] refuted these criticisms and enhanced the

advantages of the interval approaches such as the resolution

of certain problems that cannot be solved by non-interval

methods and the reliability of their results. In special, this last

characteristic has motivated us to use the interval methodol-

ogy to compute the worst case.

In the field of robust optimization, the majority of pa-

pers address mono-objective problems [9] or multi-objective

approaches to robust mono-objective problems [10], [11].

Considering the multi-objective case, most papers use the

probabilistic framework within MOEAs (Multi-Objective

Evolutionary Algorithms) [12], [13]. A starting point to

MOEAs beginners is Deb [1], where many MOEAs in the

literature are discussed in detail. The reasons to use MOEAs

generally involve the following features: a) their ability in the

exploitation and exploration of the promising regions; b) their
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adaptability to new formulations, purposes and environments;

c) their independence on specific information about the

problem, such as convexity and differentiability. Considering

the advantages above, we have chosen a specific group of

MOEAs, the MOGAs (Multi-Objective Genetic Algorithms),

as the main structure for our search engine. MOGAs are

based on the principles of evolution by natural selection and

thus they work with populations of candidate solutions. As a

consequence, a good estimate of the robust Pareto front can

be found in a single run.

Considering the discussions above, the main contribu-

tion of this paper is to introduce interval methods in the

computation of the worst-case values of the fitness func-

tions in MOEAs. For the sake of simplicity but without

loss of generality, we consider only minimization problems.

The proposed [I]RMOEA is an evolutionary multi-objective

technique to solve an RMOOP, considering the worst case

philosophy, and using interval methods to compute the effect

of uncertainties on the fitness functions. In this sense, the

proposed [I]RMOEA can be considered a kind of hybrid al-

gorithm, combining usual evolutionary operators to perform

the search and deterministic interval methods to deal with

the uncertainties.

This work is organized as follows. Section 2 establishes

the background necessary to the further discussion. Section 4

presents the robust problem to be solved. Section 4 explains

the [I]RMOEA. Section 5 validates the approach using three

robust test problems based on the ZDT test suit. Section 6

presents the conclusions.

II. BACKGROUND

A. Robust concepts

The meaning of the term robust depends on the context.

For example, in biology, Kitano [14] defines robustness as

the maintenance of specific functionalities of the system

against environmental perturbations. In software engineering,

De Vale and Koopman [15] used robustness as synonymous

to fault tolerance in software. In engineering design, Du and

Chen [16] considered robustness an issue related to choosing

the better model by making tradeoffs between the mean and

variance attributes. Usually in engineering applications, ro-

bustness means reliability of the system when, occasionally,

failures happen or in the presence of the uncertainties. Even if

the formal meaning changes, intuitively, the term robustness

brings to mind characteristics such as strength, flexibility and

adaptability.

In the optimization context, Parkinson et al. [17] present

the worst case design approach. Similarly, Kouvelis and

Yu [18] define the robust optimization problem as the mini-

mization of the maximal deviation from individual criterion

best values, or in other words as a minmax problem. If the ro-

bust solutions are unavailable or hard to be obtained, another

one with good robust characteristics must be selected. In this

sense, Roy [19] defines robustness analysis as a process to

find robust conclusions that are perfectly robust, approxi-

mately robust and pseudo-robust. In Dias and Clímaco [20],

robust conclusions are divided in absolute robust, relative

binary robust and relative unary robust conclusions. Deb

and Gupta [12] defined robust solutions as Type I and II,

employing a particular formula to compute the mean that

uses the image values of the perturbations in the vicinity of

the solutions.

Uncertainties can be difficult to compute and it is not

possible to predict their intensity. This fact motivates some

researchers to focus their attention on probabilistic methods

or use the classifications described above in their algorithms.

In our point of view, considering the context of robust

optimization, the robust solutions are those that have the best

performance for the worst case of the uncertainty. Thus, by

observing a given degree of accuracy, a solution is declared

robust or not.

B. Multi-Objective Genetic Algorithms

The goal of a MOGA designed to solve a multi-objective

problem is to find an estimate set containing samples that

are as close as possible to the true Pareto front, which is not

known a priori, and having as much diversity as possible.

The design of any MOEA has to take these two goals into

account, which are known as the convergence and diversity

properties of the algorithm [21].

Current MOGA’s designed to find samples of the Pareto

front in a multi-objective optimization problem follow the

general structure presented in the Algorithm 1.

