
���������� �	 
����
�
�
�
�� ����
��

����� ���
���� �����������

�� ������� ���� ������
 ��
 �� ���
����

Laboratoire d�Ingénierie des Systèmes Automatisés

62, avenue Notre-Dame du Lac 49000 ANGERS

Tel: (33) 2 41 73 04 17

[jaulin,boimond,hardouin]@univ-angers.fr

Abstract: Discrete-event systems are driven by events and generate events. To describe

their evolution, the dater approach associate to each event a sequence of dates, namely a

dater, corresponding to the dates at which the event occurs.

In this paper, we show that for a large class of discrete-event systems, the dater approach

makes it possible to cast the characterization of the set of all parameters that are consistent

with some collected dater, in a bounded-error context, into a set-inversion framework. Set

inversion consists of characterizing the reciprocal image of a given set by a known function.

Provided that an inclusion function is known for the function to be inverted, the charac-

terization can be performed by the interval-based algorithm SIVIA. A short presentation of

this algorithm is recalled in this paper. The approach is illustrated through three examples.

Keywords: Bounded-error estimation, discrete-event systems, interval analysis, set inver-

sion.
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I. Introduction

Many systems such as manufacturing, communication or transportation systems, are event-

driven as opposed to time-driven, i.e., their behaviors are governed only by occurrences of

di¤erent types of events rather than by ticks of a clock. For example, events can be: �the

machine has just completed its task� or �the tra¢c light changes to red�. Such systems are

known as Discrete-Event Systems (DES), (see, e.g., [5], [12], and references therein) and are

often described graphically by using Petri nets (see, e.g., [11]). When an event occurs, a

process may start. When the process is �nished, the event �process ends� yields. When the

processing time is known for each process of the DES, the DES is a Timed Discrete Event

System (TDES) (see, e.g., [3], [5] and [7]). Only TDES will be considered in this paper.

Among the approaches proposed in the literature to describe TDES by recurrent equations,

let us quote :

² the counter approach: To each event of the TDES, is associated the integer k(t), which

represents the number of occurrence of the event at time t. The function k(t) is non

decreasing and is called a counter.

² the dater approach: To an event, is associated the real x(n) which is the date at which

the event occurs for the nth time. The sequence x(n) is non decreasing and is called

a dater.

Example 1: A machine assemble two parts A and B in ± seconds. The three events

involved in our example are: eA = �a part A arrives�, eB = �a part B arrives� and eY = �an

assembling process ends�. Associated counters are denoted kA(t); kB(t); kY (t) and associated
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daters xA(n); xB(n); xY (n), respectively. The counter and the dater equations are:

kY (t) = min(kA(t¡ ±); kB(t¡ ±); kY (t¡ ±) + 1)

xY (n) = max(xA(n); xB(n); xY (n¡ 1)) + ±

}

In what follows, we shall only consider dater equations, but the approach can also be adapted

to counters.

Considering a new de�nition for the additive and multiplicative operators (a©b = max(a; b)

and a ­ b = a + b), timed event graphs (TEG) are TDES which can be described by the

following (©,­)-linear state equations (see [1]):
8>><
>>:

~x(n+ 1) = A­ ~x(n)©B ­ ~u(n+ 1)

~y(n) = C ­ ~x(n)

(1)

where ~x(n) is a state vector and ~y(n) is the vector of daters of interest. The system considered

in Example 1 is a TEG because the dater equation can be written as8>>>>>><
>>>>>>:

x(n+ 1) = ± ­ ~x(n)©

µ
± ±

¶
­

0
BB@

xA(n+ 1)

xB(n+ 1)

1
CCA

xY (n) = ¡1­ x(n):

(2)

TEG are particularly suited to describe synchronization phenomena and because of their

(©,­)-linearity, powerful tools are available to deal with them (see, e.g., [2] for parameter

estimation, [3] for resource optimization and [4] for control applications), but unfortunately,

many TDES cannot be described by (1). Even nonlinear state space equations
8>><
>>:

~x(n+ 1) = ~f(~x(n);~u(n+ 1))

~y(n) = ~g(~x(n))

(3)

cannot be used to describe TDES that are non causal with respect to n. Indeed, for a

system described by equation 3, ~y(n) does not depend on ~u(m) if m > n i.e. the system (3)
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is causal. Unlike discret time systems that can often be described by (3), many TDES are

noncausal because of the special nature of n as illustrated by the following example.

Example 2: A machine assembles two identical parts A in ± seconds to produce a part B.

