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Abstract—In the paper, we present a new interval-based set
inversion algorithm which takes into account the continuity of
the problem. In the case where the set Y to be inverted has
some volume, we show that inverting the boundary ∂Y of Y is
sufficient to reconstruct the preimage X = f−1(Y). The inversion
of ∂Y separates the domain of f into two regions : one inside
X and one outside. To detect which part is inside or outside, we
show that we can retro-propagate the information coming from
Y at negligible cost. The efficiency of the approach is illustrated
on a localization problem.

Index Terms—Interval analysis, Constraint propagation, Con-
tinuous domains, Set Inversion

I. INTRODUCTION

Notation. In this paper, a vector x of Rn and a vector-
valued function f will be written in bold font. An interval
[x] or an axis aligned box [x] will be written between
brackets. The image by f of a box [x] will be written as
f([x]) = {y|∃x ∈ [x],y = f(x)} .

Given a function f : Rn → Rm and a set Y ⊂ Rn. Set
inversion is the problem of characterizing the set X of all x
inside a prior domain X(0) ⊂ Rn such that f(x) ∈ Y. We
have

X = X(0) ∩ f−1(Y) = {x ∈ X(0) | f(x) ∈ Y} . (1)

Note that the function f is not necessarily invertible. For
instance if f(x) = x2, Y = [4, 16] and X(0) = [−5, 20] then

X = [−5, 20] ∩ f−1([4, 16])
= [−3, 20] ∩ ([−4,−2] ∪ [2, 4])
= [−3,−2] ∪ [2, 4]

(2)

Moreover, the solution set maybe empty. For instance, if
X(0) = [−1, 1] instead of [−5, 20] then

X = [−1, 1] ∩ f−1([4, 16]) = ∅. (3)

The set membership formalism is thus well suited to ill-posed
problems involving uncertainties.

It is used in many engineering domains such as localization
[8, 11], parameter estimation [17] [19], control [27], calibra-
tion [10], robotics [24], etc. Most guaranteed algorithms for set
inversion are based on interval constraint propagation methods
[25] [26]. They use a forward-backward contractor [1] [7]
such as the HC4-revise algorithm [3]. Now, contractors have
mainly be developed for solving equations [6] [23] or global
optimization [14] where the solution set is reduced to some
isolate points or surfaces and has no interior.

For set inversion, the solution set has an interior and
exterior. Existing contractors are not able to retro-propagate

properly the information coming from Y. This leads to a
poor outer approximation and unnecessary computations. It
is sometimes possible to use the complementary set Y to find
an inner approximation [5], but, a part of the work done for
contracting with respect to Y has to be repeated for Y, which
should be avoided.

In this paper, we propose to inverse the boundary ∂Y of
Y instead of inverting Y. Due to the fact that ∂Y ⊂ Y, the
corresponding contractor will more efficient. This inversion
will provide an outer approximation for the boundary ∂X
of the solution set X. For the parts of the search space
which are not in the boundary approximation, we need to
show either they are inside or outside X. We show that this
information can be obtained with almost no extra computation
cost by retro-propagating some binary information from Y. To
our knowledge, this is new in the community of constraint
propagation.

The paper is organized as follows. Section II recalls the
principle of set inversion algorithms and motivates the need
of a more powerful propagation and the use of the boundaries.
Section III presents in a new way, inspired from control theory,
to present the forward-backward propagation. Section IV gives
the boundary approach for set inversion which corresponds to
the main contribution of this paper. Section V proposes an
application to robot localization based on a Time Difference
Of Arrival (TDOA). Section VI concludes the paper.

II. MOTIVATION

Figure 1 illustrates the behavior of a typical contractor-
based algorithm [16] to characterize a set X (magenta). The
algorithm uses two types of contractors: a contractor CX for X
and a contractor CX for its complementary X. To characterize
the part of X which is inside a box [x0] the principle of the
algorithm is the following

1) We have a set of boxes (green in the picture) which have
to be studied. These green boxes are qualified as the new
boxes. They have been created by a bisection process.
At the initialization, we have a single new box: [x0].

2) We contract each new box [x] using the contractors CX
and CX. We get a box qualified as contracted (yellow in
the picture).

3) A contracted box which is judged as too small it not
bisected.

A zone that has been eliminated (or won) by a contractor is
called a win-zone. The magenta part at the right of [a] was
won by CX and the blue part at the left of [a] was won by CX.

