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Abstract: This paper proposes a new approach to solve the problem of finding a control
sequence for a nonlinear discrete-time system that should satisfy given set-membership
specifications on the state and the output vectors. This approach is based on set computa-
tion and constraint propagation. Two illustrative examples are provided. The approach is

then extended to deal with the robust control problem of nonlinear discrete-time systems.

1 Introduction

Consider the nonlinear discrete-time system described by

xp = f(xp 1w 1), ke{l,... .k}, (1)
Ve = g<Xk)7

where x;, € R™ is the state vector, y; € R™ is the output vector (which is assumed
to be measured) and u; € R™ is the control vector (which can be chosen arbitrarily
inside a domain Uy). The initial state vector xq is assumed to be known. Functions f
and g are the evolution and the observation functions at time k. In a set-membership
approach, vectors uy, x; and yy, are assumed to belong to known domains Uy, Xy and Yy.
Such domains may correspond to prior constraints or specifications on the state, input
or output vectors, or to the representation of a measurement. For instance, actuators
(providing uy) are naturally limited in the force (or equivalent) and safety limits state

variables, such as temperature, pressure and velocity.

On the one hand, a domain may be arbitrarily large. For instance, if nothing is known

about x;, we shall take X; = R™. On the other hand, it may be arbitrarily small. For
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instance, if y; is measured without any error, Y will be the singleton {y;} containing,
as single point, the measurement vector y;. This paper proposes a new approach based
on set computation to solve the classical problem (see [3]) of finding a control sequence
ug,uy,..., up_q for (1) such that all required set-membership specifications are satisfied

(ie., for all k, uy, € Uy, x5 € X, and y; € Yy).

The problem, which can be considered as unsolved for general nonlinear systems, is the
basic step of model predictive control (MPC). MPC (see [9] for a survey) is a form of control
in which the current control action is obtained by solving on line at each sampling time,
the finite horizon open-loop control problem (described above) using the current state as
the initial state. The first control vector of the generated sequence is then applied to the

system.

Set computation has been widely used for parameter and state estimation [10, 24, 16, 28
14], in a bounded-error context. It has also been used to deal with robust control and
analysis of linear systems [8, 18, 1, 20]. Now, the problem of finding a feasible control
sequence Ug, Uy, ..., U;_; for (1) such that all specifications are satisfied is much more
difficult and to the best of our knowledge, it has not been solved yet in the nonlinear case
(see [3] for the linear case). This is probably due to the fact that existing set-membership
methods are too pessimistic when no bisection is allowed, and limited to very small &
(typically lower than 3)when bisections are performed [15]. The approach to be proposed

in this paper will make it possible to solve our problem even when k is large.

In Section 2, the fundamental notion of Constraint Satisfaction Problem (CSP) is pre-
sented. The principle of set propagation over a CSP is given in Section 3. The application
of set propagation to open and closed loop control of discrete-time systems is presented
in Section 4. Two test-cases are given in Section 5. An extension of the approach to the

case where uncertainties exist in the system is considered in Section 6.

2 Constraint Satisfaction Problem

2.1 Definitions

A Constraint Satisfaction Problem [17] (in short CSP) H = (V,D,C) is composed of

1. aset V of n variables Xy, ..., X, (in this section, the x,’s are vectors of R" and have



nothing to do with the state vector presented in the introduction),

2. a set D of n subsets Xy,..., X, (called domains) of R™ associated with x;,...,x,,

3. a set C of m binary constraints relating these variables.

A constraint C,; of C relating two variables x; and x; of V is defined as a subset of
R™ x R"™. The variable x; is consistent in ‘H if, for any instantiation X; of x; in X, it is
possible to instantiate all other variables x; of V in their domains such that all constraints
of C are satisfied. The largest subdomain XZ of X, that makes x; consistent is called the
consistency domain of x;. If all domains are equal to their consistency domains, the CSP
'H 1s said to be globally consistent. Note that if one of the domains of a globally consistent
CSP is empty then all domains of the CSP are empty.

Remark 1 To our point of view, the name “constraint satisfaction problem”, is a bad
choice. One may ask what is the problem to be solved. In fact, the problem that is

generally considered is to find small enclosures of all consistency domains X;.

Two variables x;,x; are adjacent if they are related by a constraint. The associated

predicate will be denoted by adj(x;,x;), i.e.,
adj(x;,x;) & (x; and x; are adjacent) . (2)

In what follows, the graph G of H (where the nodes and the arcs correspond to the x;’s
and to the constraints, respectively), is assumed to be a tree containing all x;’s (i.e., with

n—1 arcs).

Example 1 Consider a CSP H = (V,D,C) with 5 variables Xy, ..., X5 and 4 constraints
Cqg, Cos, Coy and Cy3. Its graph, represented by Figure 1, is a tree. Since X1 and Xy are

adjacent, adj(xq,Xy) is true.