The events involved are eu = �a part A arrives� and ey = �an assembling process ends�. If

u(n) is the input dater associated with eu and y(n) the output dater associated with ey, we

have

y(n) = max((u(2n); y(n¡ 1)) + ±. (4)

for n ¸ 1 and y(0) = ¡1. Since y(n) depends of u(2n), the system is noncausal with

respect to n: Therefore it cannot be described by (3). }

For the sake of simplicity, dater sequences d(k) are assumed to be �nite and are represented

by a sorted vector ~d. The kth component dk of ~d corresponds to d(k). Even if state space

equations (3) do not exist for a general TDES, it is often easy to express the output dater

vector ~y with respect to the input dater vector ~u as

~y = ~f(~u) (5)

where ~f is a discontinuous function that can be represented by an algorithm. Unfortunately,

the algorithm ~f may involve sorting procedure, if statements, : : : and problems like

�nd ~u such that ~f(~u) = ~y (6)

cannot be solved using formal methods. Now, for a large class of functions ~f and for

reasonable dimensions of ~u, the resolution of (6) can be performed by using interval analysis

(see e.g. [6] and [9]).

To illustrate how interval analysis can be an e¢cient alternative to formal approaches when

dealing with TDES, we shall consider, in this paper, the estimation of some unknown para-

meters of a TDES, in a bounded-error context. If ~Y denotes the known box of all feasible
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output dater vectors, ~u the known input dater vector, ~p the unknown parameter vector and

~f(~p; ~u) the model output dater vector, then the problem of interest is to characterize the set

P = f~pj~f(~p; ~u) 2 ~Y g; (7)

Since ~u is known, ~f(~p; ~u) will be denoted ~f(~p): The set to be characterized is thus de�ned

by

P = ~f¡1(~Y ): (8)

The problem to be solved is therefore a set inversion problem. The algorithm SIVIA (Set

Inversion Via Interval Analysis, (see [8] and [10])) able to solve it, is presented in Section

II. with some basic notions of interval analysis. Illustrative examples are �nally treated in

Section III..

II. Interval analysis and set inversion

A. Notion of interval analysis

Interval analysis [9] is based on the notions of boxes and inclusion functions that are now

introduced. A box or vector interval ~X of Rn is denoted equally:

~X =
¡£
x¡1 ; x

+
1

¤
; ¢ ¢ ¢ ;

£
x¡n ; x

+
n

¤¢
= (X1; ¢ ¢ ¢ ; Xn) = [~x¡; ~x+] (9)

where ~x¡ = (x¡1 ; : : : ; x
¡

n )
T and ~x+ = (x+1 ; : : : ; x

+
n )

T . The set of all boxes of Rn is denoted by

IR
n. A principal plane of a box ~X is a symmetry plane of ~X normal to a side of maximum

length. To bisect a box ~X means to cut it along one of its principal planes. This operation

generates two non-overlapping boxes ~X1 and ~X2 such that ~X = ~X1 [ ~X2.

Let ~f be a vector function mapping Rn into Rm. A set-valued function ~F , de�ned from IR
n

into IR
m, is an inclusion function of ~f if:

8 ~X 2 IR
n; ~f( ~X) ½~F ( ~X): (10)
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Let w( ~X) be the width of the box ~X, i.e., the length of its largest side(s). An inclusion

function is convergent if, for any sequence of boxes ~X(k) of IRn,

lim
k!1

w( ~X(k)) = 0 =) lim
k!1

w
³
~F ( ~X(k))

´
= 0: (11)

An inclusion function ~F ¤ for ~f is minimal if, for all ~X; ~F¤( ~X) is the smallest box that

encloses the image set ~f( ~X). If ~f is a nondecreasing function, i.e., ~x ¸ ~y ) ~f(~x) ¸ ~f(~y);

where inequalities have to be understood componentwise, then a minimal inclusion function

for ~f is given by [9]:

~F ¤( ~X) = [~f(~x¡); ~f(~x+)]: (12)

Let us denote by ~s the sorting function mapping Rn into Rn de�ned by

~s(x1; x2; ¢ ¢ ¢ ; xn) = (xi1 ; xi2 ; ¢ ¢ ¢ ; xin); (13)

where fi1; ¢ ¢ ¢ ; ing is a permutation of f1; 2; ¢ ¢ ¢ ; ng such that xia · xib if a < b. For example,

~s(5; 4; 7) = (4; 5; 7): The function ~s is nondecreasing, i.e., ~x ¸ ~y) ~s(~x) ¸ ~s(~y): The minimal

inclusion function for ~s is therefore (see equation (12)) ~S( ~X) = [~s(~x¡); ~s(~x+)]: For example,

~S([6; 9]; [1; 7]; [4; 5]) = [~s(6; 1; 4); ~s(9; 7; 5)] =

[(1; 4; 6); (5; 7; 9)] = ([1; 5]; [4; 7]; [6; 9])