We may observe the following properties:
1) The new boxes (green) are always obtained from a

bisection of a contracted box, except [x0]. For instance
boxes [b], [c] are obtained from [a].



2

2) Contracted boxes (yellow) are always obtained from the
contraction of a green box. For instance [d] = CX([b])
and [a] = CX ◦ CX([b])

3) The union of contracted boxes (yellow) encloses the part
of the boundary ∂X of X which is inside [x0]. Only
yellow boxes need to be memorized in the final paving,
with the initial green box [x0].

4) The contracted boxes form a binary tree. For instance
[a] has two sons: [d], [e].

5) If a win-zone is the difference of two boxes. For instance
[x0]\[a] is a disconnected win-zone with two colors, and
[b]\[d] has a single color with an L-shape.

6) In the 2D case, a win-zone may have the shape of an L,
a U, or an 0.

Fig. 1. A contractor-based paver to characterize a set

The main contributions of this paper are the following
1) For existing contractor-based algorithms, the contractors
CX and CX are called independently. We will show
that they could work in a collaborative manner by
considering the constraint associated to the boundary of
X. This makes the approach more efficient.

2) A boundary approach allows us to compute the boundary
of X but it remains to know which part of the search
space is inside or outside X. We will propose a new
method to propagate backward the information corre-
sponding to the color of the win-zone.

Figure 2, illustrates what we want to compute. We first
enclose ∂X inside the yellow boxes. The non-yellow zone
(or the win zone) has several connected components. Each
of these components is either inside X or outside. This status
corresponds to a binary information: the color (magenta: inside
or blue: outside). This color will be memorized in the faces
of the yellow boxes, as shows on Figure 2, right. If a face has
a given color, all other faces associated to the same connected
component have the same color. Moreover, if a yellow box has
two different colors, we know that it is crosses by the boundary
of the solution set. This property is interesting when we deal
with problems involving quantifiers. For instance, in Figure 2,
we know that ∀x2 ∈ [x2],∃x1 ∈ [x1], (x1, x2) ∈ ∂X.

The main difficulty remains to get the color of the yellow
faces, via a backward propagation. This will be explained

in the following section. Note that since it is impossible to
go from the inside of a set to the outside without crossing
its boundary, we observe in the picture that a magenta zone
(corresponding the inside) is always separated from the blue
(the outside) by a yellow zone (containing the boundary).

Fig. 2. The yellow boxes and the color faces correspond to what we want to
compute

III. FORWARD-BACKWARD CONTRACTION

A. Principle

We recall here a result given in [18] which can be see as
an abstraction of the algorithm presented in [21]. Consider the
constraint

f(x) ∈ Y, x ∈ X(0) (4)

where f is a composition of functions: f = fn◦· · ·◦f2◦f1. The
forward-backward sequence given by Algorithm 1 computes
exactly the set X = X(0) ∩ f−1(Y).

Algorithm 1 Forward-Backward sequence

Input: X(0)
1 For k = 1 to n
2 X(k) = fk(X(k − 1))

3
←−
X (n) = Y ∩ X(n)

4 For k = n to 1

5
←−
X (k − 1) = X(k − 1) ∩ f−1k (

←−
X (k))

Return
←−
X (0)

For each k, we have

X(k) = f1:k(X(0))←−
X (k) = f1:k(X(0)) ∩ f−1k+1:n(Y)
X =

←−
X (0)

(5)

where fk:` = f` ◦ · · · ◦ fk. The proof of this result is
a consequence of the fact that the chain structure of the
constraint is also a tree. The forward-backward propagation
thus introduces no pessimism.

The computation given by Algorithm 1 cannot be imple-
mented in the computer in the present form. Only a guaranteed
outer approximation of this sequence can be implemented in
the computer. We need to enclose the sets

←−
X (k),X(k) in other

sets which can be represented and handled numerically [13].
This leads to a branch of computer science named abstract
interpretation [9].
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B. Directed contractor

A directed contractor C for the constraint y = f(x) is an
operator

C : ([x], [y])→
(
→
C ([x]) ,

←−
C ([x], [y])

)
(6)

such that

f([x]) ⊂
→
C ([x])

f−1([y]) ∩ [x] ⊂
←−
C ([x], [y]) ⊂ [x]

(7)

Moreover, we should have the monotonicity property:{
[a] ⊂ [x]
[b] ⊂ [y]

⇒

{ →
C ([a]) ⊂

→
C ([x])

←−
C ([a], [b]) ⊂

←−
C ([x], [y])

(8)

There exists a directed contractor for y = f(x) which is
minimal with respect to the inclusion.

