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Abstract

Contractor algebra is a numerical tool based on intervalyaisawhich makes it possible to solve many nonlinear pnoisle
arising in robotics, such as identification, path planningabust control. This paper presents the new notiosegfaratorswhich
is a pair of complementary contractors and presents thegmonding algebra. Using the separator algebra inside er pal
allow us to get an inner and an outer approximation of thetmwmluset in a much simpler way than using any other interval
approach. A path planning problem will then be consideredriter to illustrate the principle of the approach.

Index Terms

Contractors, interval analysis, path planning, sepasat®t characterization.

I. INTRODUCTION

Many problems in engineering amount to characterizing afSRt' defined by constraints (see [35] for a general introduction
to set-membership approaches). For instance, the solsgiomay correspond (i) to the set of all parameters that arsistent
with a some interval measurements [23] [11] [20] [12] [4]) o the set of all configuration vectors such that robot doais
meet any obstacles [28] [15], (iii) to the set of all paramefectors of a controller such that the closed loop systentaisles
[36] [8], (iv) to set all calibration parameters [7] [29],)(to attractors of dynamical systems [34],, More formally, the
problem to be considered in this paper is to bracket &sdefined by constraints between two sEts andX* such that

X~ c Xcxt. 1)

The setX is assumed to be defined as combinations of atomic sets. Bhasgc sets may correspond to sets defined by any
nonlinear inequalities or geometric sets such as a map. Mpete such an approximation ¥f two main classes of approaches
are considered: symbolic and numerical. The symbolic agmbrgrovides a set of methods based on computer algebrar¢hat a
guaranteed, efficient, but limited to polynomial probleffilse numerical approaches are mainly composed with linetinods

(for which linear algebra can be used, segy, [30]), convex methods (such as those based on semidefirigggmming
[14]), Monte-Carlo methods (which can be used for a largesctsf nonlinear problems [33]) and interval methods [26] [16
which provide algorithms to compute inner and outer subpgs/{.e., union of non overlapping boxes) to approximateThe
principle of interval methods is similar to Monte Carlo egt#hat they compute with boxes (thanks to interval arithon@6])
instead of points, so they can guarantee that all the sepette has been covered. Interval methods can thus deal vatige |
class of non-linear problems (larger than for semidefiniteyonbolic methods) in a guaranteed way (contrary to Mordde(.

The main drawbacks of interval methods is the high complexith respect to the number of unknown variables and the
lack of tools/softwares that make it possible to implemdfitiently an interval resolution dedicated to a nonlineaotpem.

In order to allow a resolution of high dimensional problemsl &0 facilitate the implementation of efficient interval timeds,

the notion of contractor [5] has recently been introduceatoAtractoris an operator which is able to contract boxes without
removing any solution. Contractor-based techniques [Bjlined with a paverif., a bisection algorithm which partitions the
research space with boxes) can provide an outer subpavprgramationX* of X in an efficient way. For the inner subpaving
X, the De Morganrules can be used to express the complementar¥ 6tX. Then basic contractor techniques can be used
to get an inner characterizatiofi-. Now, the task is not so easy and has never been made autoittaticcontribution of
this paper is to introduce a new mathematical object, nasepdratorwhich is composed of two complementary contractors:
an inner contractor and an outer contractor. These two atolrs are computed together by focusing on the boundal. of
An algebra, similar to the algebra developed for contracfb}, will then be developed for these separators. This mike

it possible to easily build separators associated with dexngetsX. Combined with a paver, separators will then be able to
bracketX between the two subpavinds™ andX™, in an easy way and without asking the programmer to built bwe inner
and the outer contractors.

The paper is organized as follows. Section Il defines semaraind shows how they can be used inside a paver to
characterize subsets @". Section Il explains how to extend all basic operations ets {such as union, intersection,
difference, complementary) to separators. The inversibseparators through a vector function is treated in Seckian
Section V presents how atomic separators can be defined. ddanplex separators will be obtained by compositions ofghes
atomic separators. An application related to path planigngpnsidered in Section VI. Section VII concludes the paper
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Il. SEPARATORS

In this section, we first present the notion of contracto fhat will be needed to define separators. Then, we show how
separators can be used by a paver in order to bracket théosobatX between two subpaving&— andX+.

