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Abstract. In this paper, we propose to use an interval approach to
compute an outer approximation of the attractor a continuous-time hybrid
dynamical system. We show the importance of Poincaré maps to build an
event-based discretization. The latter will be combined with an interval
integration to compute a guaranteed enclosure for the attractor.

1 Introduction

A large class of dynamical system can be modeled by an hybrid system
which converges to a stable periodic orbit. This orbit is set A is an attractor
of the system. A characterization of A is important for security reasons (for
instance, A should not intersect a forbidden zone), for default detection (if the
system leaves its attractor, we suspect a failure) or for control specification
(we want the system remains inside a desired region). José Ragot and his
team have shown the importance of using set membership method is such
context, see e.g., [1] [2].

This work presents how tools such has Poincaré maps, interval analysis
and guaranteed integration can be used to characterize an attractor of an
hybrid system. In the context of hybrid systems, the use of guaranteed
integration has been used for characterizing reachability sets [3], and but to
our knowledge these tools have not yet been used to characterize attractors
of hybrid systems.



2 Motivation

Consider a Dubins car [4]: 
ẋ = cos θ
ẏ = sin θ

θ̇ = u
(1)

where (x, y) is the position of the robot, θ is its heading and u is the input.
The robot has no possibility to measure its state, neither its position nor its
heading. It is only able to measure the sign of y. We want that the robot
moves along the wanted line y = 0. For this, we suggest to use the Trinity
pattern proposed in [5] which yields a rolling behavior for the motion. The
stability of the resulting navigation has been shown experimentally in [5]
with an autonomous plane turning around a cloud with an unknown shape.
A theoretical analysis has been provided in [6].
The principle of the rolling navigation is as illustrated by Figure 1. The
controller alternates between a small circle (red) of radius ρ0 = 2 when y < 0
(hatched area) and a large circle (blue) of radius ρ1 = 1 when y > 0. When a
small circle is started, it continues until the heading has changed of π. When
a large circle is started, it continues as long as y > 0.

Figure 1: Stable behavior of the rolling motion

The behavior of the motion can be modeled by the hybrid system of
Figure 2. The state variable x which is not of interest has been removed.
Instead, we have added a clock variable c needed by our controller to know
that half of the small red circle has been covered. In Figure 1, we took for



the initial state vector of the robot x = (0, 0, 1) and for the controller q = 0,
c = 0.

Figure 2: The attractor for this system is a stable periodic orbit if we start
around (q, c, y, θ) = (0, 0, 0, π

2
)

In this paper, we want to enclose the set A of all pairs (y, θ) to which the
controlled system will converge.

3 Method

The hybrid system we consider has a discrete state q ∈ {0, 1} and a contin-
uous state x)(c, y, θ) ∈ R3. The continuous state x follows a state equation
of the form

ẋ = f(x, q).

A transition occurs when some equality conditions are satisfied for x, say
g(x, q) = 0. When a transition is crossed, q jumps 1 − q. The state vector
x jumps also. Since q ∈ {0, 1}, we have two surfaces S1 : g(x, 0) = 0 and
S2 : g(x, 1) = 0, called the Poincaré sections. The latter can be used to show
the stability. Figure 3 represents a situation with the two sections S1, S2.
The partial Poincaré map is p : S1 7→ S2 is defined from the dynamics, as
represented in the Figure. The composition of two Poincaré maps will allow
us to check the stability using linear criterion such as those used for linear
systems. The procedure may be guaranteed if we use interval methods [7]
[8][9] .



Figure 3: Partial Poincaré map to go from one section to another
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