This definition is similar to that given in [7] except that here,
the definition has been specialized to the specific constraint
y = f(x) with the input x and the output y. This will allow
us to connect the contractors as a chain (see Figure 3) and to
provide the forward-backward sequence.

Fig. 3. The directed contractors associated to the constraint y = fn ◦ · · · ◦
f2 ◦ f1(x) are connected to form a chain

Example 1. Take the function f(x1, x2) = x1 + x2. The
minimal directed contractor for the constraint y = f(x) is
given by

→
C ([x]) = [x1] + [x2]
←−
C ([x], [y]) =

(
[x1] ∩ ([y]− [x2])
[x2] ∩ ([y]− [x1])

)
(9)

A closed-form minimal contractor is in general not available
except for specific functions such as those that are linear or
elementary functions (such as sin, cos, ln,

√
·,). A function f

for which such a closed-form expression for the contractor
exists is said to be contractible.

Example 2. Since a closed-form minimal contractor for the
constraint

y = A · x (10)

is

C
(

[x]
[y]

)
=

( →
C ([x])

←−
C ([x], [y])

)
=

(
A · [x]

A−1 · [y] ∩ [x]

)
(11)

the function f(x) = A ·x is contractible. The operation given
in the expression of C uses interval arithmetic introduced by
Moore [22].

All elementary functions such as sin(x), x2, x1+x2, x1 ·x2
are contractible.

C. Contractible decomposition

A contractible decomposition of a function f has the form

f = fn ◦ · · · ◦ f2 ◦ f1 = f1:n (12)

where each fi is contractible.
Note that some functions may not have a contractible

decomposition. For instance, the Fresnel integral which arise
in the description of near-field Fresnel diffraction phenomena,
given by

f(x) =

∫ x

0

sin τ2 · dτ (13)

has no contractible decomposition since it cannot be decom-
posed as a finite composition of contractible functions.

Example 3. The function

f(x1, x2) = (x1 + 2x2)
2
+ (x1 − x2)2 (14)

can be decomposed in different ways as illustrated by Figure
4.

Fig. 4. Scalar contractible decomposition (top); Vector contractible decom-
position (bottom)

The first decomposition is the scalar decomposition clas-
sically used in the HC4-revise contractor [4], [1], [26]. The
second decomposition is a vector decomposition, which more
efficient. This gain of efficiency is illustrated by Figure 5
where a paver is used to characterize the solution set of the
equation f(x1, x2) = 1. The blue boxes are obtained using
the scalar contractible decomposition obtained from the initial
box [−10, 10] × [−10, 10] whereas the red box is obtained
directly at the first contraction from the vector contractible
decomposition.

D. Forward-backward contractor

Consider the constraint

f(x) ∈ Y, x ∈ [x](0) (15)

where f can be decomposed into a contractible chain: f =
fn◦· · ·◦f2◦f1. Algorithm 2 computes a box enclosure for X =
[x](0)∩f−1(Y). See [4] [26] [1] for more details. It can be seen
as an abstract counterpart of the concrete Algorithm 1. This

algorithm uses the directed contractor
(
→
C k,
←−
C k
)

associated

to the function fk.
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Fig. 5. Illustration of the gain of efficiency when we use the vector
contractible decomposition

Algorithm 2 Forward-backward contractor for f(x) ∈ Y
Input: [x](0)

1 For k = 1 to n

2 [x](k) =
→
C k ([x](k − 1))

3 [a](n) = [Y ∩ [x](n)]
4 For k = n to 1

5 [a](k − 1) =
←−
C k ([x](k − 1), [a](k))

Return [a](0)

The algorithm (which is a contractor) is decomposed into
two main steps:
• the forward contractions (lines 1,2) where the uncertainty

is propagated forward from x(0) to x(n);
• the backward contractions (lines 3,4,5) where the uncer-

tainty is propagated backward from Y to x(0).
It returns a box [a](0) which contains the set {x ∈
[x](0) | f(x) ∈ Y}.