Data:

k ← 0;1

Pk ← Initialize population(npop) ; /* size npop */2

Ak ← ∅ ; /* Archive set */3

Ok ← ∅ ; /* Offspring */4

begin5

while not stop criterion do6

Fk ← Assign fitness(Pk);7

Ok ← Reproduction(Ak, Pk, Fk);8

Pk+1 ← Next population(Ak, Pk, Ok);9

Ak+1 ← Update archive(Ak, Pk);10

k ← k + 1;11

end12

end13
Algorithm 1: Generic structure of a MOGA

The reproduction step comprises traditional selection,

crossover and mutation operators. As discussed in [22], the

use of an archive population is now a common strategy

adopted in many MOEA’s. The archive population stores the

estimate set of the Pareto front and is the outcome of the

algorithm. See [1] for more details on MOGA’s and see [22]

for a historical overview of the field.

C. Interval Analysis

The [I]RMOEA computes the worst case performance

of each solution by considering the uncertainty parameters

as intervals. So, some definitions of Interval Analysis are

necessary.
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Denoting the real interval domain by IR, a real, closed

and connected interval [z] ∈ IR is defined as:

[z, z] = {z ∈ R | z ≤ z ≤ z},
being z and z, the lower and upper bounds of [z]. An interval

vector (or box) [z] ∈ IR
n is defined as the Cartesian product

of n intervals:

[z, z] = [z1] × [z2] × . . . × [zn],

where z and z are the lower and the upper bounds of [z].
Usually, the width of the boxes determines its precision.

Then, if [z] ∈ IR
n, the width w([z]) is given by:

w([z]) = max(zi − zi), i ∈ {1, . . . , n}.
Using � to denote a binary operator that represents the

four basic operations of the classic arithmetic +, −, ∗ and

/, the interval arithmetic operations are defined as:

[z] � [w] = {z � w | z ∈ [z], w ∈ [w]}.
An operation that divides a box [z] in two symmetric

boxes [z]1 and [z]2 is called a regular bisection. The non-

overlapping boxes resulting from the regular bisection of [z]
are:

[z]1 = [z1] × . . . × [zj ,
zj + zj

2
] × . . . × [zn],

[z]2 = [z1] × . . . × [
zj + zj

2
, zj ] × . . . × [zn],

where j is the index for the first component of maximum

width, i.e., j = min{i | w([zi]) = w([z])}. The union of

non-overlapping boxes [z]1 and [z]2 is denoted subpaving of

[z].
Interval functions are functions whose arguments and

results are intervals. A special class of interval functions

is composed by the inclusion functions. Given a function

f : R
n → R

m, any function [f ] : IR
n → IR

m that satisfies

the condition:

∀[z] ∈ IR
n, f([z]) ⊂ [f ]([z])

is considered an inclusion function for f . When the interval

function involves more than one occurrence of the same

interval variable, pessimistic intervals (wider intervals) are

obtained. This phenomena is named dependency. For in-

stance, consider function f(x) = (x2 + 2x− 1)/x and three

possible inclusion functions:[f ]([x]) = ([x]2 + 2[x]− 1)/[x],
[f ]′([x]) = ([x]2−1)/[x]+2 and [f ]′′([x]) = [x]−1/[x]−2.

When the inclusion functions are evaluated at the interval

[1, 2], we have:

[f ]([1, 2]) = ([1, 2]2 + 2[1, 2] − 1)/[1, 2] = [1, 7];
[f ]′([1, 2]) = ([1, 2]2 − 1)/[1, 2] + 2 = [2, 5];
[f ]′′([1, 2]) = [1, 2] − 1/[1, 2] + 2 = [2, 3.5].

All the results are correct but the interval provided by

[f ]′′([x]) is sharper (or more precise) than the others. One of

the most important tasks in Interval Analysis is to create

sharp inclusion functions that accelerate the convergence

of the algorithms. In order to decrease the pessimism (to

obtain narrower intervals), it is necessary to minimize the

occurrences of interval variables in the inclusion function ex-

pression or to treat the interval variable as a subpaving. In the

previous example, consider the following non-overlapping

boxes [1, 1.5] and [1.5, 2] obtained after one bisection in

[1, 2]. The result is the union of all inclusion function sub-

results, thus:

[f ]([1, 2]) = [f ]([1, 1.5]) ∪ [f ]([1.5, 2]) = [1.3, 4.7];
[f ]′([1, 2]) = [f ]′([1, 1.5]) ∪ [f ]′([1.5, 2]) = [2, 4];
[f ]′′([1, 2]) = [f ]′′([1, 1.5]) ∪ [f ]′′([1.5, 2]) = [2, 3.5].

