
Processing Interval Sensor Data in the Presence of
Outliers, with Potential Applications to Localizing

Underwater Robots
Jan Sliwka and Luc Jaulin

Bureau D214
ENSTA-Bretagne

Brest, France
{luc.jaulin,jan.sliwka}@ensta-bretagne.fr

Martine Ceberio and Vladik Kreinovich
Department of Computer Science

University of Texas at El Paso
El Paso, Texas, USA

{mceberio,vladik}@utep.edu

Abstract—Measurements are never absolutely accurate, the
measurement result x̃ is, in general, different from the actual
(unknown) values x of the corresponding quantity. In many
practical problems, we only know upper bounds ∆ on the
measurement errors ∆x

def
= x̃ − x. In such situations, once we

know the measurement result, the only conclusion that we can
make about the actual value x is that this value belongs to the
interval [x̃ − ∆, +̃∆]. There exist many efficient algorithms for
processing such interval data. However, these algorithms usually
assume that all the measurement results are valid. In reality, due
to factors such as sensor malfunction, some measurement results
may be way off (outliers), for which the difference between x̃ and
x is much larger than the upper bound ∆ on the measurement
error. In this paper, we overview the algorithmic problems related
to processing interval sensor data in the presence of outliers. Our
case study – for which we develop and analyze these algorithms
– is localization of underwater robots, a problem in which a
significant number of measurement results are outliers.

Index Terms—interval uncertainty, outliers, sensor data, un-
derwater robots

I. INTRODUCTION

Processing sensor data: need for interval uncertainty. Sen-
sors are never absolutely accurate. The value x̃ measured by a
sensor is, in general, different from the actual (unknown) value
x of the corresponding physical quantity. When processing
sensor data, it is important to properly take into account the
resulting measurement errors ∆x

def
= x̃− x.

Traditionally, in science and engineering, it is assumed that
we know the probability distribution of the measurement error;
in many cases, this distribution is assumed to be Gaussian. In
such situations, we can use the standard statistical techniques
to process this uncertainty.

However, in many real-life situations, we do not know these
probabilities. In many such situations, the only information
that we have is the upper bound ∆ on the measurement error:
|∆x| ≤ ∆; see, e.g., [12]. In this case, once we know the
measurement result x̃, the only information that we have about
the actual value x is that x belongs to the interval x = [x, x],
where x = x̃−∆ and x = x̃+∆.

Need to consider outliers. These exist many efficient tech-
niques for processing such interval data; see, e.g., [2], [10].

These techniques form an important part of granular comput-
ing; see, e.g., [15].

Most of these algorithms assume that for each measurement,
the actual values x is guaranteed to be in the corresponding
interval [x̃−∆, x̃+∆].

In practice, however, due to a sensor malfunction (or to
a human error), we sometimes get erroneous measurement
results which are drastically different from the actual values;
such results are called outliers. It is therefore necessary to take
such outliers into account when processing sensor data.

Outliers are usually characterized by a proportion ε of
measurement results that could be erroneous. For example,
ε = 0.1 means that at most 10% of the measurement results are
erroneous – and thus, at least 90% of the interval do contain
the corresponding actual values.

Sometimes, we are not sure what is the proportion of
outliers, so, to be on the safe side, we would like the supply
the users with the results corresponding to different values α.

Case study when it is important to process interval sensor
data in the presence of outliers. We encountered the need to
take outlier into account when we were developing algorithms
for localizing underwater robots; see, e.g., [7], [13]. For
this localization, we use distance measurements produced by
sonars.

A sonar produces not only the distance to the desired object,
its signal also contains the echoes from other objects (or walls)
along the path. For example, when a robot tries to localize
itself by measuring the distance to the nearest wall, the sensor
may instead detect a reflection from the nearer surface wave
or another object (e.g., a fish or a diver) – and thus, produce
a clear outlier.

What is known. While some efficient algorithms are known
for processing interval sensor data in the presence of outliers,
in general, the presence of outliers often turns easy-to-solve
interval problems into difficult-to-solve (NP-hard) ones.

This is true even in the simplest case, when we simply
repeatedly measure several quantities x1, . . . , xd. After each
measurement, for each measured quantity xi, we get an interval

[x
(j)
i , x

(j)
i]. So, if this measurement is not an outlier, we can

conclude that the actual values of the state x = (x1, . . . , xd)
belongs to the d-dimensional box

X(j) = [x
j)
1 , x

(j)
1]× . . .× [x

(j)
d , x

(j)
d].

What can we then conclude about the actual value of xi?
In the absence of outliers, the answer is simple: since the

state x has to belong to all the boxes, it must belong to
its intersection, and this intersection can be determined by
simply taking, for each dimension i, the intersection of all
the corresponding intervals [x

(j)
i , x

(j)
i].