At Steps 2 and 5, the contractions are minimal since the
functions fk are contractible. When we want to find an inner
and an outer approximations, we have to run the contractor
given by Algorithm 2 twice: once for both Y and once for its
complementary Y [16]. This is clearly not optimal and it is
what we want to avoid in this paper.

IV. A BOUNDARY APPROACH

A. Principle

The boundary ∂X of a subset X of Rn is the set of points
which can be approached both from the inside of X and from
the outside of X. It is also the set of points in the closure
of X not belonging to its interior. We have the following
proposition.

Proposition 4. Consider a continuous function f : Rn → Rp
defined everywhere. If X = f−1(Y), we have

∂X ⊂ f−1(∂Y). (16)

Proof: We will show that if x ∈ ∂X then y = f(x) ∈ ∂Y.
Denote by Bη(x) the open ball with radius η and center x.
We have

x ∈ ∂X ⇔ ∀η > 0,∃a,b ∈ Bη(x)|a ∈ X,b /∈ X
⇔ ∀η > 0,∃a,b ∈ Bη(x)|f(a) ∈ Y, f(b) /∈ Y
⇔ ∀η > 0, f(Bη(x)) ∩ ∂Y 6= ∅

Now, since f in continuous and since y ∈ Bη(x), for all ε > 0,
∃η > 0, f(Bη(x)) ⊂ Bε(y). Thus

∀ε > 0,Bε(y) ∩ ∂Y 6= ∅. (17)

We conclude that y ∈ ∂Y.
Remark 5. Proposition 4 requires that f is defined everywhere.
Take for instance f(x) =

√
x2 − 1 and Y = [−2, 2]. We have

∂X = ∂f−1(Y)
= ∂([−

√
5,−1] ∪ [1,

√
5])

= {−
√
5,−1, 1,−

√
5}

f−1(∂Y) = f−1({−2, 2}) = f−1({2})
= {−

√
5,−
√
5}

(18)

and the inclusion is not satisfied.

Moreover, Proposition 4 only claims the inclusion ∂X ⊂
f−1(∂Y) and not the equality. Take for instance f(x) = x2

and Y = [0, 4], We have

∂X = ∂f−1(Y)
= ∂([−2, 2])
= {−2, 2}

f−1(∂Y) = f−1({0, 4})
= {−2, 0, 2}

(19)

This is consistent with the inclusion, but not with the equality.
Proposition 4 with the hypothesis are illustrated by Figure

6. The set Y is here a closed disk and X = f−1(Y) = {1} ∪
[4, 6] ∪ [7, 8]. The domain of f is ] −∞, 2] ∪ [3, 6] ∪ [7,∞].
We have f−1(∂Y) = {1, 4, 5, 8} and ∂X = {1, 4, 6, 7, 8}. Due
to the fact that f is not defined everywhere some elements of
∂X are not in f−1(∂Y).

Fig. 6. Illustration of Proposition 4

A consequence of Proposition 4 is that, when all hypothesis
are fulfilled, we can use a set inversion algorithm to compute
an enclosure of the boundary of a set defined as a set inversion
problem.

Assume that f = fn ◦ · · · ◦ f2 ◦ f1 is a contractible decom-
position of f . To characterize the set X = X(0)∩ f−1(Y), we
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propose to characterize its boundary, as motivated in Section
II. In this context, we can apply the boundary-based forward-
backward sequence and get Algorithm 3.

Algorithm 3 Boundary forward-backward sequence

Input: X(0)
1 For k = 1 to n
2 X(k) = fk(X(k − 1))
3 A(n) = ∂Y ∩ X(n)
4 For k = n to 1
5 A(k − 1) = X(k − 1) ∩ f−1k (A(k))

Return A(k − 1)

For each k, we have X(k) = f0:k(X(0)) and A(k) =
f0:k(X(0))∩ f−1k+1:n(∂Y). Therefore A(0) contains the bound-
ary of X(0) ∩ f−1(Y). As explained in Subsection III-D, we
can approximate the nested pair (X(k),A(k)) by two boxes
[x](k), [a](k) such that

[x](k) ⊃ X(k)
[a](k) ⊃ [x](k) ∩ f−1k+1:n(∂Y)

(20)

As illustrated by Figure 7, we see that [a](k) contains more
than A(k). Indeed, it is important that the set [x](k)\[a](k) =
{x ∈ [x](k)|x /∈ [a](k)} does not contain a single point of the
boundary f−1k+1:n(∂Y).

