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A New Interval-Based Method to Characterize Estimability

O. Reynet1,∗, L. Jaulin2

1 E3I2 laboratory, ENSIETA

2 DTN laboratory, ENSIETA

SUMMARY

Estimability is a property which states on the accuracy of the parameter estimation in the case of

experimental data. This paper defines a new method based on interval analysis and set inversion to

characterize estimability in the case of a bounded additive noise. To illustrate this new method, the

Time Difference of Arrival (TDOA) passive location estimability is evaluated.
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1. Introduction

Estimability is a property which states on the accuracy of the parameter estimation in the

case of experimental data [1, 2]. Indeed, a parameter can be identifiable [3, 4] but poorly

estimable for a given experiment. Bounded-error estimation has already been used to assess
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the a priori performance of software sensors [5] via Minimax optimization. This paper defines

a new method based on interval analysis and set inversion to characterize estimability in the

case of a bounded additive noise.

A model of a noisy observation process can be written under the form [6]:

y = f(p) + e, (1)

where e ∈ E stands for a bounded additive noise vector, E stands for an additive noise set

with known bounds and f : Rn → Rm is a nonlinear function. Our interval-based estimability

approach focuses on p̂ vectors which are estimable from y, i.e. that can lead to the same

measurement vector y. We are looking for the set P defined as follows :

P = {p̂ ∈ Rn | ∃(e1, e2) ∈ E2, f(p̂) + e1 = f(p) + e2} (2)

This equation can be written :

P = {p̂ ∈ Rn | ∃(e1, e2) ∈ E2, f(p̂) = f(p) + e2 − e1} (3)

Define the uncertainty set U = {e2 − e1|e1 ∈ E, e2 ∈ E} and Y = f(p) + U. Then, P can be

written as a set inversion [7]:

P = f−1(Y). (4)

which is typically the problem to be solved in bounded-error parameter estimation [5] . Figure

1 illustrates our estimability approach.

In next section, we define the estimability function ξf which characterizes the size of P. Third

section shows how interval analysis and set inversion may be used to evaluate of ξf . Finally, last

section illustrates ξf relevance by evaluating the estimability of a nonlinear passive location

function.
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Figure 1. Illustration of our estimability approach: P constitutes the reciprocal image of Y = f(p)+U.

Our estimability function ξf evaluates the size of P.

2. Estimability Function ξf

2.1. Preliminary definition

To define ξf , we need a general size function w such as:

w : C(Rn) → R+

A → w(A)

(5)

where C(Rn) stands for compact sets of Rn. The general size function satisfies two conditions:

w(A) always belongs to R+ and w is monotonic, i.e. A ⊆ B⇒ w(A) ≤ w(B). Classically, w is

chosen as the largest dimension of the smallest box containing A. Nevertheless, depending on

the context and the dimension n, w may account for area, volume or diameter of a compact

set [8, 9].

2.2. Estimability Function ξf Definition

In the following, f : Rn → Rm stands for a nonlinear function. Then we can define estimability

function ξf as follow:
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ξf : Rn → R+

p → w(f−1(f(p) + U))

(6)

where U = {e2 − e1|e1 ∈ E, e2 ∈ E} is the uncertainty set and E stands for the additive noise

set. ξf (p) value is the size of the inverted set of Y = f(p) + U.

2.3. Illustration of Estimability Function

To illustrate ξf concept, let us choose the following one-dimension nonlinear function f :

f : [0, 6] → R

x →
√
x sin(x) + x.

(7)

This f function is sketched in Fig. 2 and ξf (1) evaluation is detailed. We suppose that the

additive noise set is [−ε/2, ε/2]. Then, interval analysis allows us to write :

U = [−ε/2, ε/2]− [−ε/2, ε/2] = [−ε, ε]. (8)

In this example, we choose ε = 0.7. Therefore f−1(f(1) + [−ε, ε]) results in two intervals A1

and A2. Let us denote by ai− and ai+ the Ai lower and upper bound. w result is the sum of

the diameters of these two intervals†. That is why:

ξf (1) = (a1+ − a1−) + (a2+ − a2−).

ξf (1) is found to be about 1.55. It characterizes parameter estimation error due to additive

noise and nonlinearity of f near x = 1.