It turns out that in the presence of outliers, when, for some
k, we know that at least n − k of these boxes contain the
state x, the problem becomes NP-hard: actually, it is NP-hard
even to check whether there are n−k boxes with a non-empty
intersection [8], [9]. For fixed d, there is a polynomial-time
algorithm for solving this problem – but its running time is
O(nd), and grows exponentially with the dimension d.

What we do in this paper. In this paper, we provide an
overview of algorithmic results related to the corresponding
sensor data processing problems.

II. RANGE OF POSSIBLE VALUE OF EACH QUANTITY: HOW
TO COMPUTE AND REPRESENT IT EFFICIENTLY

Formulation of the problem. Let us start with the simplest
situation in which we have several (n) measurements of the
same quantity x. After each measurement j, we get an interval
[x(j), x(j)].

We know that some of these intervals may be outliers,
and we know the upper bound ε > 0 on the proportion of
measurements which are outliers. This means that the actual
(unknown) value x satisfies at least n · (1− ε) of n constraints
x(j) ≤ x ≤ x(j).

What is known about computing this set. One way to
compute this set (see, e.g., [8], [9]) it so sort all the endpoints
x(j) and x(j) into a sequence

x(1) ≤ x(2) ≤ . . . ≤ x(2n),

thus dividing the set of possible values of x into 2n− 1 zones
[x(1), x(2)], [x(2), x(3)], . . . , [x(2n−1), x(2n)]. For each zone,
we count the number of constraints which are satisfied for
elements of this zone. If this number is greater than or equal
to n · (1− ε), we add this zone to the desired set.

How much time does this algorithm take? Sorting takes time
O(n · log(n)) (see, e.g., [1]). Checking all the constraints for
all the zones can be done in linear time:

• checking n constraints for the first zone takes time O(n);
• then, when we move from one zone to the zone, at most

one constraint changes, so with 2n− 1 zones, we need a
total O(n) time.

Thus, totally, we need time

O(n · log(n)) +O(n) +O(n) = O(n · log(n)).

What if we are only interested in the interval of possible
values. Instead of deciding which zones belong to the set and
which do not, we may only want to know the interval (range)
of possible values of the quantity x. If this is the case, we can
perform computations faster.

To explain the difference between the set and the interval, let
us give a simple example. Suppose that we have two intervals
[−2,−1] and [1, 2], and we know that at most one of them is
an outlier. In this case, it is thus guaranteed that one of the
intervals is not an outlier an so, contains the actual value x.
Therefore, the actual value x is either in the interval [−2,−1]
or in the interval [1, 2]. So, the set of all possible values of x
is the set [−2,−1] ∪ [1, 2].

In this situation, the smallest possible value of x is −2, and
the largest possible value of x is 2. Thus, the smallest interval
that contains all possible values of x is the interval [−2, 2].

How can we compute such an interval?

Computing interval of possible values: analysis of the
problem and the resulting algorithm. Let us sort all n
upper endpoints x(j), 1 ≤ j ≤ n, into an increasing sequence
u1 ≤ u2 ≤ . . . ≤ un. Then, we can guarantee that x is smaller
than or equal to at least n · (1− ε) terms in this sequence. So,
we conclude that xi ≤ un·ε.

Similarly, if we sort the lower endpoints x(j), 1 ≤ j ≤ n,
into a increasing sequence ℓ1 ≤ ℓ2 ≤ . . . ≤ ℓn, then we
conclude that x ≥ ℓn·(1−ε).

Thus, we can conclude that the desired interval of possible
values x is equal to [ℓn·(1−ε), un·ε], where

• ℓn·ε is the (n · (1− ε))-th element in the set of the lower
endpoints x(j), and

• un·ε is the (n · ε)-th element in the set of the upper
endpoints x(j).

At first glance, it may sound as if we did not gain anything
since we still sort to sort the endpoints, but actually we do not
need to do all the sorting: it is sufficient to find elements of
given rank, and finding such elements can be done in linear
time O(n) (see, e.g., [1]).

Thus, we can indeed compute the interval of possible values
much faster than the set of possible values: namely, in time
O(n) ≪ O(n · ln(n)).

A natural fuzzy representation of this information. When
finding the set of possible values, for each element x, we
compute the proportion µ(x) of the number of constraints
which are satisfied to the total number of constraints. This
number from the interval [0, 1] describes to what extent this
element satisfies the given constraints.

It is therefore reasonable to interpret this number as a
membership degree, and the function that assigns this degree
to each element as a membership function in the sense of
one more important component of granular computing – fuzzy
logic; see, e.g., [3], [11], [18].

If we know the upper bound ε on the proportion of mal-
functioning sensors, then for the actual value, at least (1−ε)-th
fraction of the constraints must be satisfied. Thus, the actual
value x must belong to the set of all the values x for which

µ(x) ≥ 1− ε. In fuzzy terms, this set is known as an α-cut of
the original fuzzy set corresponding to α = 1 − ε. Thus, the
set of all possible x is the α-cut.

Computing and storing the whole fuzzy set – as opposed to
an appropriate α-cut – makes sense when we are not sure about
the actual proportion of outliers, and we would like to supply
the user with the results corresponding to different values α.

