
Characterizing sliding surfaces of
cyber-physical systems

May 25, 2019

Luc Jaulin, Fabrice Le Bars,

Lab-STICC, ENSTA Bretagne, Brest, France

Abstract. When implementing a non-continuous controller for a cyber-
physical system, it may happen that the evolution function of the closed-loop
system is not anymore piecewise continuous along the trajectory, mainly
due to if statements inside the control algorithm. As a consequence, an
unwanted chattering effect may occur. This behavior is often difficult to
observe even in simulation. We propose here a set-membership method based
on interval analysis to detect different types of discontinuities. One of them is
the sliding surface where the state trajectory jumps indefinitely between two
distinct behaviors. As an application, we consider the validation of a sailboat
controller. We show that our approach is able to detect and explain some
unwanted sliding effects that may be observed in rare and specific situations
on our actual sailboat robots.

1 Introduction

Validating properties of cyber-physical systems [15, 29] is a difficult problem
for which set membership techniques provide original and efficient solutions
[26] [25].

Different types of set-membership approaches exist for the validation.
Some require the integration of nonlinear differential equations [28][30][19].
Others are based on positive invariance approaches [1][18]. For the numer-
ical resolution some methods grid the state space [27][7] which makes them

1

computationally expensive. Lyapunov-based methods [24], level-set methods
[20], or barrier functions [4] are attractive since they do not perform any in-
tegration through time. Now, these methods generally require a parametric
expression for candidate Lyapunov-like functions [23].

This paper considers the validation of the controller of a sailboat robot
which is an illustrative example of what is a cyber-physical system. Due to
the control strategy used, the robot is an hybrid system [22] since it includes
a physical system (the sailboat) and an algorithm (the controller inside the
computer of the robot). More precisely, it is a controlled switching system
[17] due to some discrete state variables in the controller. The controller is
an algorithm containing if statements and the validation requires approaches
coming from invariance approaches [3], static analysis [11] and abstract in-
terpretation [6].

To detect the discontinuities and Zeno effects, we propose in this paper
to generate a set of equalities in the state space where undesirable switch-
ing phenomenons could occur. The corresponding zone (called later sliding
surface) may be stable and the system can be trapped inside without any
possibility to escape. Charactering these sliding zones will be done by using
interval techniques [21][16]. This characterization can be used for the vali-
dation of the controller or to correct it by eliminating the unwanted sliding
surfaces.

The paper is organized as follows. Section 2 introduces the easy-boat
model which is a simple sailboat with a controller. This model will be used
to illustrate our approach. Section 3 provides the formalism and gives a list
of three problems we want to solve. Section 4 shows how our approach can be
used to validate the controller but also to detect and explain some unwanted
sliding effects that occur on actual sailboat controllers. Section 5 concludes
the paper and provides some perspectives.

2 Easy boat model

The easy-boat model is described by

ḋ = sinu (1)

under the constraint
cos (ψ − u) + cos

π

5
> 0. (2)

It is a simple version of a sailboat following a line [12], where ψ is the angle
of the wind, d is the algebraic distance to the line and u is the heading of
the boat. This is illustrated by Figure 1, where s is the curvilinear abscissa.

2

Figure 1: Easy-boat following the red line

We want that, after some transient period, the distance d becomes small
(|d| ≤ 2 for instance). The controller we propose is the following, where
q ∈ {−1, 1}.

Controller in: (d, ψ, q) ; out:u
1 if d2 − 1 > 0 then q := sign (d)
2 if cos (ψ + atan d) + cos π

4
≤ 0 or

(
d2 − 1 ≤ 0 and cosψ + cos π

4
≤ 0
)

3 then u := π + ψ − q π
4
.

4 else u := −atan d.

Figure 2 provides some simulations with q = 1 at time t = 0. We took
different initial conditions to avoid the superposition of the curves, taking
into account the fact that the behavior of the system does not depend on
these initial values for d. When q switches between −1 to 1, the trajectories
are not differentiable.