Fig. 7. Approximation by boxes of sets A(k) and X(k)

An illustration of the boundary-based forward-backward
propagation is given by Figure 8.

Fig. 8. Forward-backward boundary propagation

Characterizing the boundary is not sufficient to solve the
set inversion problem, we also need to determine the colors
of the faces of the boxes [a](k) as motivated by Section II.

B. Cardinal directions

The set Rn has 2n cardinal directions which can be repre-
sented by the set

D = {λ = (i, σ)|i ∈ {1, n}, σ ∈ {−,+}} (21)

The box

[x] = [x−1 , x
+
1 ]× · · · × [x−n , x

+
n ]. (22)

has n interval components, each of them defined by two
bounds. We thus have 2n bounds to define [x]. Each of these
bounds corresponds to one cardinal direction. If λ is a cardinal
direction, we denote by xλ the corresponding bound of [x].
Each face of [x], denoted by [x]λ, is also associated to one
cardinal direction. Define byHλ([x]) the half space made with
all points that can see the λth face of [x] from the outside.

Example 6. Consider the cardinal direction the λ = (2,−)
and the box

[x] = [1, 2]× [3, 4]× [5, 6]. (23)

We have xλ = 3, the associated face is [1, 2]× [3, 3]× [5, 6]
and Hλ([x]) = {x|x2 < 3}.

C. Win boxes

Given two boxes [a] and [x], with [a] ⊂ [x]. For a given
λ ∈ D, we define the λth win box, as

[x]\[a]|λ = [x] ∩Hλ([a]) (24)

This is illustrated by Figure 9. In Subfigure (1), we have 4
overlapping win boxes, all in the same connected component.
In (b), we have two win boxes and two connected components.
In (3), we have one win box and in (4), two win boxes.

Fig. 9. Illustration of the win boxes (magenta) associated with the difference
between [x] and [a]



6

D. Color
Given the pair [x](k), [a](k) in the algorithm of subsection

II. We associate to each bound aλ(k) of [a](k), the quantity
c(aλ(k)) ∈ {0, 1, ?} such that

c(aλ(k)) = 1 ⇒ fk+1:n([x]
λ) ⊂ Y

c(aλ(k)) = 0 ⇒ fk+1:n([x]
λ) ∩ Y = ∅ (25)

The quantity c(aλ(k)) corresponds to the face color intro-
duced in Section II. If we take the situation of Figure 7, we
have c(a(1,−)(k)) = 0, c(a(1,+)(k)) = 1, c(a(2,−)(k)) =?,
c(a(2,+)(k)) =?.

E. Algorithm
Algorithm 4 is an abstraction of Algorithm 3, with a

backward propagation of the color. It allows us to know which
part of the search space will be mapped inside Y and which
part will be mapped outside.

Algorithm 4 Forward-backward algorithm with colors

Input: [x](0)
1 For k = 1 to n

2 [x](k) =
→
C k ([x](k − 1))

3 [a](n) = [∂Y ∩ [x](n)]

For all λ ∈ D, c(aλ(n)) =
{

1 if [x]λ(n) ⊂ Y
0 otherwise

4 For k = n to 1

5 [a](k − 1) =
←−
C k ([x](k − 1), [a](k))

Return [a](0)

At Step 5, we use the backward contractor←−
C k ([x](k − 1), [a](k)) given by Algorithm 5.

Algorithm 5 Backward contractor
←−
C k ([x], [y])

Input: fk, [x], [y]
1 [a] =

[
[x] ∩ f−1k ([y])

]
2 For all λ such that xλ 6= aλ

3 Take λ1 such that fk([x]λ) ⊂ Hλ1
([y])

4 c(aλ) = c(yλ1)
Return [a]

The principle of the backward operator
←−
C (f , [x], [y]) is

illustrated by Figure 10.
Step 2. For the cardinal direction (1,+), we have a+1 (k −

1) < x+1 (k− 1). This means that we had a backward contrac-
tion with respect to the direction λ and the part that has been
contracted is either inside f−1k:n(Y) or in its complementary.

Step 3. We take the face [x](1,+)(k−1) in black, we apply fk
check on which win box which fall in. Here, it is the win box
corresponding to λ1 = (2,+). Note that testing one point is
sufficient (see the green point), since all points [x](1,+)(k−1)
will fall inside the same win box.