In particular, for the case when we are interested in the in-
tervals, the corresponding α-cut is the interval [ℓα·n, u(1−α)·n].

Comment. So far, fuzzy sets are just an interpretation, they do
not add any new algorithms. However, in the following text,
we show that this analogy with fuzzy sets can actually help
in computations – by using known algorithms for processing
fuzzy data.

III. TAKING OUTLIERS INTO ACCOUNT: BEYOND
COUNTING

Not all sensor are equally reliable. In the previous text,
we simply counted how many constraints are satisfied. This
counting kind of implies that all the constraints are equally
“soft”. In real life, we may have more confidence in some
constraints and somewhat less confidence in other constraints.

For example, some sensors may be more reliable and some
less reliable.

How can we describe this different reliability in precise
terms: idea. Let us assume that we have n constraints. To
each constraint, we put into correspondence the set Xi of all
the elements x ∈ X that satisfy these constraints. For example,
Xi may be the set of all the states which are consistent with
the i-th measurement result.

Let pi be a probability value that describes our certainty that
the i-th constraint is satisfied, i.e., that x ∈ Xi. Let us assume
that different constraints are independent. In this case, for every
element x, we can find the probability that x is consistent
with all the constraints: we simply multiply the probabilities
pi corresponding to all the constraints which are satisfied (i.e.,
for which x ∈ Xi) and the probabilities 1− pj corresponding
to all the constraints which are not satisfied (i.e., for which
x ̸∈ Xj). Thus, we get a value

p(x) =
∏

i:x∈Xi

pi ·
∏

j:x̸∈Xj

(1− pj).

From the above idea to the exact description. The above
formulas assigns a non-zero probability to all possible values
x. What we want is to decide which values are possible and
which are not.

This situation is typical in probability theory. For example,
if we know that some quantity is normally distributed, with a
known mean a and a known standard deviation σ, then for each
possible value x, we get a non-zero probability density of this
value x. In practice, we conclude, e.g., that the values outside
the “three sigma” interval [a − 2σ, a + 3σ] are impossible –
because the probability of being outside this interval is very

small. If we want to be on the safe side, then instead of a 3σ
interval, we can consider a 6σ interval – but no matter what
we do, we always set up some threshold, and dismiss all the
values for which the probability is smaller than this threshold.

Similarly, in our case, we should select some threshold
probability p0, and conclude that only states x with p(x) ≥ p0
are possible.

Towards an effective algorithm. The above expression for
p(x) can be represented as

p(x) =
∏

i:x∈Xi

pi ·

n∏
j=1

(1− pj)∏
i:i∈Xi

(1− pi)
=

∏
i:x∈Xi

pi
1− pi

· C,

where C
def
=

n∏
j=1

(1− pj) does not depend on x at all.

By taking the logarithm of both parts of this inequality, we

conclude that
∑

i:x∈Xi

wi ≥ t0, where wi
def
= ln

(
pi

1− pi

)
and

t0
def
= ln(p0)− ln(C).
Thus, the probabilistic approach is equivalent to assigning

weights to different constraints. In the degenerate case when
all the probabilities are equal p1 = p2 = . . . = pn = p, all the
weights are equal w1 = . . . = wn = w, and thus, the condition∑
i:xıXi

wi ≥ t0 is equivalent to #{i : x ∈ Xi} ≥ q
def
=

t0
w

, to the

above condition that at least q constraints should be satisfied.
The above algorithms can be easily modified to accommo-

date such weights.

Discussion. The addition to weights provides a more detailed
picture of what is going on. For example, if we have two
constraints, then the original approach based on the number of
satisfied constraints separates:

• the intersection X1 ∩X2,
• the set (X1−X2)∪ (X2−X1) of all the elements which

satisfy only one constraint (here, X1 − X2 denotes set
difference), and

• the elements that do not satisfy any constraint at all.

If different constraints have different weights, then, by con-
sidering different thresholds t0, we also separate the two
difference sets X1 − X2 and X2 − X1 – because for them,
the sum of the weights is different.

Fuzzy interpretation. We would like to extend the above
fuzzy interpretation to this more general case. In the more
general case, the degree to which each element x satisfied all
the constraints is proportional to the sum of the weights wi of
all the satisfied constraints.

In general, this sum cannot be directly interpreted as the
fuzzy degree since it can be larger than one. To make such
an interpretation possible, we can normalize these values – by

dividing by the largest possible amount
n∑

i=1

wi, and considering

the ratio

µ(x) =

∑
i:x∈Xi

wi

n∑
i=1

wi

.

When all the weights are equal to each other, this ratio becomes
equal to the ratio of the number of constraints satisfied by x to
the total number of constraints – exactly as in the case when
did not assign any weights.

Comment. It is worth mentioning that in this interpretation,
the α-cuts coincide with the sets of all x for which p(x)
is larger than a certain threshold – i.e., with confidence sets
corresponding to different confidence levels.