If we bisect once more [1, 1.5] and [1.5, 2], we will see the

trend: [f ] and [f ]′ converging to [f ]′′. The function [f ]′′

represents the simplest expression to represent the initial

function f . The following theorem in Jaulin et al. [7] (p.30)

states that: if an inclusion function [f ] is expressed as a finite

composition of the operators (+,-,*,/) and the elementary

functions (sin, cos, exp, . . . ) and each interval variable occurs

only once in the formal expression, then [f ] has minimal

width. For additional information on the quality of inclusion

functions, see Ratschek and Rokne [23], and Chabert and

Jaulin [24] for instance.

III. ROBUST MULTI-OBJECTIVE PROBLEM

We have chosen the robust formulation based on the worst

case philosophy, presented as follows. Considering the design

variables x ∈ X ⊆ R
n and the uncertainty parameter p ∈

P ⊆ R
k, the vector of objective functions is defined by

f(x,p) : R
n × R

k → R
m. Thus, the unconstrained robust

minimization problem is defined as:

min
x∈X

max
p∈P

f(x,p) (1)

The worst case vector of objective function fwc is defined

as:

fwci(x,P) = max
p∈P

fi(x,p), i = {1, . . . , m} (2)

By using the notation in (2), solving (1) consists in finding

the set of robust solutions X∗:

X∗ = {x∗ ∈ X | �x ∈ X, fwc(x,P) � fwc(x∗,P)},
where the symbol � means fwc(x,P) ≤ fwc(x∗,P) and

fwc(x,P) �= fwc(x∗,P).
The robust Pareto front Y∗ is the image of X∗, considering

the worst case performance of the elements from X∗, then:

Y∗ = fwc(x∗,P), x∗ ∈ X∗. (3)

The robust Pareto front Y∗ is composed by worst case

points as shown in (3). Therefore, Y∗, or some of its

elements, may be outside of the robust objective space

f(X,P),

f(X,P) = f(x,p), x ∈ X, p ∈ P.

However, this does not affect our proposed method since

the worst case points are used only as reference points to
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Fig. 1. The robust Pareto front to example in (4). The worst case perfor-
mance of a particular solution x0 is highlighted. Note that Y∗ �∈ f(X,P).

guide the search to the non dominated robust solution set.

The following example, illustrated in Fig. 1, shows a case

where Y∗ �∈ f(X,P).

min
x∈[−2,2]

max
‖p‖≤1

f1(x, p1) = −x + p1,

f2(x, p2) = x + p2.

Some studies treated the robust problem (1). For instance,

Soares et al. [25] built a guaranteed wrapper over the robust

Pareto front using a deterministic algorithm based only

on interval methods. Also, Soares et al. [26] utilized an

evolutionary approach to solve a constrained multi-objective

electromagnetic design problem. However, in [26] the worst

case design was obtained from samplings of the uncertainty

parameter, not by computing the inclusion function. Rocco

et al. [27] uses interval arithmetic concepts to guarantee the

feasibility of the candidate solution in evolution strategies

for mono-objective problems. However, intervals are used

only to define these feasibility boxes. Regarding the present

paper, it is worth remarking that we employ interval methods

to compute the worst case values of the objective functions

together with a MOGA to solve the robust problem (1).

IV. INTERVAL MULTI-OBJECTIVE EVOLUTIONARY

ALGORITHM

A. Uncertainty computation

[I]RMOEA computes the uncertainties to find the worst

case performance of each objective. The process begins by

bisecting the uncertainty domain P, conveniently denoted by

[P], in np non-overlapping boxes [p]i,

[P] =
⋃

i=1,...,np

[p]i.

The subpaving implementation is shown in Table I. Note

the stop criteria is given by the precision parameter ε[p].