Step 4. Since c(aλ1(k)) = 1, we get c(a+1 (k)) = 1, which
means that the face [x](1,+)(k − 1) us fully inside f−1k:n(Y).

Fig. 10. Backward propagation of the bound colors

F. Example 1: the sum

Consider the function f(x) = x1 + x2. The forward step
needed at Step 2 of the Algorithm 4 is given by

[y] = [x1] + [x2]. (26)

For the backward step,
←−
C ([x], [y]) needed at Step 5 of the

Algorithm 4, we have to instantiate Algorithm 5 to our specific
case.

Proposition 7. The backward step (see Algorithm 5) for the
constraint f(x) = x1 + x2 is:

[a] = [x] ∩
(

[y]− [x2]
[y]− [x1]

)
(27)

and

if x−1 < a−1 , then c(a−1 ) = c(y−)
if a+1 < x+1 , then c(a+1 ) = c(y+)
if x−2 < a−2 , then c(a−2 ) = c(y−)
if a+2 < x+2 , then c(a+2 ) = c(y+)

Proof: For f(x) = x1 + x2, Algorithm 5 we get
1 [a1] = [x1] ∩ [y]− [x2]

[a2] = [x2] ∩ [y]− [x1]
2 For all λ ∈ {(1,−), (1,+), (2,−), (2,+)}

such that xλ 6= aλ

3 Take λ1 such that f([x]λ) ⊂ Hλ1([y])
4 c(aλ) = c(yλ1)

We limit our reasoning to λ = (1,−), but for a complete
proof, the same should be done for other values of λ. We get
at Step 2 that if x−1 < a−1 we have to choose λ1 ∈ {−,+}.
Take λ1 = −, we get

f([x]λ) ⊂ Hλ1
([y])

⇔ x−1 + [x2] ⊂ [−∞, y−]
⇔ x−1 + x+2 ≤ y−

(28)

Now, since from Step 1 we have a−1 = max(x−1 , y
− − x+2 )

and since x−1 < a−1 , we get a−1 = y− − x+2 . The condition
(28) becomes x−1 + x+2 ≤ a

−
1 + x+2 which is always true. The

condition of Step 3 is thus always true as soon as we take λ1 =
− if λ ∈ {(1,−), (2,−)}and λ1 = + if λ ∈ {(1,+), (2,+)}.
The instantiation for c(aλ) at Step 4 is straightforward.
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G. Example 2. The square function

Consider the function f(x) = x2. The forward step needed
at Step 2 of the Algorithm 4 is given by

[y] = [x]2

For the backward step, we have the following proposition.

Proposition 8. The backward step (see Algorithm 5) for
f(x) = x2, translates into

[a] =
[{
x ∈ [x], x2 ∈ [y]

}]
if x− < a−,

if x−2 < y−, then c(a−) = c(y−)
else c(a−) = c(y+)

if a+ < x+,
if x+2 < y−, then c(a+) = c(y−)

else c(a+) = c(y+)

Proof: For f(x) = x2, Algorithm 5 becomes
1 [a] =

[{
x ∈ [x], x2 ∈ [y]

}]
2 For all λ ∈ {−,+} such that xλ 6= aλ

3 Take λ1 such that (xλ)2 ⊂ Hλ1
([y])

4 c(aλ) = c(yλ1)
Take λ = −. We get at Step 2 that if x− < a− we have to

choose λ1 ∈ {−,+} such that x−2 ⊂ Hλ1([y]). For λ1 = −,
the condition at Step 4 translates into x−2 ≤ y− and in this
case, we get at Step 4, c(a−) = c(y−). It the condition x−2 ≤
y− is false, it means that λ1 = + satisfies the condition and
thus c(a−) = c(y+).

Take λ = +. We get at Step 2 that if x+ > a+ we have to
choose λ1 ∈ {−,+} such that x+2 ⊂ Hλ1([y]). For λ1 = −,
the condition at Step 4 is x+2 ≤ y− and if satisfies, we get at
Step 4, c(a+) = c(y−). If the condition is false, it means that
λ1 = + satisfies the condition and thus c(a+) = c(y+).

V. TEST-CASES

In this Section, we give two examples. The first example
illustrates an academic set inversion problem involving a
nonlinear function. The Python code is also given. The second
example is a localization problem using a TDOA technique
(Time Difference Of Arrival). The problem is known to be
ill-conditioned and highly nonlinear [20].

