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Abstract

Contractor algebra is a numerical tool based on interval analysis which makes it possible to solve many nonlinear problems
arising in robotics, such as identification, path planning or robust control. This paper presents the new notion ofseparatorswhich
is a pair of complementary contractors and presents the corresponding algebra. Using the separator algebra inside a paver will
allow us to get an inner and an outer approximation of the solution set in a much simpler way than using any other interval
approach. A path planning problem will then be considered inorder to illustrate the principle of the approach.
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I. I NTRODUCTION

Many problems in engineering amount to characterizing a setof Rn defined by constraints (see [35] for a general introduction
to set-membership approaches). For instance, the solutionset may correspond (i) to the set of all parameters that are consistent
with a some interval measurements [23] [11] [20] [12] [4], (ii) to the set of all configuration vectors such that robot doesnot
meet any obstacles [28] [15], (iii) to the set of all parameter vectors of a controller such that the closed loop system is stable
[36] [8], (iv) to set all calibration parameters [7] [29], (v) to attractors of dynamical systems [34],. . . More formally, the
problem to be considered in this paper is to bracket a setX defined by constraints between two setsX− andX+ such that

X
− ⊂ X ⊂ X+. (1)

The setX is assumed to be defined as combinations of atomic sets. Theseatomic sets may correspond to sets defined by any
nonlinear inequalities or geometric sets such as a map. To compute such an approximation ofX, two main classes of approaches
are considered: symbolic and numerical. The symbolic approach provides a set of methods based on computer algebra that are
guaranteed, efficient, but limited to polynomial problems.The numerical approaches are mainly composed with linear methods
(for which linear algebra can be used, see,e.g., [30]), convex methods (such as those based on semidefinite programming
[14]), Monte-Carlo methods (which can be used for a large class of nonlinear problems [33]) and interval methods [26] [16]
which provide algorithms to compute inner and outer subpavings (i.e., union of non overlapping boxes) to approximateX. The
principle of interval methods is similar to Monte Carlo except that they compute with boxes (thanks to interval arithmetic [26])
instead of points, so they can guarantee that all the search space has been covered. Interval methods can thus deal with a large
class of non-linear problems (larger than for semidefinite or symbolic methods) in a guaranteed way (contrary to Monte-Carlo).
The main drawbacks of interval methods is the high complexity with respect to the number of unknown variables and the
lack of tools/softwares that make it possible to implement efficiently an interval resolution dedicated to a nonlinear problem.
In order to allow a resolution of high dimensional problems and to facilitate the implementation of efficient interval methods,
the notion of contractor [5] has recently been introduced. Acontractor is an operator which is able to contract boxes without
removing any solution. Contractor-based techniques [5] combined with a paver (i.e., a bisection algorithm which partitions the
research space with boxes) can provide an outer subpaving approximationX+ of X in an efficient way. For the inner subpaving
X−, theDe Morganrules can be used to express the complementary setX of X. Then basic contractor techniques can be used
to get an inner characterizationX−. Now, the task is not so easy and has never been made automatic. The contribution of
this paper is to introduce a new mathematical object, namedseparator,which is composed of two complementary contractors:
an inner contractor and an outer contractor. These two contractors are computed together by focusing on the boundary ofX.
An algebra, similar to the algebra developed for contractors [5], will then be developed for these separators. This willmake
it possible to easily build separators associated with complex setsX. Combined with a paver, separators will then be able to
bracketX between the two subpavingsX− andX+, in an easy way and without asking the programmer to build both the inner
and the outer contractors.

The paper is organized as follows. Section II defines separators and shows how they can be used inside a paver to
characterize subsets ofRn. Section III explains how to extend all basic operations on sets (such as union, intersection,
difference, complementary) to separators. The inversion of separators through a vector function is treated in SectionIV.
Section V presents how atomic separators can be defined. Morecomplex separators will be obtained by compositions of these
atomic separators. An application related to path planningis considered in Section VI. Section VII concludes the paper.
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II. SEPARATORS

In this section, we first present the notion of contractors [16] that will be needed to define separators. Then, we show how
separators can be used by a paver in order to bracket the solution setX between two subpavingsX− andX+.