(14)

:

B. Set inversion algorithm

The algorithm SIVIA [8],[10] able to characterize the solution set de�ned by (8) is now pre-

sented. Its principle is to partition the prior box of interest ~P0 into a set of non-overlapping

boxes, namely those that are enclosed in P and those that are outside P . A convergent

inclusion function ~F associated with ~f is assumed to be available. The following tests make
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it possible to decide whether a given box ~P is inside or outside the solution set P :

(i) ~F (~P ) ½ ~Y ) ~P ½ P;

(ii) ~F (~P ) \ ~Y = ; ) ~P \P = ;:

(15)

SIVIA is a recursive routine that makes it possible to draw a bracketing of the solution set

P . Boxes that have been proved to belong to P via test (i) are painted grey, those that

have been proved to be outside from P via test (ii) are painted white and those that satisfy

neither (i) nor (ii) and that are too small (< ") to be bisected are painted black. The �rst

call of SIVIA is done by �SIVIA(~P0)�, where ~P0 is the prior feasible box for the parameter

vector. The box ~P0 is assumed to be large enough to contain the solution set P .

SIVIA(~P )

Step 1 If ~F (~P ) ½ ~Y ; {draw(~P ; �grey�); return};

Step 2 If ~F (~P ) \ ~Y = ;; {draw(~P ; �white�); return};

Step 3 If w(~P ) < ", {draw (~P; �black�); return};

Step 4 Bisect ~P getting the two boxes ~P1 and ~P2;

Step 5 SIVIA(~P1); SIVIA(~P2);

Remark 1 If we denote by ¢P the union of all boxes painted black and by P¡ the union

of all boxes painted grey, the solution set P is bracketed by [8]: P¡ ½ P ½ P¡ [¢P : }

Remark 2 For the sake of simplicity, SIVIA has been presented as an algorithm for

drawing a bracketing of a two-dimensional solution set, but it can also be used to characterize

solution sets of higher dimensions [8]. }

Remark 3 The set inverted by SIVIA is a box ~Y and the set to be inverted in our esti-

mation problem is an interval dater vector ~YD. These two sets are not equal: for example,

the sequence (or vector) ~y = f3; 2g, which is not a dater vector (non increasing compo-

nents) is inside the box ~Y = [1; 4] £ [2; 5], but does not belong to the interval dater vector
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~YD = f[1; 4]; [2; 5]g, because ~YD only contains vectors of ~Y with increasing components. Now,

for any ~p, the vector ~f(~p) is necessarily a dater vector because ~f simulates a DES. Therefore

inverting an interval dater vector or its corresponding box always yields the same set. }

III. Application to DES estimation

In this section, the behavior of SIVIA is illustrated through three test cases.

Test case 1: A machine manufactures parts located in an input stock. The input dater

vector

~u = (0; 0; 10; 13; 16; 17; 18; 25; 25; 30)T (16)

contains dates at which a part is given to the input stock. The loading of a part in the

machine occurs when the machine is free and when a part to be manufactured is available.

The working time of the machine, assumed to be given by ±(k) = p1 + ln(p2k+ 1); where k

is the number of manufactured parts, depends nonlinearly on ~p and k. This may correspond

to a situation where the e¢ciency of the machine decreases as parts are proceeded. The

output dater vector ~y contains dates at which the machine has just completed a part. The

simulator function ~f(~p) is computed by the following algorithm:

Input: ~p;

±(1) := p1 + ln(p2 + 1); f1 := ±(1) + u1;

For k := 2 to 10 do

f±(k) := p1 + ln(p2k + 1);

fk := ±(k) + max(~fk¡1; uk); g

Output: ~f ;

The dater vector of experimental data

~y = (1:7; 3:8; 12:4; 15:6; 18:8; 21:7; 24:8; 28:2; 31:5; 34:9)T (17)
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has been obtained by considering ±(k) := 1+ln(k+1), which corresponds to set p1 = p2 = 1.

A model output dater vector ~f(~p) is assumed to be acceptable if for all k, j~fk(~p)¡ykj < 0:3,

i.e., the output dater vector ~f(~p) falls inside the box ~Y = ~y + 0:3:[¡1; 1]10; where [¡1; 1]10

denotes the ten-dimensional box whose components are equal to [¡1; 1]. For the prior

feasible box ~P0 = ([¡1; 3]; [0; 4]) and for " = 0:01, SIVIA brackets the posterior feasible set

P for the parameters, as represented by Figure 1, in less than 10 seconds on a PC DX4-100

computer. Grey boxes are proved to be inside P and white boxes are proved to be outside

P . No conclusions have been reached for the black boxes.