A. Contractors

An interval of R is a closed connected set Bf A box [x] of R™ is the Cartesian product of intervals. The set of all
boxes ofR™ is denoted byiR". A contractorC is an operatofiR" — IR" such that

C([x]) C [x] (contractance) @)
(x| cly] = C(x])cC(ly])  (monotonicity)
We define the inclusion between two contractérsandC, as follows
C1 CCr e Vx| € IR, C1([x]) C Cao([x]). 3)
A setS is consistenwith the contractoC (we will write S ~ C) if for all [x], we have
c(x)) NS = [x]NS. @)
Two contractor’ andC; are consistentach other (we will write€ ~ C;) if for any setS, we have
S~C&S~C(. (5)
A contractorC is minimal if for any other contracto€;, we have the following implication
C~C =CCC. (6)
We define thenegation—C of a contractorC as follows
“C(X) ={xe ] [x¢C(x]}- ™)
Note that—C ([x]) is not a box in general, but a union of boxes.
B. Separators
A separatorsS is pair of contractord S™, S°'} such that, for allx] € IR", we have
SM([x]) US([x]) = [x]  (complementarity). (8)
A setS is consistentwith the separatos (we will write S ~ ), if
S ~ 8% andS ~ S™. 9)
whereS = {x | x ¢ S}. We define theemainderof a separatoS as
0S([x]) = S"([x]) N S*([x]). (10)

Note that the remainder is a contractor and not a separator.

Example. Figure 1 represents a s&f an outer contracta°", an inner contracto§" and a boundary contractéxS. The
pair {S™, S°!} corresponds to a separator associated Witfpainted grey on the figure). Note th&t" is only allowed to
eliminate the part of the research space which is inSigenereasS°" only eliminates the part which is outside i.e.,

{ S"(xHNS = [x|NS
SM(x))nS = [x]NS.
For a given boxx], it is trivial to show that-S"([x]), —~S°([x]) anddS([x]) cover [x], i.e.,
~S™([x]) U ~8°([x)) U 9S ([x]) = [] (11)

Moreover, they do not overlap each other. By applying the Oeddn rule on the complementarity property (8), we get that
-S"([x]) N =S°“([x]) = (. The action of a separator will thus be depicted using th6"[ —~S°“ AS) representation as
illustrated by Figure 2. But, for simplicity, the computats will be done using as{", S°“) representation.

Consider twoseparatorsS; andS». We define the inclusion between separators as follows

S C Sy & S SMand S ¢ St (12)
1 2 1 2

A separatofS is minimal if
S$1CS=86=S. (13)

It is trivial to check thatS is minimal if and only if the two contractorS™ and S°U are both minimal.
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Fig. 1. A separatofS™", S°U} is a pair of two contractors.
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Fig. 2. |lllustration of a separator. The light (resp. dark@ygarea corresponds to the part of the initial box that isiekited byS°" (resp.S™M).

C. Paver

A paveris a branch-and-bound algorithm which calls the sepaidittw classify part of the search space inside or outside
the solution seK associated witks. The algorithm is given in the table below. Step 1 initiadizelist £ containing all boxes
to be studied. Step 2 takes one bak in £. At Step 3, the separataf is then called to contradi] into two boxes[x'™"]
and [x°“]. Step 4 storesxS"([x]), the part of[x] that is proved to be insid¥, into X~ and also intaX*. Step 5 computes
0S([x]) by intersecting[x®"] and [x™"]. If this box is too small (i.e. with a width smaller thag), it is store insideX* and
will not be studied anymore. Otherwise, it is bisected apSteand stored intaC waiting to be processed. After completion
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Fig. 3. Simplication of the paving generated by the paleft: before simplication, right: after.

of the algorithm, we have the enclosi¥e c X c X+.
Algorithm Paver(in: [x],S; out: X—, XT)

L= {[x]};

PuII [x] from £;

{ [ oul]} S -
Store[ 1\[x"] mto X " and also intaX*;

[x] = X" [x°;

If w([x]) < ¢, then storgx] in X,
Else bisecfx]| and push intaC the two resulting boxes
If £L#0, goto 2.