IV. FROM DESCRIBING EACH QUANTITY TO JOINT
PROCESSING OF THESE QUANTITIES: A SIMPLE

NP-HARDNESS RESULT

Formulation of the general problem. In the above text, we
mainly concentrated on determining the possible values of
different physical quantities x1, . . . , xd. However, often, we
are interested not only in the values of the directly measurable
quantities xi, but also in the values of other quantities yj that
are related to xi by a known dependence.

Indeed, many quantities in which we are interested are
difficult (or even impossible) to measure directly. For example:

• while it is possible to directly measure a distance between
the two places on the same street – e.g., by walking
or driving between them – it is not possible to directly
measure a distance to a star;

• similarly, while it is possible to directly measure the
amount of water in a bootle – e.g., by weighing it – it is
not possible to directly measure the amount of oil in an
oil well.

In all these cases, we need indirect measurements, i.e., we need
to measure the values of some easier-to-measure quantities
xi that are related to the desired quantity yj by a known
dependence, and then reconstruct the value of yj from the
results of measuring xi.

Outliers make this computational problem computation-
ally difficult. In the previous text, we mentioned that if we
have measurement uncertainty and outliers, then the problem
becomes NP-hard. Let us show that for data processing, the
problem is NP-hard even when we can ignore the measurement
uncertainty, i.e., when we only have outliers. Moreover, we will
show that the problem is NP-hard even in the simplest case of
linear dependence.

Simplest case: linear dependence. In general, we may have
complex non-linear dependence between the easier-to-measure
quantities xi and the desired quantity (or quantities) yj . The
simplest case is when we have a linear dependence, i.e., when
we have constraints

d∑
i=1

aij · yj = xi, i = 1, . . . , n

for known coefficient aij .

Linear dependence: case of no outliers. We assume that
we know the values xi, and we want to find the values yj .
In the absence of outliers, to find yj , we simply solve the
corresponding system of linear equations – a task for which
feasible algorithms are well-known.

Linear dependence: case of outliers. Let us now assume
that we are given a real number ε ∈ (0, 1) that describes the
upper bound on the percentage of outliers among measurement
results. Then, we face the following problem:

• given the values aij , xi, and ε ∈ (0, 1),
• we need to check whether out of n constraints

d∑
i=1

aij · yj = xi,

we can select a consistent set of n · (1− ε) constraints.
We will prove that this problem is NP-hard.

Proof of NP-hardness. A standard way to prove an NP-
hardness of a problem is to reduce, to this problem, one of
the problems which is already known to be NP-hard; see, e.g.,
[1]. As such a known NP-hard problem, we take the following
subset sum problem: given positive integers s1, . . . , sm, and s,

check whether s =
m∑
i=1

εi · si = s for some εi ∈ {0, 1}.

We will reduce each instance of this problem to the follow-
ing instance of the above problem (reconstructing yj from xi

in the presence of outliers). In this instance, we have n = m/ε
constraints:

• 2m constraints y1 = 0, y1 = 1, . . . , ym = 0, ym = 1;
and

• n− 2m identical constraints
∑

si · yi = s.
Since 0 ̸= 1, out of each pair of constraints yi = 1 and yi = 1,
only one can be satisfied. So, at most n −m constraints can
be satisfied.

If the subset sum problem has a solution, then:
• all n− 2m constraints

∑
si · yi = s are satisfied, and

• for each i, either yi = 0 constraint or yi = 1 constraint
is satisfied,

to the total of n−m = n · (1− ε) constraints.
Vice versa, if n−m constraints are satisfied, then at most

m constraints must be violated. Thus, for every i, we must
have yi = 0 and yi = 1 and we will also have

∑
si · yi = s.

So, we have a solution to the original subset sum problem.
The reduction is proven, so our problem is indeed NP-hard.

V. JOINT PROCESSING OF SEVERAL QUANTITIES:
FEASIBLE ALGORITHMS FOR THE SIMPLE CASE

Formulation of the problem. In the previous section, we
showed that in general, the problem of joint processing in the
presence of outliers is NP-hard. Crudely speaking, NP-hard
means that (unless P=NP) we cannot have a single feasible
algorithm that solves all the particular cases of this problem.
Instead, we can look for algorithms that solve some cases of
this problem.

Let us start with the simplest case, when data processing
consists simply of adding two quantities y = x1 + x2. This
simple problem often occurs in practice.

For example, we may have a distance that consists of two
parts, we measure these parts separately, and then add the
results. Alternatively, we want to find the weight of a system,
we weigh each component separately, then add the results.

Two possible cases. When we had only one quantity, we had
only one formulation of the problem: namely, we have the
upper bound on the number (or, equivalently, on the frequency)
of outliers. With two quantities, we have two possibilities.

• The first possibility is that the measurements of x1 and
x2 are done by two different types of sensors.

• The second possibility is when, to measure both x1 and
x2, we use sensors of the same type.