Possible location for Figure 1

Test case 2: Let us consider a plane where ten acoustic transmitters are located at positions

(xi; yi)
T given by Table 1. Each transmitter emits an indiscernible impulse sound at date

0. A robot, whose position ~p = (p1; p2)
T has to be estimated, is equipped with a sound

sensor and records a dater vector ~y, the component of which corresponds to dates at which

a sound is detected. It is assumed that ten dates have been recorded and stored into the

output dater vector

~y = (1; 2:24; 3; 3:6; 4:12; 4:47; 5; 5:1; 5:38; 6:4)T : (18)

The propagation delay associated with the ith transmitter is assumed to be proportional to

the distance between the robot and the transmitter:

±i = ¸
p
(xi ¡ p1)2 + (yi ¡ p2)2; i = 1; ¢ ¢ ¢ ; 10: (19)

For the sake of simplicity, the constant ¸, related to the sound velocity, is assumed to be

equal to 1. The set of all feasible dater vector is given by ~Y = ~y + [¡1; 1]10. The simulator

function ~f(~p) is computed by the following algorithm:
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Input: ~p;

For i := 1 to 10 do ±i =
p
(xi ¡ p1)2 + (yi ¡ p2)2;

Sort the reals ±i and store them into the dater vector ~f ;

Output: ~f:

For ~P0 = ([¡1; 10]; [¡1; 10]) and " = 0:04, SIVIA brackets the feasible set S as represented

on Figure 2, in less than 5 seconds on a PC DX4-100 computer.

Possible location for Table 1

Possible location for Figure 2

Test case 3: In a manufacturing system, 10 identical parts are given to the input. The

input dater vector is given for example by ~u = (1; 1; 1; 3; 5; 9; 9; 15; 16; 16)T . These 10 parts

have to be manufactured by two machinesM1 andM2. The loading of a part in a machine

occurs only when this machine is free. The working time are p1 for M1 and p2 for M2.

When a part is available, the machine that is chosen to deal with this part is the one that

can complete it as soon as possible. The times at which the parts are manufactured are

stored in the dater vector ~f .

The following algorithm computes the output dater vector. The real numbers h1 and h2

denote times at which M1 and M2 are available.

10



Input: p1 and p2;

1 h1 := 0; h2 := 0;

2 For i := 1 to 10 do

3 z1 := max(h1,ui)+p1; z2 := max(h2,ui)+p2;

4 If z1 · z2; {fi := z1;h1 := z1}

5 Else {fi := z2;h2 := z2}

6 EndFor

Output: ~f = (f1; :::; f10);

Line 1: At the beginning, M1 and M2 are free at time 0. Line 3: If the part i is available

at time ui, if M1 is free at time h1, and if the working time of M1 is p1, then M1 can

complete the part at time z1. Idem for M2. Line 4: If M1 can complete the part i before

M2, M1 is selected. The part will be completed at time fi and M1 will then be free at

time h1.

Unfortunately, to the best of our knowledge, because of the if statement, no available

methodologies exists to derive an inclusion function for ~f(~p). The algorithm SIVIA is thus

unable to deal with this last test case.

IV. Conclusion

Problems involved in DES are generally nonlinear, nonconvex and nondi¤erentiable so that

classical methods often fail to give reliable results. As shown in this paper, interval analysis

makes it possible to deal with such problems in a global and guaranteed way thanks to

the fundamental notion of inclusion function that can be computed for many algorithms

involving sorting routines and nonlinear function such as max, min, ln, : : :

As an illustration, the problem of characterizing the set of all parameter vectors that are

consistent with all collected data, in a bounded-error context, has been considered. This
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problem can be cast into a set-inversion framework, where the set of all acceptable output

vectors has to be inverted by the simulator function. For this purpose, an interval-based

algorithm SIVIA has been presented. SIVIA has treated two illustrative test cases for which,

to the best of our knowledge, no other methods existed in the literature that could lead to

comparable results. The third test-case was not treated because no inclusion function for

the simulator function were available.

The main limitation of our approach is that for a large class of TDES, an inclusion func-

tion for the algorithm to be inverted is di¢cult to obtain and adapted methods should be

developed to obtain them.
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Figure captions

Figure 1: Paving generated by SIVIA to bracket the solution set.

Figure 2: Paving generated by SIVIA for the characterization of all locations consistent with

the bounded-error data.

Table captions

Table 1: Positions of transmitters in the plane.
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i 1 2 3 4 5 6 7 8 9 10

x 1 1 4 5 7 1 6 8 3 9

y 1 4 1 5 1 7 8 6 3 9

Table 1
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