Considering P ∈ R
k, the number of non-overlapping boxes

np is given by:

np =
k∏

i=1

ceil
(w([Pi])

ε[p]

)
(4)

where ceil function rounds the arguments to the nearest inte-

gers towards infinity. The non-overlapping boxes are stored

in a FIFO (first in first out) queue Q[p]. Thus, considering the

TABLE I
SUBPAVING’S GENERATION.

input ([P],ε[p])

output(Q[p])

1 initialize Q[p] with [P]
2 if w(Q[p]{1}) ≤ ε[p], then go to 5
3 pull out [p] of Q[p]

4 bisect [p], push in the resulting boxes in Q[p], go to 2
5 return Q[p]

search variable x and the fitness inclusion function [f ](x, [P])
or [f ](x,Q[p]), the minimal inclusion function [f ]∗x is defined

as:

[fi]
∗
x = max

[p]∈Q[p]

[fi](x, [p]), i = {1, . . . , nf}; (5)

[fi]
∗
x

= min
[p]∈Q[p]

[fi](x, [p]), i = {1, . . . , nf}. (6)

The robust image or worst case performance for x is the

point [fi]
∗
x. Fig. 2 illustrates the worst case computation

with two search variables.

Fig. 2. The uncertainty computation and worst case examples. In dark
gray, the image f(x,P), obtained by point computation; in light gray, the
region of [f ]∗x, obtained from (5) and (6). Observe the wrapping effect

f(x,P) ⊆ [f ]∗x. Also, note [f ]
∗
x2

� [f ]
∗
x1

, i.e. x2 is more robust than x1.

Note: As said in the previous section, if each interval

variable occurs at most once in f , then [f ]∗x = f(x, [P]), and

the worst case can be obtained with only one single interval

calculus. Otherwise, [P] has to be bisected until achieving a

satisfying precision to represent f by intervals.

B. [I]RMOEA

The multi-objective genetic algorithm basis to [I]RMOEA

is similar to the one used by Soares et al. [26] except
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that here we treat unconstrained cases, and the uncertainty

space is computed using intervals, whereas in [26] the worst

case is approximated by sampling. The [I]RMOEA was

implemented with the following genetic configuration: a)

binary code; b) one-point crossover; c) bit-change mutation;

d) roulette selection; e) a simple niche technique; and f)

NSGA II elitism [1]. Options (a)-(d) are classical in genetic

algorithms. In the niche technique, the objective space is

divided in non-overlapping regions (niches) with the same

shape and size. Each niche is stated ‘valid’ if it contains

at least one of the npop members of the population. The

performance of all the nniche individuals in the niche i are

defined as f i
niche = nniche. In addition, the population is

sorted into non-dominated fronts, in every generation. The

performance due to the front f i
front is scored as 1 if the

individual i lies on the first front, f i
front = 2 for the second

front, and so on. Then the individual performance function

f i
roulette is given by

f i
roulette =

1
f i

niche

+
1

f i
front

.

The roulette selection method uses

f i
roulette∑npop

j=1 f j
roulette

to compute the probability of choosing individual i.
In step (f), the elitism strategy of the NSGA II, which

is based on the union of the current population with the

offspring population, is adopted. After front classification,

the npop first individuals are chosen to form the next parent

population.

In summary, our [I]RMOEA starts with random population

and the subpavings of P, stored in Q[p]. The individuals are

evaluated using (5). The individuals are classified according

to the front and the niche that they belong. The roulette

selection is used to choose the individuals that are submitted

to the crossover and mutation operations using probabilities

pc and pm, respectively. Then elitism strategy is applied to

form the parent population of the next generation. This cycle

is repeated until a convergence criteria is reached.

An important feature in the solution of robust optimization

approaches is the computational effort CE. In our algorithm,

it is measured in terms of objective function calls as

CE = (ngen + 1) × np × npop, (7)

where ngen is the number of generations (our convergence

criteria) after the initial generation. When the fitness inclu-

sion function has only one occurrence of each variable, then

np = 1; otherwise np is given by (4).

V. RESULTS

The experiments consisted in applying the [I]RMOEA to

solve the robust test functions ZDT1′, ZDT2′ and ZDT3′

presented in (8), (9) and (10), respectively. These functions

were adapted from the ZDT functions described in Zitzler

et al. [21]. In the robust ZDTs, the uncertainty parameter p
simulates the imprecision in the search parameters and in the

objective functions. We used n = 30 variables, and the robust

Pareto corresponds to x1 ∈ [0, 1] and xi = 0, i = 2, . . . , n.

Z
D

T
1
′

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x∈[0,1]

max
p∈[0,0.05]

f1(x,p) = x1 + p1;

f2(x,p) = h′ × h.

where: h′ = 1 + 9
n−1

∑n
i=2 xi,

h = 1 − √
f1/h′ + p2.