Remark. For a link to the sailboat, it is more interpretable to draw d
with respect to the curvilinear abscissa s =

∫ t
cosu as in Figure 3. The boat

has to follow the horizontal line, (s, d) corresponds to the position of the boat
and u is the heading. The arrows represent different directions for the winds.
As we can see on the figure, the boat never goes upwind: there always exists
an angle between the heading and the wind greater than ζ = π

5
where ζ is

the angle defining the no-go zone. For the simulation, we added the state
variable s which satisfies ṡ = cosu.

3 Formalism

This section provides an abstraction of our sailboat robot in order to give
useful definitions, theorems and proofs. The corresponding formalism will be

3

Figure 2: Simulation of the easy-boat model (t, d) with respect to different
wind angles ψ

Figure 3: Simulation of the easy-boat in the (s, d) plane with different ψ

4

Figure 4: Automaton representing our Cyber Physical System

applied in the next section on the sailboat validation problems.
Definition. Given Q−, Q+ two disjoint closed subsets of Rn, two smooth

functions fa, fb :Rn × {−1, 1} → Rn, we define the dynamical system

S (A) :

ẋ = f (x, q) =

{
fa (x, q) if x ∈ A
fb (x, q) if x ∈ B = A

q = −1 as soon as x ∈ Q−
= +1 as soon as x ∈ Q+

(3)

We assume that

• fa, fb are continuous and differentiable,

• A is a closed subset of Rn that can be defined by inequalities linked by
Boolean operators.

This definition is illustrated by the automaton of Figure 4 taking the conven-
tions used for hybrid systems [2, 9]. The red arrows show transitions which
may not be stable and which may generate the sliding phenomenons that are
studied in this paper.

This definition trivially extends to situations where we have more than
two guard sets Q−,Q+ and more than two fields fa, fb. An hybrid system
which can be translated into the form (3) is said to be expandable.

Remark. In this paper, to avoid atypical situations, the closed sets are
assumed to be topologically stable, i.e., they have the same boundary as their
interior. For instance, a disk of R2 is topologically stable, but not the circle
since its interior is empty. We will also assume that the closed sets can be
defined as a finite composition (with unions and intersections) of sets of the
form X = {x ∈ Rn | c(x) ≤ 0} where c is a smooth function.

5

Figure 5: When the trajectory reaches Q− (resp. Q+),the variable q switches
to −1 (resp. +1)

Since A is closed, the set B is open and the boundaries ∂A, ∂B of A,B
satisfy

∂A = ∂B = A ∩ Clo (B) (4)

where Clo (B) denotes the smallest closed set which encloses B. This common
boundary can be defined by an equality. Moreover the pair (x, q) always
satisfies the constraint

x ∈ Q+ ⇒ q = 1
x ∈ Q− ⇒ q = −1

(5)

This formula can be denoted equivalently by x ∈ Q−q, with the notation
Q−1 = Q− and Q1 = Q+. The corresponding behavior is represented on
Figure 5, where the blue arrows correspond to f (x,−1) and the pink arrows
to f (x, 1).

In this paper, we consider three problems:

• the constraint satisfaction problem which checks that a given variable
of the algorithm defining f is inside a feasible domain.

• the positive invariance for a set defined by inequalities

• the characterization of the sliding surface.

3.1 Constraint satisfaction

We want to show the state of the the cyber-physical system never reaches a
forbidden domain. This can be often be expressed as showing that we never

6

have
h (x, q) ≤ 0, (6)

with {
h (x, q) = ha (x, q) if x ∈ A

= hb (x, q) if x ∈ B (7)

where ha, hb are continuous.
Proposition 1. If the set

H = ∪q∈{−1,1}
(
{x|ha (x, q) ≤ 0)} ∩ A ∩Q−q

)
∪
(
{x|hb (x, q) ≤ 0)} ∩ B ∩Q−q

) (8)

is empty then we cannot have h (x, q) ≤ 0.
Proof. The proof is by contradiction. More precisely, we take (x, q) such

that h (x, q) ≤ 0 and we show that x ∈ H. Since B = A, we should consider
two cases x ∈ A and x ∈ B.