Remark. For the implementation, the resulting paving can be remres! by a binary tree (i.e., each node has two sons or
it is a leaf). The binary tree is said to lpeinimal if for any nodei; (not the root) with brothei; and fatherj, we have

(I) [ m](Zl 7é (D OUI] Zl 7é® ) (14)
(i) [x"](5) °“‘] = ([ (1) N [x*9(i1)) L ("] (32) N [x*(42))

wherell denotes thénterval hull (i.e., the smallest box which encloses the union). From argtvee generated by the paver,
it is possible to simplify it into an minimal tree without ainging the approximation foK. This simplification can be done
by scanning all nodes of the tree upward from the leaves tadbe If for a given node, properties (i) or (ii) of (14) is not
satisfied, then the two brother nodisi, with the father; are reunited into a single node. The procedure has a complexi
which is linear with respect to the number of nodes of the. thewill allow us to drastically reduce the number of elensent
of the subpaving. An illustration is provided on Figure 3.

CONO U WNPEF

Ill. ALGEBRA

The algebra for separators is a direct extension of coatradgebra [5]. The main difference is that contractor algetpes
not allow any non monotonic (or decreasing) operation. lamsethat if a contractaf is defined by an expressidghof other
contractors; then we always have

vz',cicc;:»5(01,02,...)cg(c;,c;,...). (15)

As a consequence the complementdrpf a contractorC or the restrictionC;\C, of two contractorsC;,Co (which both
correspond to non monotonic operations) cannot be defirfegl nTain advantage of separators is that it extends the apesat
allowed for contractors to non monotonic expressions. Iseshaw define some operations for separato& K {S‘“,SO‘“} is

a separator, we define tltemplements

S={sMs"}. (16)
We define theexponentiatiorof a separatoS = {S"‘,S"”‘} by induction as follows:
S0 ={T,T}
Sk:+1 — {—\Sk outu (Sin o ask)7_‘8k in Ll (Souto ask)} (17)
The negation- is defined by (7), and™ is the identity contractor (i.eT ([x]) = [x]). Note that

St — { —\(SO)OUtI_ISm o ((SO)?n n (SO)OL“)7
_‘(SO)in L] Sout o ((SO)m n (SO)OUt) }
= {(~TUS"oTNT),-TUSMoTNT)}
_ {Sin,SOUt)} - S.
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The role of the exponentiation is to produce more efficieplasators by using fixed point methods.Sf = {SQ”,S,?“‘} ;1 €

{1,2,...,m} arem separators, we define

SiNS, = {SPush, sptn S (intersection)
SIUS, = [Shnsh, souy sou (union)

{a} {m—g-1}  {g}

Ns = [ SMh()S™p (relaxed intersection)
SI\S: = S1NSs. (difference)

(18)

The g-relaxed intersection [17] ofn sets corresponds to the set of all elements which belongs leastm — g of these
sets. It is used for robust bounded-error estimation [G],/doalization [21], for probabilistic estimation [18] ooff certified

calibration of robots [9].
Theorem 1. If S; arem sets ofR", we have

i) SiNS; ~ §NSs

(i) S1USy ~ SUS

(iii) S o~ S

(iv) S; ~ Sk E>0
{q} {q}

) ﬂ Si o~ ﬂ Si

(VI) Sl\SQ ~ 51\82.
Proof. Let us prove property (i). We have

Sy ~ {8, 8%} and Sy ~ {Sin, S9ut}

Sl ~ Sf“t, S_l ~ Si1n7S2 ~ ng, S_z ~ i2n
S1 NSy ~SMNSM S, US, ~SPuUSH
S1 NSy ~SMNSM S, NSy ~SNuShH
S1 NSy ~ {SMNUSH, SN S}

S1 NS ~851NSe

The proof of other all other properties are similar

Tt LO

(see 9)

(see [5])
(De Morgan)
(see (9)
(see 18)

(19)

IV. INVERSION OF SEPARATORS
The inverse of a séf C R™ by a functionf : R — R™ is defined as

X=f1(Y)={x|f(x) € Y}.

(20)

The functionf can be a translation, rotation, homothety, projection, my ather function. IfCy is a contractor forY, a
contractorCx for X can be defined using a generalization of the forward-baakwantractor as shown in [3]. The contractor
Cx is called the inverse afy by f and we writeCx = f=1 (Cy). If Sy is a separator associated with a ¥etwe define the

inverse of the separatdy as follows _
£1 (Sy) = {£71(SP), £ (¥}

Theorem 2. The separatof ! (Sy) is a separator associated with the Xet f~! (Y), i.e.,

£7H(Y) ~ 71 (Sy).