(8)

Z
D

T
2
′

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x∈[0,1]

max
p∈[−0.05,0.05]

f1(x,p) = x1;

f2(x,p) = h′ × h.

where: h′ = 1 + 9
n−1

∑n
i=2 xi + p,

h = 1 − (f1/h′)2 + p.

(9)

Z
D

T
3
′

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x∈[0,1]

max
p∈[−0.1,0.1]

f1(x,p) = x1;

f2(x,p) = h′ × h.

where: h′ = 1 + 9
n−1 (

∑n
i=2 xi + p),

h = 1 −
√

f1
h′ − f1

h′ sin(10πf1).

(10)

In our experiments, we have used: npop =
50, 100, . . . , 250 individuals; ngen = 100, 150, . . . , 300
generations; code with 20 bits per variable; pm = 0.001;

and pc = 1. Each parameter configuration was executed

only one time. Also, ε[p] = 0.01, 0.025, 0.05 to

ZDT1′, ε[p] = 0.01, 0.025, 0.05, 0.1 to ZDT2′, and

ε[p] = 0.025, 0.05, 0.1, 0.2 to ZDT3′. Some interesting

results are presented in Figs. 3 to 5. These figures show

three curves: a) the robust Pareto front obtained by

[I]RMOEA; b) the true robust Pareto front; and c) the

original (non robust) Pareto front, such as in Zitzler et al.
[21].

Fig. 3, 4 and 5 illustrate the effect of the uncertainty

parameter in the robust ZDT functions. Since we considered

minimization in worst case approaches, the robust Pareto

fronts must be located above the non robust ones, as showed

in the figures. Interesting to note that the images of the

solution set, provided by [I]RMOEA, are above the robust

Pareto front. This must be true because interval methods are

always pessimistic, see again the wrapping effect in Fig. 2.

In the robust ZDTs, p may have any distribution form, that

is, it is not important to [I]RMOEA if p is Gaussian or not

because the complete uncertainty space was computed using

interval mechanisms. Although the wrapping effect can be

too pessimistic for the results, the subpavings (see Table I)

may be created to reduce the pessimism. Unfortunately, the

subpavings give an additional overhead to [I]RMOEA since

the computation effort, given by (7), increase np times. As

one can note, the np plays the same role of the number of

samples in probabilistic methods. In each ZDT experiment,
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Fig. 3. Pareto fronts of ZDT1 and ZDT1′. Simulation details: npop = 200;
ngen = 250; ε[p] = 0.05; and CE=50200 function calls.

Fig. 4. Pareto fronts of ZDT2 and ZDT2′. Simulation details: npop = 200;
ngen = 250; ε[p] = 0.1; and CE=50200 function calls.

we have used some different values to np obtained using

ε[p] sets described before in (4). We observed similar results

in the graphics even in those with higher np, showing that

the subpaving computation is not necessary in these cases.

Some reasons are given in the following. First, because p
occurs only once in ZDT1′ and the theorem in [7] (p.30)

states that the inclusion function has minimal width, thus

obtained with only one calculus using the whole interval.

Second, the computation of p in ZDT2′ and in ZDT3′ did

not cause pessimistic results because of the additive way the

[p] is inserted in the functions. Considering that we obtained

the robust results without using subpavings (np=1), we can

say that [I]RMOEA achieved minimal computational effort.

VI. CONCLUSIONS

Uncertainties are always present in optimization problems

and when their effects are significant, it is necessary to

handle them in the design stage. Some ways to interpret

and treat uncertainties have been discussed, and we have

chosen the worst case formulation in our proposed algorithm.

Fig. 5. Pareto fronts of ZDT3 and ZDT3′. Simulation details: npop = 200;
ngen = 250; ε[p] = 0.2; and CE=50200 function calls.

[I]RMOEA uses the power of the evolutionary search engine

to execute the minimization process and the techniques of

interval analysis to compute the worst case performance.

With intervals, at least two interesting advantages can be

mentioned: a) the effects of uncertainties can be completely

considered, such that robustness is a question of precision

not of approximation; and b) the worst case performance

can be achieved using a single interval, when the fitness

inclusion function has no dependent factors, such as multiple

occurrences of interval parameters. The [I]RMOEA was

tested in the ZDT robust test functions with 30 variables. The

results show that these cases are computationally tractable,

and hence we find [I]RMOEA a promising technique to be

extended to another robust formulations.
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