Case 1: x ∈ A. From Equation (7), h (x, q) = ha (x, q) and thus

x ∈ {x|ha (x, q) ≤ 0)} ∩ A.

Case 2: x ∈ B. From Equation (7), h (x, q) = hb (x, q) and thus

x ∈ {x|hb (x, q) ≤ 0)} ∩ B.

Since from Equation (5), we always have x ∈ Q−q, in both cases, x ∈ H.
This is inconsistent with the fact that H = ∅.�

3.2 Capture set

Consider a function V : Rn → R. The set C = {x|V (x) ≤ 0} is called
a capture set (or a positive invariant set) if all trajectories x(t) that enter
inside C stay inside forever. To check that C is a capture set, we recall the
notion of Lie derivative of V with respect to the field f : Rn → Rn as

LVf (x) =
dV

dx
(x) · f (x) . (9)

We also define the Lie set as

LVf =
{
x|LVf (x) ≤ 0

}
. (10)

7

In our context, the field depends on i ∈ {a, b} and q. We will write

LVi (x, q) = LVfi(·,q) (x)

LVi (q) = LVfi(·,q)
(11)

Proposition 2. Define the set

V =
⋃

q∈{−1,1}

(
LVa (q) ∩ A ∩Q−q

)
∪
(
LVb (q) ∩ B ∩Q−q

)
. (12)

If V ∩ C = ∅ then C is a capture set.
Proof. The proof is by contradiction. Assume that C is not a capture

set. There exists a trajectory leaving V at a point x. Assume first that
x ∈ A. Then, LVa (x, q) ≥ 0 or equivalently, x ∈ LVa (q). Taking into account
that from (5), x ∈ Q−q, we get that x ∈ LVa (q)∩A∩Q−q. If now we assume

that x ∈ B, we get x ∈ LVb (q) ∩ B ∩Q−q.�

3.3 Sliding surface

The sliding surface S (A) [8] for S (A) (see Equation (3)) is defined as the
largest subset of the boundary ∂A between A and B = A such that the
system can stay inside for a non degenerated interval of time.

If A is defined by the inequality c (x) ≤ 0, then B is defined by c (x) > 0
and the boundary by c (x) = 0. The sliding surface is

S (A) = ∂A ∩
{
x | ∃q,x ∈ Q−q,Lca (x, q) ≥ 0 ∧ Lcb (x, q) ≤ 0

}
= ∂A ∩

⋃
q∈{−1,1}Q−q ∩ Lca (q) ∩ Lcb (q).

(13)

Figure 6 illustrates the principle of this proposition in the case where A
is described by one inequality c (x) ≤ 0 and with no discrete variable q. In
this case

S (A) = ∂A ∩ {x | Lca (x) ≥ 0 ∧ Lcb (x) ≤ 0} . (14)

The boundary ∂A of A is composed of four parts :

∂A ∩ Lca (q) ∩ Lcb (q) → magenta

∂A ∩ Lca (q) ∩ Lcb (q) → red
∂A ∩ Lca (q) ∩ Lcb (q) → yellow

∂A ∩ Lca (q) ∩ Lcb (q) → black

One trajectory (dotted line) x(t) is also represented. Before the yellow arc,
c (x) is positive and decreases. When it crosses the yellow arc, c (x) = 0
for some isolated time point t1. Then x(t) remains inside A until it reaches

8

Figure 6: Sliding set S (A) (red) for A = {x|c (x) ≤ 0}

the red arc. It slides in the red arc for some non-degenerated time interval.
When x(t) reaches the magenta arc, it leaves A.