The lesser ξf (x), the better the accuracy of the parameter estimation. On the contrary,

ξf (x) � 1 characterizes the impossibility to properly estimate parameters: it is due to noise,

low growing rate or non-injectivity of f [10] .

†This definition of w is consistent with the section 2.1 of this paper.
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Figure 2. One dimension f(x) =
√
x sin(x) + x function and ξf concept: ε/2 = 0.35, x = 1. In this

example, f−1(f(1) + [−ε, ε]) results in two intervals A1 and A2.ξf (1) = (a1+ − a1−) + (a2+ − a2−).

3. Estimability Evaluation

3.1. Methodology

To evaluate ξf , four steps are required: first, U must be deduced from E. Second, f(p) + U of

(6) is evaluated. Third, f−1(Y) is characterized by using set inversion [11]. Finally, w computes

the sum of the sizes of the resulting sets.

Powerful set methods exist to address set inversion problems [7]. In this paper, we are

using Quimper, a high-level language for QUick Interval Modeling and Programming in a

bounded-ERror context‡. Quimper uses interval analysis and constraint propagation [12] to

solve equations. It guarantees that the computed intervals enclose all solutions for given initial

intervals. In addition, it provides built-in contractors which speed up computation. Details

about Quimper and contractor programming can be found in [13]. But let us now illustrate

‡See Ibex/Quimper site at http://ibex-lib.org/
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the estimability function ξf on a one dimension example.

3.2. 1-D Estimability Evaluation

ξf and f of (7) are drawn for x ∈ [0, 20] and E = [−0.35, 0.35] in Fig. 3. Each point of ξf (x)

has been evaluated using Quimper software. For x ∈ [0, 20] and U = [−0.7, 0.7], the following

algorithm is applied :

1. compute Y = f(x) + [−0.7, 0.7],

2. apply the natural contractor derived from
√
x sin(x) + x on Y,

3. apply the thickness contractor [13],

4. compute the size of Y−1.

The natural contractor eliminates all the intervals which do not satisfy (7). The thickness

contractor is a special contractor to fix the bisection limits. It collects all the intervals whose

maximum size is 0.01. Therefore the intervals that are not solutions and the intervals that are

indiscernible are included by this contractor§. Computation takes about 0.002s per point¶.

ξf is not monotonic over [0, 20]. Structural identifiability [10] tells us that it is due to

variation of the cardinality of f−1(Y). ξf can take high values because of non-injectivity. On

the contrary, if the injective part of f is considered and if the growing rate of f is high, then

ξf tends to 0.

§See Quimper manual for examples.
¶on an Intel Core 2 Duo CPU at 2.00GHz

2010; 1:1–6

Prepared using acsauth.cls



A NEW INTERVAL-BASED METHOD TO CHARACTERIZE ESTIMABILITY 7

0

5

10

15

20

0 5 10 15 20

f(x)

f(x)

0

1

2

3

4

5

0 5 10 15 20

ξf (x)

x

ξf

1

Figure 3. One dimension f(x) =
√
xsin(x) + x function and ξf over x-range [0, 20] for ε = 0.7.
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Figure 4. Wireless network using TDOA

4. Application to Passive Location

4.1. TDOA Hyperbolic Equations

Let (x, y) be the unknown location of the emitter, and (xi, yi) the location of the receivers.

Distance from emitter to receiver i is:

Di =
√

(x− xi)2 + (y − yi)2 (9)

Let tij be the measured‖ Time Difference Of Arrival (TDOA) of the signal between receiver

i and j. As Di −Dj = ctij , hyperbolic TDOA equations are:

√
(x− xi)2 + (y − yi)2 −

√
(x− xj)2 + (y − yj)2 = ctij (10)

where c is the speed of the signal and (i, j) ∈ {(0, 1), (1, 2), (2, 0)}, as sketched in Fig. 4.

Solving these nonlinear equations for (x, y) is not a trivial problem [16, 17, 18], especially

‖See [14] and [15] for correlation techniques used to measure TDOA.
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when time measurements are noisy. However, we have shown in [19] that our approach based

on interval analysis, constraint propagation and contractor programming allows us to avoid

any approximations and naturally results in bounded-error estimation.