First possibility. The first possibility is that the measurements
of x1 and x2 are done by two different types of sensors. For
each type, we have its own upper bound on the frequency of
outliers. Based on the bound corresponding to measurements
of x1, we can compute the interval [x1, x1] of possible val-
ues of x1. Similarly, Based on the bound corresponding to
measurements of x2, we can compute the interval [x2, x2] of
possible values of x2. Then, the interval of possible values of
y has the form

[y, y] = [x1 + x2, x1 + x2].

In this case, we can handle more complex cases as well,
when we have several variables and/or a more complex relation
f(x1, . . . , xd) between y and xi. To find the corresponding
range

[y, y] = {f(x1, . . . , xn) : x1 ∈ [x1, x1], . . . , xd ∈ [xd, xd]},

we can use techniques for estimating such ranges developed
in interval computations [2], [10].

Second possibility: analysis. The second possibility is when,
to measure both x1 and x2, we use sensors of the same type.
In this case, the limitation on the proportion of outliers refers
to both measurements. Let us describe this situation in more
detail.

Let us assume that we have n1 measurements of x1 and
n2 measurements to x2. As a result of processing all the
x1-measurements, we find, for every α ∈ (0, 1), the α-cut
x1(α) = [x1(α), x1(α)], i.e., the set of all the values of x1

which are possible if at least α-th part of the sensors work well.
Similarly, as a result of processing all the x2-measurements, we
find, for every α ∈ (0, 1), the α-cut x2(α) = [x2(α), x2(α)],
i.e., the set of all the values of x2 which are possible if at least
α-th part of the sensors work well.

We do not know which portion of x1-sensors works well
and which portion of the x2-sensors work well, all we know
is that overall, the number of sensors that work well is at least
α = 1−ε, for some given ε. So, if α1 is the proportion of x1-
sensors that work well and α2 is the proportion of x2-sensors

that work well, we have

α1 ·
n1

n1 + n2
+ α2 ·

n2

n1 + n2
= α.

For each such pair α1 and α2, we have the lower bound x1(α1)
for x1 and the bound x2(α2) for x2; in this case, the sum y =
x1 + x2 is bounded from below by the sum x1(α1) + x2(α2).
We do not know the values αi, we only know that y is larger
than one of these sums – the sum corresponding to the actual
(unknown) value α1. Thus, we can conclude that y is larger
than the smallest of such sums:

y(α) = min
α1·

n1
n1+n2

+α2·
n2

n1+n2
=α

(x1(α1) + x2(α2)).

Similarly, we can conclude that y is smaller than or equal to
the largest of the corresponding sums of upper bounds:

y(α) = max
α1·

n1
n1+n2

+α2·
n2

n1+n2
=α

(x1(α1) + x2(α2)).

How can we compute these sums?

Simplifications. An upper bound for y = x1 + x2 is minus
the lower bound for −y = (−x1)+ (−x2). So, without losing
generality, we can concentrate on the lower bounds.

The above formula for the lower bound can be somewhat
simplified if we introduce two auxiliary variables

t1
def
= α1 ·

n1

n1 + n2
and t2

def
= α2 ·

n2

n1 + n2
.

In terms of these variables, the above formula has the form

y(α) = min
t1,t2:t1+t2=α

(f1(t1) + f2(t2)), (1)

where we denoted fi(ti)
def
= xi

(
ti ·

n1 + n2

ni

)
.

What we do in this section. Following [17], we prove that
the existing algorithms for processing fuzzy numbers can be
used to compute this expression.

Zadeh’s extension principle: reminder. Specifically, we will
use fast algorithms for computing the result of processing
fuzzy data. This result is described by the following Zadeh’s
extension principle: once we know the membership functions
µ1(t1), . . . , µn(tn) corresponding to n variables t1, . . . , tn, the
membership function µ(t) corresponding to t = f(t1, . . . , tn)
takes the form

µ(t) = max
t1,...,tn: f(t1,...,tn)=t

f&(µ1(t1), . . . , µn(tn)). (2)

The most most widely used fuzzy “and”-operations are the
minimum f&(a, b) = min(a, b) and the algebraic product
f&(a, b) = a · b. Thus, we arrive at the following formulas:

µ(t) = max
t1,...,tn: f(t1,...,tn)=t

min(µ1(t1), . . . , µn(tn)), (3)

which is the most widely used form of Zadeh’s extension
principle, and

µ(t) = max
t1,...,tn: f(t1,...,tn)=t

µ1(t1) · . . . · µn(tn). (4)

In particular, for the simplest case of the addition function
f(t1 + t2) = t1 + t2, the above formula takes the form

µ(t) = max
t1,t2: t1+t2=t

µ1(t1) · µ2(t2). (5)

Straightforward computation of the expression (5). In
reality, we can only know the values of µ1(x) and µ2(x)
for finitely many values x. Let us denote the total number
of such values by n. In this case, it is reasonable to compute
only n values of µ(x). For each of these n values, according
to the formula (5), we must find the largest of n products.
Computing each product takes 1 elementary computational
step, computing the largest of n numbers requires that we
do n − 1 comparisons. So, the total number of computation
steps that needs to be done to compute one value of µ(x)
is 2n − 1 = O(n). Thus, to compute all n values of the
desired membership function µ(x), we need n ·O(n) = O(n2)
computational steps.