Proposition 3. Consider two closed sets A1 and A2. As illustrated by
Figure 7, we have

(i) S (A1 ∩ A2) = (S (A1) ∩ A2) ∪ (S (A2) ∩ A1)

(ii) S (A1 ∪ A2) =
(
S (A1) ∩ cloA2

)
∪
(
S (A2) ∩ cloA1

) (15)

Proof. Let us first prove (i). If x ∈ S (A1 ∩ A2) , then x belongs to the
boundary ∂(A1 ∩A2) of A1 ∩A2. Now, since A1,A2 are both closed, we have
∂(A1 ∩A2) = (∂A1 ∩A2)∪ (∂A2 ∩A1). Thus, we have to consider two cases:
(a) x ∈ ∂A1 ∩ A2 and the system slides on ∂A1 (i.e., x ∈ S (A1)) or (b)
x ∈ ∂A2 ∩ A1 and the system slides on ∂A2 (i.e., x ∈ S (A2)). Considering
the two cases, we get

S (A1 ∩ A2) = (∂A1 ∩ A2 ∩ S (A1)) ∪ (∂A2 ∩ A1 ∩ S (A2))
= (A2 ∩ S (A1)) ∪ (A1 ∩ S (A2)) .

(16)

Let us now prove (ii). If x ∈ S (A1 ∪ A2) , then x belongs to the boundary
∂(A1 ∪ A2) of A1 ∪ A2. Now, ∂(A1 ∪ A2) = (∂A1 ∩ cloB2) ∪ (∂A2 ∩ cloB1) .
Again, we have to consider two cases: (a) x ∈ (∂A1 ∩ cloB2) and then x ∈
S (A1) ∩ cloB2 and (b) x ∈ (∂A2 ∩ cloB1) then x ∈ S (A2) ∩ cloB1.�

Proposition 3 can be used to compute the sliding surface of a set A as
soon as A can be defined by inequalities connected by Boolean operators such
as and, or, not. The proposition is illustrated by Figure 8 in the case where
A = A1 ∪ (A2 ∩ A3) and Ai = {x|ci (x) ≤ 0}. The trajectory (green) slides
twice, first on ∂A1, then it slides on ∂A2. The sliding surfaces are painted
red.

9

Figure 7: Illustration of Proposition 3, the sliding surfaces are painted red

Figure 8: Sliding surfaces for A = A1 ∪ (A2 ∩ A3)

10

4 Application to our easy-boat model

Taking into account the dynamic in (1), the controller given in Section 2,
and setting x = (d, ψ) , we obtain the following evolution function for the
closed loop easy-boat model:

Function f (x, q)
If cos (x2 + atanx1) + cos π

4
≤ 0∨

(
x21 − 1 ≤ 0∧ cosx2 + cos π

4
≤ 0
)

then return

(
sin
(
π + x2 − q π4

)
0

)
else return

(
sin(−atanx1)

0

)
Therefore, our easy-boat model can be described by the expandable form

(3) by taking the following correspondences:

x = (d, ψ)

fa (x, q) =

(
sin
(
π + x2 − q π4

)
0

)
fb (x) =

(
sin(−atanx1)

0

)
A1 =

{
x | cos(x2 + atanx1) + cos π

4
≤ 0
}

A2 = {x |x21 − 1 ≤ 0}
A3 =

{
x | cosx2 + cos π

4
≤ 0
}

A =A1 ∪ (A2 ∩ A3)
Q− = {x |x1 + 1 ≤ 0}
Q+ = {x | 1− x1 ≤ 0}

(17)

We can now illustrate the resolution of the three problems treated at Section
3.

4.1 Constraint satisfaction

Using Proposition 1, we want to prove that the easyboat never goes upwind
(see Equation (2)), i.e., we never have

cos (x2 − u) + cos
π

5
≤ 0 (18)

where u is given by the controller (see Section 2){
u = π + x2 − q π4 if x ∈ A

= −atanx1 otherwise
(19)

11

Thus, the no-go zone constraint can be expressed as

h (x) = cos (x2 − u) + cos
π

5
≤ 0 (20)

with h (x) = ha (x) = cos
(
−π − q π

4

)
+ cos π

5
if x ∈ A

= cos 3π
4

+ cos π
5

= hb (x) = cos (x2 + atanx1) + cos π
5

otherwise
(21)

As required by (8), we compute the set

H =
(
Ha (1) ∩Q− ∩ A

)
∪
(
Ha (−1) ∩Q+ ∩ A

)
∪ (Hb ∩ B) (22)

where
Ha (q) = {x|ha (x, q) ≤ 0}
Hb = {x|hb (x) ≤ 0} (23)

Using the interval based solver PyIbex, we easily show that this set has
no solution. From Proposition 1, we conclude that the forbidden constraint
cos (x2 − u) + cos π

5
≤ 0 is never reached.