4.2. TDOA Estimability

Consider the following function:

f : R2 → R3

(x, y) → (t01, t12, t20).

(11)

where tij is defined by (10). The estimability of this function allows us to refine our TDOA

approach: for a given time additive noise and a special receivers configuration, we can now

easily build a map which states on the TDOA passive location error.

In this example, receivers are located at R0 (-1000, 0) m, R1 (0,1000) m and R2 (1000,0) m.

We choose to define w as area operator : it means that w computes the sum of the areas of all

solution boxes. Therefore, ξf unit is km2. In this simulation, E = [−ε/2, ε/2] × [−ε/2, ε/2] ×

[−ε/2, ε/2] and ε/2 = 15ns. This time error∗∗ corresponds to an analog to digital converter

with a good precision and a basic signal correlation.

In our simulation, the x-range is [−5000, 5000] m and the y-range is [−5000, 5000] m. A

100x100 sampling grid has been chosen. For each point (x, y), a Quimper file similar to listing

1 is computed. The area corresponding to ξf (x, y) is extracted from Quimper results. Figure

5 shows ξf computation. Each point takes about 0.02 s to compute.

Listing 1. Example of Quimper script for TDOA set inversion

∗∗Different ε/2 could have been chosen for each tij . They also could have been chosen randomly.
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Constants

x0 =0.0; y0=−1000.0;

x1 =0.0 ; y1 =1000.0;

x2 =1000.0; y2 =0.0 ;

ct01 in [ −592 .12 , −577 .12 ] ;

ct12 in [ −588 .53 , −573 .53 ] ;

ct20 in [ 1 1 5 8 . 1 5 , 1 1 7 3 . 1 9 ] ;

Variables

x in [ −5000 ,5000 ] ;

y in [ −5000 ,5000 ] ;

constraint−l i s t dtoaeq

s q r t ( ( x−x0 ) ˆ2+(y−y0 ) ˆ2)−s q r t ( ( x−x1 ) ˆ2+(y−y1 ) ˆ2) in ct01 ;

s q r t ( ( x−x1 ) ˆ2+(y−y1 ) ˆ2)−s q r t ( ( x−x2 ) ˆ2+(y−y2 ) ˆ2) in ct12 ;

s q r t ( ( x−x2 ) ˆ2+(y−y2 ) ˆ2)−s q r t ( ( x−x0 ) ˆ2+(y−y0 ) ˆ2) in ct20 ;

end

contractor−l i s t p i n t e r

for i =1:3 ;

dtoaeq ( i )

end

end

contractor propInte r

propag ( p i n t e r )

end

contractor i sTh ick

maxdiamGT(20)

end

To our knowledge, it is the first time that such a function is evaluated. This map highlights

the emitter positions for which the TDOA passive location error is the most important. These

2010; 1:1–6

Prepared using acsauth.cls



A NEW INTERVAL-BASED METHOD TO CHARACTERIZE ESTIMABILITY 11

Figure 5. TDOA estimability: receivers are sketched with white crosses: R0 (-1000, 0) m, R1 (0,1000)

m and R2 (1000,0) m.

emitter’s positions are shown to be located over complex regions really difficult to predict

because of the nonlinear hyperbolic equations. These intrinsic properties of f are very useful

to properly design passive location systems.

5. Conclusion

We have introduced a new interval-based method to evaluate the estimability and shown that

it is possible to predict the accuracy of the parameter estimation of a nonlinear model in

the case of noisy data. Our method also differs from the Cramer-Rao Lower Bound (CRLB)

approach, because we have not built a statistics-based estimator. Unlike CRLB, no special

assumption is required on the bias or the linearity of the model, neither on the additive noise.

Our approach is not another sensitivity analysis to study the influence of the variation of
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the parameters on the function’s result: ξf directly evaluates the error of parameter estimation

from f and additive noise set E. Estimability function ξf does not require global identifiability.

Besides, its use is not restricted to small additive noise. This is due to evaluation method based

on interval analysis and set inversion. Application to passive location illustrates the relevance

of our approach. We are certain that numerous experimental design problems can be solved

thanks to ξf . Therefore, we are now working at extending these results to a more general case

where estimability is guaranteed and no more gridded.
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