A. Contractors

An interval of R is a closed connected set ofR. A box [x] of Rn is the Cartesian product ofn intervals. The set of all
boxes ofRn is denoted byIRn. A contractorC is an operatorIRn �→ IR

n such that

C([x]) ⊂ [x] (contractance)
[x] ⊂ [y] ⇒ C([x]) ⊂ C([y]) (monotonicity)

(2)

We define the inclusion between two contractorsC1 andC2 as follows

C1 ⊂ C2 ⇔ ∀ [x] ∈ IRn, C1([x]) ⊂ C2([x]). (3)

A set S is consistentwith the contractorC (we will write S ∼ C) if for all [x], we have

C([x]) ∩ S = [x] ∩ S. (4)

Two contractorsC andC1 areconsistenteach other (we will writeC ∼ C1) if for any setS, we have

S ∼ C ⇔ S ∼ C1. (5)

A contractorC is minimal if for any other contractorC1, we have the following implication

C ∼ C1 ⇒ C ⊂ C1. (6)

We define thenegation¬C of a contractorC as follows

¬C ([x]) = {x ∈ [x] | x /∈ C ([x])} . (7)

Note that¬C ([x]) is not a box in general, but a union of boxes.

B. Separators

A separatorS is pair of contractors
�
S in,Sout

�
such that, for all[x] ∈ IRn, we have

S in([x]) ∪ Sout([x]) = [x] (complementarity). (8)

A set S is consistentwith the separatorS (we will write S ∼ S), if

S ∼ Sout andS ∼ S in. (9)

whereS = {x | x /∈ S}. We define theremainderof a separatorS as

∂S([x]) = S in([x]) ∩ Sout([x]). (10)

Note that the remainder is a contractor and not a separator.
Example. Figure 1 represents a setS, an outer contractorSout, an inner contractorS in and a boundary contractor∂S. The

pair {S in,Sout} corresponds to a separator associated withS (painted grey on the figure). Note thatS in is only allowed to
eliminate the part of the research space which is insideS whereasSout only eliminates the part which is outsideS, i.e.,

�
S in ([x]) ∩ S = [x] ∩ S
Sout ([x]) ∩ S = [x] ∩ S.

For a given box[x], it is trivial to show that¬S in([x]), ¬Sout([x]) and∂S([x]) cover [x], i.e.,

¬S in([x]) ∪ ¬Sout([x]) ∪ ∂S([x]) = [x] . (11)

Moreover, they do not overlap each other. By applying the De Morgan rule on the complementarity property (8), we get that
¬S in([x]) ∩ ¬Sout([x]) = ∅. The action of a separator will thus be depicted using the (¬S in, ¬Sout, ∂S) representation as
illustrated by Figure 2. But, for simplicity, the computations will be done using a (S in,Sout) representation.

Consider twoseparatorsS1 andS2. We define the inclusion between separators as follows

S1 ⊂ S2 ⇔ S in
1 ⊂ S

in
2 andSout

1 ⊂ Sout
2 . (12)

A separatorS is minimal if
S1 ⊂ S ⇒ S1 = S. (13)

It is trivial to check thatS is minimal if and only if the two contractorsS in andSout are both minimal.
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Fig. 1. A separator{S in,Sout} is a pair of two contractors.

Fig. 2. Illustration of a separator. The light (resp. dark) grey area corresponds to the part of the initial box that is eliminated bySout (resp.S in).

C. Paver

A paver is a branch-and-bound algorithm which calls the separatorS to classify part of the search space inside or outside
the solution setX associated withS. The algorithm is given in the table below. Step 1 initializes a listL containing all boxes
to be studied. Step 2 takes one box[x] in L. At Step 3, the separatorS is then called to contract[x] into two boxes[xin]
and [xout]. Step 4 stores¬S in([x]), the part of[x] that is proved to be insideX, into X− and also intoX+. Step 5 computes
∂S([x]) by intersecting[xout] and [xin]. If this box is too small (i.e. with a width smaller thanε), it is store insideX+ and
will not be studied anymore. Otherwise, it is bisected at Step 7 and stored intoL waiting to be processed. After completion
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Fig. 3. Simplication of the paving generated by the paver; left: before simplication, right: after.

of the algorithm, we have the enclosureX− ⊂ X ⊂ X+.