Proof. We have )
¥~ (S, Sp)

& Y~SHM Y~ Sh

= EL(Y) ~ £SO, £ () ~ £1(ST)
& £7H(Y) ~ ETHSP), £ (Y) ~ £71(SY)
& £ (Y) ~ {F1(SE) £ (S

o FL(Y) ~ L (Sy)

which terminates the prooll
Example. Consider the following function

(see 9)
(see [3])

(see (9))
(see 22)

(21)

(22)

(23)

(24)
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Here, the function is linear, but it is not required by the noet The separatgf—! (Sy) corresponds to the following algorithm.

Separator Sx(in: [x], Sy; out: {[x"], [x°]})
[y] = [21] + 2[z2];

y" =8P (WD) [ = Sg (WD) s

X" = [x]; [x*] = [x];

7] = [27] N [y"] - 2[8);

] = [2§] 0 5 ([y"] = [21]) ;

29 = [234] 0 [y™] — 2[28");

[284] = [28"] 0 5 ([y*™] — [28"9) .

The inputs of the algorithm are the bdx] and the separatay. Steps 1 corresponds to the forward propagation and
computes an intervdly]. At Step 2, the separatdy contracts[y| twice with respect to the inner and the outer contractors
associated withY. Step 3 initializes the boxes to be returned by the algoritBteps 4 and 5 correspond to the backward
propagation associated with Step 1 frép'] toward [x"]. Step 6 and 7 are also associated with Step 1 but now fySHj
toward [x°". Note that here, we have only one forward propagation (Syegnd two backward propagations (Step 4 to 7).
Using a classical contractor technique, two forward pratiags would have been needed: one for the inner contraotbr a
one for the outer contractor. Note also that we could haveglesbackward propagation by limiting the backward progiaga
to the boundary bofdy] = [y"]N [y°“]. Now, it remains to rebuild the two boxés™], [x°“] from the unique boXdx] that
has been obtained after the backward propagation.

NooagbhwNE

V. ATOMIC SEPARATORS

Complex separators are built from operations and compasitf atomic separators. Two different types of atomic Ise¢pes
can be built: those that are associated with a mathematigedtion and those that are associated with a database.

A. Equation-based separators

A typical situation where we can take advantage of contraetchniques is when we want to built a separator associated
with a set defined by a mathematical expression. For instahce

X ={f(x) <0}, (25)

we can easily build a contracté’"" associated with the constraifi{x) < 0 and a contractof™ associated with the constraint
f(x) > 0. The pair{S™, S°} is then a separator associated with

B. Database-based separators

A contractor represents an information. This informati@am de an equation or an inequality, but it can also come from
a database (for instance it can be the map of the surroundivigpement or the shape of an object). In this situation,
it is often more convenient to represent the correspondetgby its boundary. We now show on an example that the
boundary representation may help to build minimal sepesatbhe principle can be interpreted as the separator eatens
of the map_contractalgorithm [32], [13], [10] that has been developed for caotors. Figure 4 represents a map (painted
gray). The corresponding s&f corresponding to the free space is painted gray. On subfig)rea box[x] is waiting for
contractions. Denote bgx; the segments and arcs that make up the bounglsryf M. Since the union of minimal contractors
is minimal (see [31], Section 4.6.3), the minimal contradty oM is

08 ([x]) = || n A, (26)
where [[x] N A;] is the smallest box enclosing] N A;. Subfigure (b) represents the boxXgsl N A;] and the hull of these
boxes are on Subfigure (c). As a consequence, as illustrgteditifigure (d), we get the minimal separator by testing two
points (for instance the two corners [f] represented on Subfigure (c)) that have been eliminate@Sby

Remark. If we use a pure contractor approach to comiite[x]) andS°! ([x]) by taking into account that the correspond-
ing setS can be defined by inequalities, the approximation will beyygoor. It is also possible to build specific contractors
focusing on the boundary but the computation of the bounitdeysecting[x] will have to be performed twice: once fe"
and once forS°U, Contrary to a contractors, a separator approach condiaers large part of the computation made &y
and S°“ are identical and should be factorizel
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dS([x]) S*([x]
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©) (d) S(x]

Fig. 4. The minimal separator associated with a map (paigtay) can be obtain using the contractor associated wittbdlumdary of this map.