For large n, this number if large, so it is desirable to have
faster algorithms for computing this expression.

A faster algorithm for computing the expression (5): main
idea. Such faster algorithms are known. For example, an
algorithm described in [5], [6] is based on the well-known
fact that for non-negative numbers µ1, . . . , µn, we have

max(µ1, . . . , µn) = lim
p→∞

(|µ1|p + . . .+ |µn|p)1/p

(see, e.g., [4]). Therefore, for sufficiently large p, we have

max(µ1, . . . , µn) ≈ (|µ1|p + . . .+ |µn|p)1/p;

the larger p, the better the quality of this approximation.
Applying this approximate formula to the values

µ1(t1) · µ2(t− t1)

maximized in the formula (5), we come up with an approxi-
mate formula µ(t) ≈ M(t)1/p, where we denoted

M(t) =
∑
t1

(µ1(t1) · µ2(t− t1))
p.

The formula for M(y) can be rewritten as:

M(t) =
∑
t1

(µ1(t1))
p · µ2(t− t1))

p.

In the natural assumption that the values x1 are equally spaced,
with step h, this sum becomes a convolution of two functions:
M1(x) = (µ1(x))

p and M2(x) = (µ2(x))
p. Now, we can use

the following two ideas to compute M(x) fast:
• It is known that the Fourier transform of the convolution

M1 ∗ M2 of two functions M1 and M2 is equal to the
product of their Fourier transforms.

• Fourier transform can be computed in time O(n log(n))
[14], [16]; the corresponding algorithms are called Fast
Fourier Transform (FFT, for short).

In view of these two facts, we can use the following algorithm
to compute the membership function that expresses the sum
of two given fuzzy numbers:

Given: the values µ1(t1) and µ2(t2) for n equally spaced
values t1 and t2.

Algorithm: First, we pick a large number p (the larger p,
the better the results of our computations). Then, we do the
following:

1) For each of n values x1, we compute the values
M1(x) = (µ1(x))

p and M2(x) = (µ2(x))
p.

2) We apply FFT to the functions M1(x) and M2(x) and
get their Fourier transforms M̂1(ω) and M̂2(ω) (for n
different values ω).

3) We multiply M̂1(ω) and M̂2(ω); let us denote the
corresponding product by M̂(ω).

4) We apply inverse Fast Fourier transform to the product
M̂(ω) (computed on the previous step). As a result, we
get a function M(t).

5) Finally, we reconstruct µ(t) as (M(t))1/p.

Number of computational steps. Let us estimate the number
of computational steps of this algorithm. Stages 1, 3, and 5
require linear time (O(n) steps each, so, O(n) total). Stages 2
and 4 involve FFT and therefore, require the time O(n log(n)).
Therefore, the total number of computational steps is equal to
O(n) + O(n log(n)) = O(n log(n)), which is much smaller
than the O(n2) time that is needed for straightforward com-
putations.

Comment. A similar algorithm can be applied for computing
the sum of more than two fuzzy numbers. Alternatively, we
can first use the above algorithm to add the first two of these
fuzzy numbers, then add the third one to the result, etc.

What we want. We know that for the problem of computing
expression (5), there is an efficient algorithm which is faster
than a straightforward O(n2) algorithm. We would like to use
to use this algorithm to come up with a similar faster algorithm
for computing the desired expression (1).

Analysis of the problem. The main difference between the
desired formula (1) and the formula (5) that describes Zadeh’s
extension principle is that:

• the desired formula (1) uses addition, while
• the formula (5) corresponding to Zadeh’s extension prin-

ciple use multiplication.
Another difference is that:

• the desired formula (1) uses minimum, while
• the formula (5) corresponding to Zadeh’s extension prin-

ciple use maximum.
Thus, to reduce our problem to the problem of computing
Zadeh’s extension principle, we must reduce addition to mul-
tiplication, and minimum to maximum.

How to reduce addition to multiplication: reminder. It is
well known how to reduce addition to multiplication: use an
exponential function exp(k · x) since

exp(k · (a+ b)) = exp(k · a) · exp(k · b).

We want the resulting value exp(k · x) to be from the interval
[0, 1] for all x > 0. Thus, we must select k < 0 – otherwise,

we will get values exp(k · x) > 1. The simplest such value is
k = −1.

The function exp(−x) is decreasing, so it automatically
reduced minimum to maximum.

Resulting reduction: idea. To compute the value (1), we
consider the functions µ1(t1) = exp(−f1(t1)), µ2(t2) =
exp(−f2(t2)), and µ(t) = exp(−y(t)).