Algorithm PAVER(in: [x],S; out: X−, X+)
1 L := {[x]} ;
2 Pull [x] from L;
3

�
[xin], [xout]

�
= S([x]);

4 Store[x] \[xin] into X− and also intoX+;
5 [x] = [xin] ∩ [xout];
6 If w([x]) < ε, then store[x] in X+,
7 Else bisect[x] and push intoL the two resulting boxes
8 If L �= ∅, go to 2.

Remark. For the implementation, the resulting paving can be represented by a binary tree (i.e., each node has two sons or
it is a leaf). The binary tree is said to beminimal if for any nodei1 (not the root) with brotheri2 and fatherj, we have

�
(i) [xin](i1) �= ∅, [xout](i1) �= ∅
(ii) [xin](j) ∩ [xout](j) =

�
[xin](i1) ∩ [x

out](i1)
�
⊔
�
[xin](i2) ∩ [x

out](i2)
� (14)

where⊔ denotes theinterval hull (i.e., the smallest box which encloses the union). From a given tree generated by the paver,
it is possible to simplify it into an minimal tree without changing the approximation forX. This simplification can be done
by scanning all nodes of the tree upward from the leaves to theroot. If for a given node, properties (i) or (ii) of (14) is not
satisfied, then the two brother nodesi1, i2 with the fatherj are reunited into a single node. The procedure has a complexity
which is linear with respect to the number of nodes of the tree. It will allow us to drastically reduce the number of elements
of the subpaving. An illustration is provided on Figure 3.

III. A LGEBRA

The algebra for separators is a direct extension of contractor algebra [5]. The main difference is that contractor algebra does
not allow any non monotonic (or decreasing) operation. It means that if a contractorC is defined by an expressionE of other
contractorsCi then we always have

∀i,Ci ⊂ C
′

i ⇒ E (C1, C2, . . . ) ⊂ E
�
C
′

1, C
′

2, . . .
�
. (15)

As a consequence the complementaryC of a contractorC or the restrictionC1\C2 of two contractorsC1, C2 (which both
correspond to non monotonic operations) cannot be defined. The main advantage of separators is that it extends the operations
allowed for contractors to non monotonic expressions. Let us now define some operations for separator. IfS =

�
S in,Sout

�
is

a separator, we define thecomplementas
S =

�
Sout,S in

�
. (16)

We define theexponentiationof a separatorS =
�
S in,Sout

�
by induction as follows:

S0 = {⊤,⊤}
Sk+1 =

�
¬Sk out⊔ (S in ◦ ∂Sk),¬Sk in ⊔ (Sout ◦ ∂Sk)

�
.

(17)

The negation¬ is defined by (7), and⊤ is the identity contractor (i.e.⊤ ([x]) = [x]). Note that

S1 = { ¬(S0)out⊔ S in ◦ (
�
S0
�in
∩
�
S0
�out
),

¬(S0)in ⊔ Sout ◦ (
�
S0
�in
∩
�
S0
�out
) }

=
�
¬⊤ ⊔ S in ◦ ⊤ ∩⊤),¬⊤ ⊔ Sout ◦ ⊤ ∩⊤)

�

=
�
S in,Sout)

�
= S.
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The role of the exponentiation is to produce more efficient separators by using fixed point methods. IfSi =
�
S in
i ,S

out
i

�
, i ∈

{1, 2, . . . ,m} arem separators, we define

S1 ∩ S2 =
�
S in
1 ∪ S

in
2 ,S

out
1 ∩ Sout

2

�
(intersection)

S1 ∪ S2 =
�
S in
1 ∩ S

in
2 ,S

out
1 ∪ Sout

2

�
(union)

{q}�
Si =






{m−q−1}�
S in
i ,

{q}�
Sout
i





(relaxed intersection)

S1\S2 = S1 ∩ S2. (difference)

(18)

The q-relaxed intersection [17] ofm sets corresponds to the set of all elements which belongs to at leastm − q of these
sets. It is used for robust bounded-error estimation [6], for localization [21], for probabilistic estimation [18] or for certified
calibration of robots [9].