4.2 Capture set

To show that the easyboat stays inside a corridor of radius 2, we take V (x) =
x21 − 4. We have

LVa (x, q) = dV
dx

(x) · fa (x, q) = 2x1 · sin(qπ
4
− x2)

LVb (x) = dV
dx

(x) · fb (x, q) =
−2x21√
x21+1

(24)

We compute the set

V =
(
LVa (1) ∩Q− ∩ A

)
∪
(
LVa (−1) ∩Q+ ∩ A

)
∪
(
LVb ∩ B

)
(25)

where
LVa (q) =

{
x|LVa (x, q) ≤ 0

}
LVb =

{
x|LVb (x) ≤ 0

} (26)

Since we need to compute with sets defined by non-linear inequalities that
are connected with intersection, union, complementary operators, we decided
to use separators [14] instead of contractors [5] (which do not allow the use
of complementary operators).

We prove that set V ∩ C is empty using PyIbex. From Proposition 2,
we conclude that C is a capture set.

12

http://benensta.github.io/pyIbex/

Figure 9: Fields fa (x, q), fb (x), the set C (green) and the set V (red)

Figure 9 gives a superposition of the fields for fa (x, 1) (blue), fa (x,−1)
(black) and fb (x) (red). Is also represented the capture set C (green) and
the set V (red) which may not respect the constraint as soon as it is inside
C. Since the wind is constant, the arrows are horizontal. Since we have
x ∈ Q− ⇒ q = −1, the blue arrow going left in the blue circle cannot
be reached by a trajectory. From the figure, we can see that outside C,all
fields are oriented toward the line d = 0 which is consistent with the results
obtained in [13].

4.3 Sliding surface

Assume that for all i, Ai is defined by the inequality ci (x) ≤ 0, B by ci (x) > 0
and the boundary ∂Ai by ci (x) = 0. From (13), the sliding surface for Ai is

S (Ai) = ∂Ai ∩
⋃
q∈{−1,1}Q−q ∩ Lia (q) ∩ Lib

= ∂Ai ∩ Lib ∩
(
Lia (1) ∩Q− ∪ Lia (−1) ∩Q+

) (27)

13

where
Lia (q) = {x|Lcia (x, q) ≤ 0}
Lib = {x|Lcib (x) ≤ 0} (28)

Now, we have

Lc1a (x, q) = dc1
dx

(x) · fa (x, q) =
− sin(qπ

4
−x2)·sin(atan(x1)+x2)

x21+1

Lc1b (x) = dc1
dx

(x) · fb (x, q) = sin(atanx1+x2)·x1√
x21+1

3

Lc2a (x, q) = dc2
dx

(x) · fa (x) = 2 sin(qπ
4
− x2) · x1

Lc2b (x) = dc2
dx

(x) · fb (x, q) =
−2x21√
x21+1

Lc3a (x, q) = dc3
dx

(x) · fa (x, q) = 0
Lc3b (x) = dc3

dx
(x) · fb (x, q) = 0

(29)

S (A1) = ∂A1 ∩ L1
b ∩
(
L1
a (1) ∩Q− ∪ L1

a (−1) ∩Q+
)

S (A2) = ∂A2 ∩ L2
b ∩
(
L2
a (1) ∩Q− ∪ L2

a (−1) ∩Q+
)

S (A3) = ∂A3

(30)

Thus

S (A1 ∪ (A2 ∩ A3)) =
(
S (A1) ∩ clo

(
A2 ∩ A3

))
∪
(
S (A2 ∩ A3) ∩ cloA1

)
S (A2 ∩ A3) = (S (A2) ∩ A3) ∪ (S (A3) ∩ A2)

(31)

The abstract syntax tree associated to the expression of the sliding surface
S is depicted on Figure 10. It can be generated automatically using the
rules provided by Proposition 3. The complexity of the tree illustrates the
advantage of using separator algebra for the characterization of the solution
set.