VI. APPLICATION TO PATH PLANNING

The goal of path planning is to find a collision-free path forohot in a given space with obstacles. The issue of path
planning in a known environment has been addressed sincg yeans (seee.g.,[22] [24] [27] [19]) and can easily be
combined with set-membership techniques to take into atcsome uncertainties [2]. Most approaches are based on the
concept of configuration spac€-{pace. Each coordinate of the C-space represents a degree dbfreef the object. An
example of such robots are industrial robots which are katenthains in which adjacent links are connected:byrismatic
or rotary joints, each with one degree of freedom. The pwsitiand orientations of each link of the industrial robot ban
characterized by real numbers, which are the coordinates of a singtlimensional point in the C-space [25]. Theasible
configuration spacéM is the subset of the C-space corresponding to feasible cmafigns of the robot. Partitioning the
C-space with subpavings makes it possible to solve the @mohising graph algorithms [1], [15]. The objective of thist&m
is to show how separators could solve the path planning @nolan a simple example which is a 2D version of the wire loop
game. This game involves a metal loop on a handle and a lerigtbreed wire (see Figure 5). The player holds the loop
in one hand and attempts to guide it along the curved wireowittiouching the loop to the wire. In our 2D version of this
game the player is an articulated robot with two rotary mianhd the loop is a segment. The curved wire corresponds to the
boundary a sel with an inside (grey in the figure) and an outside part. Thegtlerf the first and second arms are 4 and 2,
respectively. The length of the loop is 1. The feasible caméition space is

M = {(a1,22) | f2(x) € Y andfs (x) ¢ ¥} = £ (V) n £ (T).

fg(x)4<cosxl >+€<cos(x1+x2))7 v (2,3}, 27)

sin 21 sin (1 + x2)

where

If Sy is a separator associated with(built as explained in Section V-B), then a separatorl¥biis
Sy =" (Sy)nfyt (Sy). (28)

The paver is able to approximate the feasible configuratate as illustrated by Figure 6. A graph-based method is able
to compute a feasible path (see the black path of the figur@hadorresponds to a solution of our wire loop game. The
minimality of the resulting subpaving is illustrated by tfet that each patch of the subpaving intersects the boymadahe
solution set. The corresponding motion in the world spaagef@icted on Figure 7.

Remark. For our example, the set to be characterized is giveiviby f{l (Y) mf;1 (Y) and the separator is obtained by
the same expressiafiy; = £ L(Sy)n fs ! SY) . If we separate this expression we get the contractor cquanter

Sip = £5(SP) U5 (S
S = £ (S N E(SH).
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Fig. 5. Two-dimensional wire loop game. For a feasible camtigon (z1, z2), as represented here, the gray segment should cross thelsivirgossible
to perform to complete feasible circular path?

Fig. 6. Approximation of the feasible configuration spacepath, corresponding to one solution of the wire loop gamegjsesented.

The separator formalism thus makes it possible get dir¢lotlyseparator from the expression of the set we want to diesize
This was not possible using contractor algebra which doealtmv any decreasing operation. With contractors, the has to
rewrite the complementary expression. Moreover, the sémaalgebra requires less computation since a part of themum
computation that is made fa&#} and S%" is factorizedli

VII. CONCLUSION

Contractor algebra is an efficient tool to compute with stdosd R™. To compute the union, the intersection or any
other monotonic operations between sets, it suffices toyappl same operations on the contractors. Then, a paver igth t
corresponding contractor will provide a guaranteed agpration of the solution set. Now, due the external repredint
of sets they have, contractors cannot deal with decreagdegations such as the complement or the set difference. The
main contribution of this paper is the introduction s#paratorswhich is a pair of two complementary contractors. Since the
complementary operator or any other decreasing operatgonayv available, this contribution allows us to computehwgiets in
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Fig. 7. Path of the robot in the world frame

a much more general way. The application to robotics is timesoon as we want to compute inner and outer approximations
of the solution set. As an illustration, we have considergdth planning problem where the inner and the outer appietidms
of the feasible configuration space are needed to find a fegsitth.

All C++ codes associated with the test-case can be foundvat enst a- br et agne. fr/j aul i n/ seppat h. ht m .
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