Theorem 1. If Si arem sets ofRn, we have

(i) S1 ∩ S2 ∼ S1 ∩ S2
(ii) S1 ∪ S2 ∼ S1 ∪ S2
(iii) Si ∼ Si
(iv) Si ∼ Ski , k ≥ 0

(v)
{q}�
Si ∼

{q}�
Si

(vi) S1\S2 ∼ S1\S2.

(19)

Proof. Let us prove property (i). We have

S1 ∼ {S in
1 ,S

out
1 } andS2 ∼ {S in

2 ,S
out
2 }

⇔ S1 ∼ Sout
1 , S1 ∼ S

in
1 ,S2 ∼ S

out
2 , S2 ∼ S

in
2 (see 9)

⇒ S1 ∩ S2 ∼ S
out
1 ∩ Sout

2 , S1 ∪ S2 ∼ S
in
1 ∪ S

in
2 (see [5])

⇔ S1 ∩ S2 ∼ S
out
1 ∩ Sout

2 , S1 ∩ S2 ∼ S
in
1 ∪ S

in
2 (De Morgan)

⇔ S1 ∩ S2 ∼
�
S in
1 ∪ S

in
2 ,S

out
1 ∩ Sout

2

�
(see (9))

⇔ S1 ∩ S2 ∼ S1 ∩ S2 (see 18)

The proof of other all other properties are similar. �

IV. I NVERSION OF SEPARATORS

The inverse of a setY ⊂ Rn by a functionf : Rn → Rm is defined as

X = f−1 (Y) = {x | f (x) ∈ Y} . (20)

The functionf can be a translation, rotation, homothety, projection, or any other function. IfCY is a contractor forY, a
contractorCX for X can be defined using a generalization of the forward-backward contractor as shown in [3]. The contractor
CX is called the inverse ofCY by f and we writeCX = f−1 (CY). If SY is a separator associated with a setY, we define the
inverse of the separatorSY as follows

f−1 (SY) =
�
f−1(S in

Y ), f
−1(Sout

Y )
�
. (21)

Theorem 2. The separatorf−1 (SY) is a separator associated with the setX = f−1 (Y), i.e.,

f−1 (Y) ∼ f−1 (SY) . (22)

Proof. We have
Y ∼ {S in

Y
,Sout
Y
}

⇔ Y ∼ Sout
Y
, Y ∼ S in

Y
(see 9)

⇒ f−1 (Y) ∼ f−1(Sout
Y
), f−1

�
Y
�
∼ f−1(S in

Y
) (see [3])

⇔ f−1 (Y) ∼ f−1(Sout
Y
), f−1 (Y) ∼ f−1(S in

Y
)

⇔ f−1 (Y) ∼
�
f−1(S in

Y
), f−1(Sout

Y
)
�

(see (9))
⇔ f−1 (Y) ∼ f−1 (SY) (see 22)

(23)

which terminates the proof.�
Example. Consider the following function

f (x1, x2) = x1 + 2x2. (24)
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Here, the function is linear, but it is not required by the method. The separatorf−1 (SY) corresponds to the following algorithm.

Separator SX(in: [x] ,SY; out: {[xin], [xout]})
1 [y] = [x1] + 2[x2];
2 [yin] = S in

Y
([y]) ; [yout] = Sout

Y
([y]) ;

3 [xin] = [x]; [xout] = [x];
4 [xin

1 ] = [x
in
1 ] ∩ [y

in]− 2[xin
2 ];

5 [xin
2 ] = [x

in
2 ] ∩

1

2

�
[yin]− [xin

1 ]
�
;

6 [xout
1 ] = [x

out
1 ] ∩ [y

out]− 2[xout
2 ];

7 [xout
2 ] = [x

out
2 ] ∩

1

2
([yout]− [xout

1 ]) .