By definition (1), y(t) is the smallest of possible values
f1(t1) + f2(t− t1) corresponding to all possible t1. Since the
function exp(−x) is decreasing, its values at the smallest of
the arguments is the largest, i.e.,

µ(t) = exp(−y(t)) = max
t1

exp(−(f1(t1) + f2(t− t1)).

Here,
exp(−(f1(t1) + f2(t− t1)) =

exp(−(f1(t1)) · exp(−f2(t− t1)) = µ1(t1) · µ2(t− t1),

hence

µ(t) = exp(−y(t)) = max
t1

µ1(t1) · µ2(t− t1).

This is exactly the formula (5).
Once we know µ(t) = exp(−y(t)), we can reconstruct y(t)

as y(t) = − ln(µ(t)).
Thus, we arrive at the following algorithm.

New algorithm for computing the expression (1). Once
we know the values x1(α) and x2(α), to compute a similar
characteristic for y = x1 + x2, we do the following:

• form functions f1(t1) = x1

(
t1 ·

n1 + n2

n1

)
and f2(t2) =

x2

(
t2 ·

n1 + n2

n2

)
;

• form functions µ1(t1) = exp(−f1(t1)) and µ2(t2) =
exp(−f2(t2));

• apply a fast algorithm for computing the fuzzy expres-
sion (5) to these functions µ1(t1) and µ2(t2), and thus
compute a new function µ(t);

• compute y(t) = − ln(µ(t)).

VI. FROM ADDITION TO A MORE GENERAL CASE

Formulation of the problem. In the above text, we only
considered the simplest case of data processing, when we have
only two inputs x1 and x2 and we compute y = x1 + x2. In
the general case, we may have several inputs x1, . . . , xd, and
we compute a more general expression y = f(x1, . . . , xd).

Let us check what will happen if all these measurements are
performed by sensors of the same type, with an overall bound
ε = 1−α on the proportion of outliers. We will assume that we
made n1 measurements of the quantity x1, n2 measurements
of the quantity x2, . . . , and nd measurements of the quantity
xd, to the total of n = n1 + . . .+ nd measurements. Then, if
for every i, we denote by αi the proposition of sensors that
functioned well when measuring xi, we conclude that t1 +

. . .+ td = α, where ti
def
= αi ·

ni

n
.

Analysis of the problem. Measurements are reasonably accu-
rate. So, for every i, we can take some “mean” value x̃i as the
measurement result. When xi is in the interval [xi(αi), xi(αi)],
the corresponding measurement error ∆xi

def
= x̃i−xi is in the

interval [∆−
i (αi,∆

+
i (αi)], where ∆−

i (αi)
def
= x̃i − xi(αi) and

∆+
i (αi)

def
= x̃i − xi(αi).

Once we apply the algorithm f to the measurement results
x̃i, we get an estimate ỹ = f(x̃1, . . . , x̃d) for the desired
quantity y.

The corresponding estimation error is equal to the difference

∆y = ỹ − y = f(x̃1, . . . , x̃d)− f(x1, . . . , xd)

between this approximation and the actual (desired) value y.
Here, by definition of the measurement errors, we have xi =
x̃i −∆xi, so

∆y = f(x̃1, . . . , x̃d)− f(x̃1 −∆x1, . . . , x̃d −∆xd).

Since the measurements are reasonably accurate, we can
expand this expression in Taylor series in terms of ∆xi and
safely ignore terms which are quadratic and of higher order in
terms of ∆xi. As a result, we get the following expression:

∆y =

d∑
i=1

ci ·∆xi,

where
ci

def
=

∂f

∂xi
(x̃1, . . . , x̃d).

Let si ∈ {−,+} denote the sign of the derivative ci. For
each combination of values αi, the smallest possible value of
y = ỹ −∆y is attained when the value of the sum ∆y is the
largest, i.e., when:

• for those i for which si = +, when the value ∆xi is the
largest possible, i.e., equal to ∆xi = ∆+

i (αi);
• for those i for which si = −, when the value ∆xi is the

smallest possible, i.e., equal to ∆xi = ∆−
i (αi).

Thus, the smallest possible value of y is equal to ỹ + ∆−,
where

∆− =

d∑
i=1

|ci| · (−∆si
i (αi)).

So, in general, the smallest possible value y is attained when
∆− takes the smallest possible value. Hence, we arrive at the
following expression:

y(α) = ỹ + min
t1,...,td:t1+...+td=α

d∑
i=1

|ci| · (−∆si
i (αi)).

This expression can be rewritten as y(α) = ỹ+∆−(α), where

∆−(α) = min
t1,...,td:t1+...+td=α

d∑
i=1

fi(ti),

and we denoted

fi(ti)
def
= −|ci| ·∆si

i

(
ti ·

n

ni

)
.