A. A simple illustrative example

Consider the set inversion problem

X =

(
[−3, 3]
[−3, 3]

)
∩ f−1

(
[−1, 2]
[1, 4]

)
(29)

where
f

(
x1
x2

)
=

(
x1 + x2

(x1 + x2)
2

)
. (30)

The function f has the following contractible decomposition:(
x1
x2

)
→
(
s = x1 + x2

)
→
(

s
s2

)
. (31)

This decomposition leads us to a forward-backward boundary
contractor. Combined with a paver, we get the paving of Figure

11. For this example, we have the inner and outer approxima-
tion at the same price as if we characterize the boundary only.
The PYTHON code associated to this example is available at
https://www.ensta-bretagne.fr/jaulin/sepbox.html.

Fig. 11. Set inversion problem solved using a boundary approach

B. Test case 2. TDOA

Pseudorange multilateration (also termed hyperbolic po-
sitioning) is a technique for determining a robot position
based on measurement of the times of arrival of signals
(radio or acoustic) having a known speed when propagating
from the stations to the robot. These stations are at known
locations and have synchronized clocks, but these clocks are
not synchronized with the clock of the robot. Consequently,
the robot do not measure the distance to the stations. Instead, it
measures the difference of distances between its position and
that of the stations. The problem is known as TDOA (time
difference of arrivals) and is known to be very ill-conditioned
[20].

As an example, consider one robot in the plane where three
stations at known positions (ai, bi), i ∈ {1, 2, 3} emit at the
same unknown time a sound, as illustrated by Figure 12. The
three corresponding sounds are received at times ti, as given
by the following table.

i 1 2 3
ai 4 13 16
bi 6 7 10
ti 15 23 27

We assume for simplicity that speed of the sound is 1m.s−1.
Since the emission time is not known by the robot, we cannot
translate these times into distances. However, the difference of
times is directly related to difference of distances (called the
pseudo distances).

The measured pseudo-distance are thus

y1 = 23− 15 = 8
y2 = 27− 23 = 4

(32)

https://www.ensta-bretagne.fr/jaulin/sepbox.html
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Fig. 12. The robot (red) measures the pseudo distances y1, y2 to the stations
(blue)

We assume that the accuracy of the pseudo distance measure-
ments is ε = 0.001. The set X of all feasible location vectors
is defined by

f(x) ∈ [8− ε, 8 + ε]× [4− ε, 4 + ε] (33)

where

f(x) =

( √
(13− x1)2 + (7− x2)2 −

√
(4− x1)2 + (6− x2)2√

(16− x1)2 + (10− x2)2 −
√

(13− x1)2 + (7− x2)2

)
A decomposition in contractible function of f(x) is given by
Figure 13.

Fig. 13. Decomposition into contractible functions

Figure 14 presents the results obtained using a paver with
two different contractors, for the same accuracy. The left figure
is obtained using a classical forward backward contractor
which generated 90841 boxes. Our boundary based contractor
with the contractible decomposition generated only 35586
boxes.

Fig. 14. Left: characterization of the solution set X using a classical forward-
backward contractor;
Right: the same using a boundary approach
For both, the frame box is [0.94, 1.06]× [1.94, 2.06]

VI. CONCLUSION

In this paper, we have proposed a new forward-backward
contraction procedure for set inversion. The principle is to

inverse the boundary of the set Y to be inverted and to retro-
propagate a color on the interval bounds in order to decide if
the win boxes are inside or outside the solution set.

This approach has several interesting features:
1) Contrarily to existing contractor-based set inversion al-

gorithm, we do not have to retro-propagate twice (once
for inside Y, once for outside), but only once for the
boundary.

2) The cost of retro-propagating the color is almost negligi-
ble since it requires only comparisons between floating
point numbers.

3) When a box has two faces of two different colors, it
means that it is crossed by the boundary of the solution
set. This information which can be useful, for projection
problems [15] and quantified problems [12], was not
provided by existing approaches.

4) The procedure can easily be implemented in an HC4-
revised procedure where the function to be inverted is
represented by a DAG (directed Acyclic Graphs).

There exists some efficient contractors built for equations that
can be used for inverting a boundary of Y. This is the case of
the Newton contractor [22], the monotonicity based contractor
[2], the centered-form based contractors, etc. We still need to
adapt our procedure to retro-propagate the colors at a minimal
cost, as we have done for contractors for chains of contractible
functions.
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