The inputs of the algorithm are the box[x] and the separatorSY. Steps 1 corresponds to the forward propagation and
computes an interval[y]. At Step 2, the separatorSY contracts[y] twice with respect to the inner and the outer contractors
associated withY. Step 3 initializes the boxes to be returned by the algorithm. Steps 4 and 5 correspond to the backward
propagation associated with Step 1 from[yin] toward [xin]. Step 6 and 7 are also associated with Step 1 but now from[yout]
toward [xout]. Note that here, we have only one forward propagation (Step 1) and two backward propagations (Step 4 to 7).
Using a classical contractor technique, two forward propagations would have been needed: one for the inner contractor and
one for the outer contractor. Note also that we could have a single backward propagation by limiting the backward propagation
to the boundary box[∂y] = [yin]∩ [yout]. Now, it remains to rebuild the two boxes[xin], [xout] from the unique box[∂x] that
has been obtained after the backward propagation.

V. ATOMIC SEPARATORS

Complex separators are built from operations and compositions of atomic separators. Two different types of atomic separators
can be built: those that are associated with a mathematical equation and those that are associated with a database.

A. Equation-based separators

A typical situation where we can take advantage of contractor techniques is when we want to built a separator associated
with a set defined by a mathematical expression. For instance, if

X = {f (x) ≤ 0} , (25)

we can easily build a contractorSout associated with the constraintf (x) ≤ 0 and a contractorS in associated with the constraint
f (x) ≥ 0. The pair

�
S in,Sout

�
is then a separator associated withX.

B. Database-based separators

A contractor represents an information. This information can be an equation or an inequality, but it can also come from
a database (for instance it can be the map of the surrounding environment or the shape of an object). In this situation,
it is often more convenient to represent the corresponding set by its boundary. We now show on an example that the
boundary representation may help to build minimal separators. The principle can be interpreted as the separator extension
of the map_contractalgorithm [32], [13], [10] that has been developed for contractors. Figure 4 represents a map (painted
gray). The corresponding setM corresponding to the free space is painted gray. On subfigure(a), a box[x] is waiting for
contractions. Denote by∆i the segments and arcs that make up the boundary∂M of M. Since the union of minimal contractors
is minimal (see [31], Section 4.6.3), the minimal contractor for ∂M is

∂S ([x]) =
�

i

[[x] ∩∆i] , (26)

where [[x] ∩∆i] is the smallest box enclosing[x] ∩ ∆i. Subfigure (b) represents the boxes[[x] ∩∆i] and the hull of these
boxes are on Subfigure (c). As a consequence, as illustrated by subfigure (d), we get the minimal separator by testing two
points (for instance the two corners of[x] represented on Subfigure (c)) that have been eliminated by∂S.

Remark. If we use a pure contractor approach to computeS in ([x]) andSout ([x]) by taking into account that the correspond-
ing setS can be defined by inequalities, the approximation will be very poor. It is also possible to build specific contractors
focusing on the boundary but the computation of the boundaryintersecting[x] will have to be performed twice: once forS in

and once forSout. Contrary to a contractors, a separator approach considersthat a large part of the computation made byS in

andSout are identical and should be factorized.�
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Fig. 4. The minimal separator associated with a map (paintedgray) can be obtain using the contractor associated with theboundary of this map.