Reduction to fuzzy computations: idea. The above formula
can be similarly reduced to computing the fuzzy expression

µ(t) = max
t1,...,tm: t1+...+tm=t

m∏
i=1

µi(ti), (6)

if we take µ(t) = exp(−∆−(t)) and

µi(ti) = exp(−fi(ti)).

Thus, we arrive at the following algorithm.

New algorithm for computing y(α). We know, for every input
i = 1, . . . , d, the values ∆±

i (αi) corresponding to different αi.
We want to compute, for each α, the range [y(α), y(α)]. For
this computation, we do the following:

• for each i, we select a “mean” value x̃i;
• compute the estimate ỹ = f(x̃1, . . . , x̃d);

• compute values ci =
∂f

∂xi
(x̃1, . . . , x̃d) and their signs si;

• form functions

fi(ti)
def
= −|ci| ·∆si

i

(
ti ·

n

ni

)
and µi(ti) = exp(−fi(ti));

• apply a fast O(n · log(n)) algorithm for computing the
fuzzy expression (6) to these functions µi(ti), and thus
compute a new function µ(t);

• compute ∆−(t) = − ln(µ(t)) and y(α) = ỹ +∆−(α).

Comment. A similar algorithm can be used to compute the
upper bounds y(α) corresponding to different values α.

ACKNOWLEDGMENT

This work was partly supported by a MRIS (Office of
Advanced Research and Innovation) grant from the Diréction
Generale de l’Armement (DGA), France, by the US National
Science Foundation grants HRD-0734825 and DUE-0926721,
and by Grant 1 T36 GM078000-01 from the US National
Institutes of Health. Jan Sliwka was also supported by Brest
Métropole Océane (BMO).

REFERENCES

[1] C. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, MIT Press, Boston, Massachusetts, 2009.

[2] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis,
with Examples in Parameter and State Estimation, Robust Control and
Robotics, Springer-Verlag, London, 2001.

[3] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and
Applications, Prentice-Hall, Upper Saddle River, New Jersey, 1995.

[4] A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis, Dover,
N.Y., 1975.

[5] O. Kosheleva, S. D. Cabrera, G. A. Gibson, and M. Koshelev, Fast
Implementations of Fuzzy Arithmetic Operations Using Fast Fourier
Transform (FFT), Proceedings of the 1996 IEEE International Conference
on Fuzzy Systems, New Orleans, September 8–11, 1996, Vol. 3, pp. 1958–
1964.

[6] O. Kosheleva, S. D. Cabrera, G. A. Gibson, and M. Koshelev, “Fast
Implementations of Fuzzy Arithmetic Operations Using Fast Fourier
Transform (FFT)”, Fuzzy Sets and Systems, 1997, Vol. 91, No. 2, pp. 269–
277.

[7] F. Le Bars, A. Bertholom, J. Sliwka, and L. Jaulin, “Interval slam for
underswater robots – a new experiment”, Proceedings of the 8th IFAC
Symposium on Nonlinear Control Systems NOLCOS’2010, Bologna, Italy,
September 1–3, 2010.

[8] L. Longpré and C. Servin, “Quantum computations techniques for gauging
reliability of interval and fuzzy data”, Proceedings of the 27th Interna-
tional Conference of the North American Fuzzy Information Processing
Society NAFIPS’2008, New York, New York, May 19–22, 2008.

[9] L. Longpré, C. Servin, and V. Kreinovich, “Quantum Computation tech-
niques for gauging reliability of interval and fuzzy data”, International
Journal of General Systems, 2011, Vol. 40, No. 1, pp. 99–109.

[10] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval
Analysis, SIAM Press, Philadelphia, Pennsylvania, 2009.

[11] H. T. Nguyen and E. A. Walker, A First Course in Fuzzy Logic, Boca
Raton, Florida: Chapman & Hall/CRC, 2006.

[12] S. Rabinovich, Measurement Errors and Uncertainties: Theory and
Practice, American Institute of Physics, New York, 2005.

[13] J. Sliwka, F. Le Bars, O. Reynet, and L. Jaulin, “Using interval methods
in the context of robust localization of underwater robots”, Proceedings
of the 30th Annual Conference of the North American Fuzzy Information
Processing Society NAFIPS’11, El Paso, Texas, March 18–20, 2011.

[14] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing,
Prentice Hall, Englewood Cliffs, New Jersey, 2009.

[15] W. Pedrycz, A. Skowron, and V. Kreinovich (eds.), Handbook on
Granular Computing, Wiley, Chichester, UK, 2008.

[16] C. Van Loan, Computational Frameworks for the Fast Fourier Transform,
SIAM, Philadelphia, 1992.

[17] K. Villaverde, O. Kosheleva, and M. Ceberio, “Computations under
time constraints: algorithms developed for fuzzy computations can help”,
Proceedings of the 30th Annual Conference of the North American Fuzzy
Information Processing Society NAFIPS’2011, El Paso, Texas, March 18–
20, 2011.

[18] L. A. Zadeh, “Fuzzy sets”, Information and control, vol. 8, pp. 338–353,
1965.