We obtain Figure 11 where two horizontal segments appear. They corre-
spond to a wind angle corresponding to ±3π

4
as expected.

To have a deeper understanding, let us draw the trajectories associated
to the simulations of Figure 2 (see also Figure 12). The red set, obtained
with PyIbex, corresponds to A =A1 ∪ (A2 ∩ A3) . We can see that most of
trajectories cross the singularities at one time t. But the red stays on the
sliding surface for time period that maybe long. Thus make the sailboat
loosing a lot of time due to many unneeded maneuvers. The controller alter-
nates indefinitely between two strategies: θ̄ := ϕ and θ̄ := π+ψ− qζ. Recall
that this hesitation can be seen on simulations but also sometimes for short
periods during real experiments with our actual sailboat.

14

Figure 10: Abstract syntax tree associated to the expression of S

Figure 11: Sliding surface (yellow)

15

Figure 12: Several trajectories in the state space

5 Conclusion

In this paper, we have presented a new approach based on contractor/separator
programming to compute the sliding surfaces of a cyber-physical system. If
the state of the system is on this surface, it may hesitate indefinitely be-
tween two different strategies. As a result, the system may be trapped on
this surface and the designed mission may fail. It is thus important to detect
and compute the sliding surface in order to eliminate them by changing the
controller.

Further researches we would like to address in the future are the following.

• Generalize the method to situations where we have more than two
continuous evolution functions fi, i ∈ {a, b, . . . } and where q may take
more than two values.

• Take into account quantifiers to consider different kinds of uncertainties
[10].

• Build a tool able to cast automatically a physical system with a con-
troller described by an algorithm with if-statements into the expandable

16

form (3). This could be done, for instance, by obtaining a disjonctive
normal form (BNF) of the controller. Or equivalently to replace all
if-then-else in the controller by a single switch-case statement.

• Find a new controller for our sailboat, as efficient as the existing one,
but without any sliding surface.

References

[1] E. Asarin, T. Dang, and A. Girard. Hybridization methods for the
analysis of non-linear systems. Acta Informatica, 7(43):451–476, 2007.

[2] E. Asarin, T. Dang, and O. Maler. The d/dt tool for verification of
hybrid systems. In In International Conference on Computer Aided
Verification, pages 365–370. Springer, 2002.

[3] F. Blanchini and S. Miani. Set-Theoretic Methods in Control. Springer
Science & Business Media, October 2007.

[4] O. Bouissou, A. Chapoutot, A. Djaballah, and M. Kieffer. Computa-
tion of parametric barrier functions for dynamical systems using interval
analysis. In 2014 IEEE 53rd Annual Conference on Decision and Con-
trol (CDC), pages 753–758, December 2014.

[5] G. Chabert and L. Jaulin. Contractor Programming. Artificial Intelli-
gence, 173:1079–1100, 2009.

[6] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approxima-
tion of fixpoints. In Conference Record of the Fourth ACM Symposium
on Principles of Programming Languages, pages 238–252, Los Angeles,
California, 1977.

[7] N. Delanoue, L. Jaulin, and B. Cottenceau. Attraction domain of a
nonlinear system using interval analysis. In Twelfth International Con-
ference on Principles and Practice of Constraint Programming (IntCP
2006), France, Nantes, 2006.

[8] S. Drakunov and V. Utkin. Sliding mode control in dynamic systems.
International Journal of Control, 55(4):1029–1037, 1992.

[9] G. Frehse. Phaver: Algorithmic verification of hybrid systems. Interna-
tional Journal on Software Tools for Technology Transfer, 10(3):23–48,
2008.

17

[10] A. Goldsztejn and G. Chabert. On the approximation of linear ae-
solution sets. In 12th International Symposium on Scientific Comput-
ing, Computer Arithmetic and Validated Numerics, Duisburg, Germany,
(SCAN 2006), 2006.

[11] E. Goubault and S. Putot. Static analysis of numerical algorithms. In
In Proceedings of SAS 06, LNCS 4134, pages 18–34. Springer-Verlag,
2006.