VI. A PPLICATION TO PATH PLANNING

The goal of path planning is to find a collision-free path for arobot in a given space with obstacles. The issue of path
planning in a known environment has been addressed since many years (see,e.g., [22] [24] [27] [19]) and can easily be
combined with set-membership techniques to take into account some uncertainties [2]. Most approaches are based on the
concept of configuration space (C-space). Each coordinate of the C-space represents a degree of freedom of the object. An
example of such robots are industrial robots which are kinematic chains in which adjacent links are connected byn prismatic
or rotary joints, each with one degree of freedom. The positions and orientations of each link of the industrial robot canbe
characterized byn real numbers, which are the coordinates of a singlen-dimensional point in the C-space [25]. Thefeasible
configuration spaceM is the subset of the C-space corresponding to feasible configurations of the robot. Partitioning the
C-space with subpavings makes it possible to solve the problem using graph algorithms [1], [15]. The objective of this section
is to show how separators could solve the path planning problem on a simple example which is a 2D version of the wire loop
game. This game involves a metal loop on a handle and a length of curved wire (see Figure 5). The player holds the loop
in one hand and attempts to guide it along the curved wire without touching the loop to the wire. In our 2D version of this
game the player is an articulated robot with two rotary joints and the loop is a segment. The curved wire corresponds to the
boundary a setY with an inside (grey in the figure) and an outside part. The length of the first and second arms are 4 and 2,
respectively. The length of the loop is 1. The feasible configuration space is

M = {(x1, x2) | f2 (x) ∈ Y and f3 (x) /∈ Y} = f
−1
2 (Y) ∩ f−13

�
Y
�
,

where

fℓ (x) = 4

�
cosx1
sinx1

�
+ ℓ

�
cos (x1 + x2)
sin (x1 + x2)

�
, ℓ ∈ {2, 3} . (27)

If SY is a separator associated withY (built as explained in Section V-B), then a separator forM is

SM = f
−1
2 (SY) ∩ f

−1
3

�
SY
�
. (28)

The paver is able to approximate the feasible configuration space as illustrated by Figure 6. A graph-based method is able
to compute a feasible path (see the black path of the figure) which corresponds to a solution of our wire loop game. The
minimality of the resulting subpaving is illustrated by thefact that each patch of the subpaving intersects the boundary of the
solution set. The corresponding motion in the world space isdepicted on Figure 7.

Remark. For our example, the set to be characterized is given byM = f−12 (Y)∩ f−13
�
Y
�

and the separator is obtained by
the same expressionSM = f

−1
2 (SY) ∩ f

−1
3

�
SY
�
. If we separate this expression we get the contractor counterpart

�
S in
M

= f−12 (S in
Y
) ∪ f−13 (Sout

Y
)

Sout
M

= f−12 (Sout
Y
) ∩ f−13 (S in

Y
).
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Fig. 5. Two-dimensional wire loop game. For a feasible configuration (x1, x2), as represented here, the gray segment should cross the wire. Is it possible
to perform to complete feasible circular path?

Fig. 6. Approximation of the feasible configuration space. Apath, corresponding to one solution of the wire loop game, isrepresented.

The separator formalism thus makes it possible get directlythe separator from the expression of the set we want to characterize.
This was not possible using contractor algebra which does not allow any decreasing operation. With contractors, the user has to
rewrite the complementary expression. Moreover, the separator algebra requires less computation since a part of the common
computation that is made forS in

M
andSout

M
is factorized.�

VII. CONCLUSION

Contractor algebra is an efficient tool to compute with subsets of Rn. To compute the union, the intersection or any
other monotonic operations between sets, it suffices to apply the same operations on the contractors. Then, a paver with the
corresponding contractor will provide a guaranteed approximation of the solution set. Now, due the external representation
of sets they have, contractors cannot deal with decreasing operations such as the complement or the set difference. The
main contribution of this paper is the introduction ofseparatorswhich is a pair of two complementary contractors. Since the
complementary operator or any other decreasing operation are now available, this contribution allows us to compute with sets in
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Fig. 7. Path of the robot in the world frame

a much more general way. The application to robotics is direct as soon as we want to compute inner and outer approximations
of the solution set. As an illustration, we have considered apath planning problem where the inner and the outer approximations
of the feasible configuration space are needed to find a feasible path.

All C++ codes associated with the test-case can be found atwww.ensta-bretagne.fr/jaulin/seppath.html.
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