[12] L. Jaulin and F. Le Bars. A simple controller for line following of sail-
boats. In 5th International Robotic Sailing Conference, pages 107–119,
Cardiff, Wales, England, 2012. Springer.

[13] L. Jaulin and F. Le Bars. An Interval Approach for Stability Analysis;
Application to Sailboat Robotics. IEEE Transaction on Robotics, 27(5),
2012.

[14] L. Jaulin and B. Desrochers. Introduction to the algebra of separators
with application to path planning. Engineering Applications of Artificial
Intelligence, 33:141–147, 2014.

[15] M. Konecny, W. Taha, J. Duracz, A. Duracz, and A. Ames. Enclosing
the behavior of a hybrid system up to and beyond a zeno point. In
Cyber-Physical Systems, Networks, and Applications (CPSNA), 2013.

[16] V. Kreinovich, A.V. Lakeyev, J. Rohn, and P.T. Kahl. Computational
complexity and feasibility of data processing and interval computations.
Reliable Computing, 4(4):405–409, 1997.

[17] R. Soulat L. Fribourg. Control of Switching Systems by Invariance Anal-
ysis: Application to Power Electronics. Wiley-ISTE, 2013.

[18] T. Le Mézo, L. Jaulin, and B. Zerr. An interval approach to compute
invariant sets. IEEE Transaction on Automatic Control, 62:4236–4243,
2017.

[19] I. Mitchell. Comparing forward and backward reachability as tools for
safety analysis. In A. Bemporad, A. Bicchi, and G. Buttazzo, editors,
Hybrid Systems: Computation and Control, pages 428–443. Springer-
Verlag, 2007.

[20] I. Mitchell, A. Bayen, and C. Tomlin. Validating a Hamilton-Jacobi
Approximation to Hybrid System Reachable Sets. In M. Benedetto and
A. Sangiovanni-Vincentelli, editors, Hybrid Systems: Computation and

18

Control, number 2034 in Lecture Notes in Computer Science, pages 418–
432. Springer Berlin Heidelberg, 2001.

[21] R. E. Moore. Methods and Applications of Interval Analysis. SIAM,
Philadelphia, PA, 1979.

[22] N. Ramdani and N. Nedialkov. Computing Reachable Sets for Uncer-
tain Nonlinear Hybrid Systems using Interval Constraint Propagation
Techniques. Nonlinear Analysis: Hybrid Systems, 5(2):149–162, 2011.

[23] S. Ratschan. Approximate quantified constraint solving by cylindrical
box decomposition. Reliable Computing, 8(1):21–42, 2002.

[24] S. Ratschan and Z. She. Providing a Basin of Attraction to a Target Re-
gion of Polynomial Systems by Computation of Lyapunov-like Functions
. SIAM J. Control and Optimization, 48(7):4377–4394, 2010.

[25] A. Rauh and E. Auer. Interval approaches to reliable control of dynam-
ical systems. In Computer-assisted proofs - tools, methods and applica-
tions, 2009.

[26] S. Rohou, L. Jaulin, M. Mihaylova, F. Le Bars, and S. Veres. Reliable
non-linear state estimation involving time uncertainties. Automatica,
pages 379–388, 2018.

[27] P. Saint-Pierre. Hybrid kernels and capture basins for impulse con-
strained systems. In C.J. Tomlin and M.R. Greenstreet, editors, in Hy-
brid Systems: Computation and Control, volume 2289, pages 378–392.
Springer-Verlag, 2002.

[28] J. Alexandre Dit Sandretto and A. Chapoutot. Validated simulation
of differential algebraic equations with runge-kutta methods. Reliable
Computing, 22, 2016.

[29] W. Taha and A. Duracz. Acumen: An open-source testbed for cyber-
physical systems research. In CYCLONE’15, 2015.

[30] D. Wilczak and P. Zgliczynski. Cr-lohner algorithm. Schedae Informat-
icae, 20:9–46, 2011.

19

	Introduction
	Easy boat model
	Formalism
	Constraint satisfaction
	Capture set
	Sliding surface

	Application to our easy-boat model
	Constraint satisfaction
	Capture set
	Sliding surface

	Conclusion