2.2 Consistency relation in a CSP

A relation R of V is a subset of V x V. To indicate that a pair (x;,x;) belongs to R, we

shall use the notation x;Rx;. The relation R is a preorder if it is reflezive (i.e., Vx; € V,
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Figure 1: Graph of the CSP 'H associated with FExample 1

x;Rx;) and transitive (ie., ((x;,X;) € R and (xz,%;) € R) = (x;,%;) € R). The identity
relation 7 defined by

is the smallest preorder containing V. The union R, U R, of two relations R; and R4 of
V is defined by

X; (Rl U RQ) X ~ (XZRlxj or XZRQXJ) . (4>
The product R1. Ry of two relations R and Ry of V is defined by

Consider a relation R of V and denote by R* the smallest preorder containing R (i.e., its

reflexive /transitive closure). We have

R*'=ZIURURRURRRU:-- =R (6)

>0

where R® =7 and R**! = R./R%i > 0.

Remark 2 A relation R can be represented (see e.g. [12]) by a Boolean matriz R whose
entries r;; are equal to 1 if and only if x;Rx;. The matriz counterparts of the union and
the product are the addition and the multiplication. For instance, consider the relation R

assoctated with the matriz

(>
o = O
o O
[ o Sy



The matrixz associated with R* is

R* = I+R+R?>+R?

1 00 011 1 01 011

= olro0f|+411oo0|+101111+]1°01
0 01 0 01 0 01 0 01
1 1 1

= 1 1 1
0 01

Define the relation G as follows
Xing 54 (adj(x,-,xj) and V/)EZ < Xz‘; Hij < Xj ’ (il,ij) < Ci,j)- (7>

This relation can be interpreted as follows : x,Gx; if each feasible values for x; is consistent

with the constraint C,; and the domain for x;.

The smallest preorder relation G* which contains G will be denoted I'. If x,I'x;, we shall

say that x; is consistent with x;.

Example 2 Consider the CSP H = (V,D,C) with 5 real variables xy,. .., x5, the graph

of which is given by Figure 1. Assume that the constraints are given by

Cp = {<571,572) ’ 57% ‘|’57% < 4}7

Cos = {(Z9,%5) | 2y < &5 + 1}, ®)
Cor = {(Z2,24) | Ty = exp (¥4 + 3)},

Ciz3 = {(Z1,%3) | 1 = sin(Z3)}

and the domains for the variables are given by
X, =[0,1], X, =[1,10], X3 = [-5,5], X4, = [-3,3] and X, = [-7,12]. 9)

From (7), 1Gxy because Vi, € [0,1], 32y € [1,10] such that 23 + &2 < 4. With the same
manner, we have x9GTs, ToGxs and x1Gxs bul we do not have x9Gx, x5GTe, x4GTy, and

$3ga')1 .

Proposition 1 (i) If x; is consistent with all other variables then x; is consistent in H
and 1ts domain X is equal to its consistency domain XZ (i) if x; is consistent with x;

and if X is replaced by a subset X} of X;, then x; remains consistent with x;, but the
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variables X, k # x; that were consistent with x; may become inconsistent with x;. (iii)
All variables are consistent with all other variables if and only if all domains of H are
equal to their consistency domain (i.e., H is globally consistent). These propositions can
be written in a mathematical form as follows:

i) (vx; € V,xTx;) = X, =X,

(i) if x;I'x; and if X; is replaced by a set X, C X; then we still have x;I'x;,  (10)

(i) (Vx; € V,Vx; € V,x[Tx;) < (Vx; €V, X; = X,).

Proof: We shall only give a sketch of the proof of (i) on an example based on the
CSP represented in Figure 1. Assume that (Vx; € V,x;I'x;) and let us show that x; is

consistent. We have x1I'xy, x1I'x3, x3I'x, and x,I'x5. Now, from (7),

(a X1PX2 = V§1 < X1,3§2 < XQ ’ (il,)N(Q) < C12,

)
(b> XQPX5 = V§2 - XQ, 3%5 - Xg, ’ <§2,§5) - C25, (11>
(C> XQPX4 = V§2 - XQ, 3%4 € X4 ’ <§2,§4) € C24,
(d> X1PX3 = Vil < Xl,aiy, < Xg ’ (il,s&g) < Clg.
Irom (a) and (d), we get:
. I X, € X X1, X C
Vi € Xy T0T% [ 2 €% ) such that | K0 %) €Cr (12)
X3 € X3 x1,X3) € Cy3
From (b),
Xy € Xy (X1,Xg) € Cyo
V§1 € Xl; 3%23%33%5 §3 - X3 such that (il,ig) € C13 (13>
X5 € X (X2,X5) € Cys
and from (c)
Xy € Xy (X1,X5) € Cyo
. JUNUREUR X3 € X X1, X C
VR, € Xy, 3035, 3%, 3% | S5 | such that | K% €Cs (14)
x4 € Xy (X9,X5) € Cos
X5 € X5 (X9,%X4) € Cyy
Therefore x; 1s consistent 1n H. |

2.3 Contraction operator

If adj(x;,x;) is true, define the contraction operator py’ as follows

piz (Xz) L {iz - Xz ’ Hij - Xj, (il,ij) € C”}



Note that px’ (X;) is the largest subdomain of X; that can replace X; in order to have

x;1'x;.

Example 3 Consider the CSP treated in Fxample 2. We have

por (Xy) = {21 €1[0,1] | 322 € 0,10], 27 + 73 < 4} = [0,1], (15)
pg: (XE)) = {575 S [_77 12] ’ EI572 S [07 10]7 572 < 575 + 1} = [17 12]

Interval computation [22] may help to obtain these intervals. For instance,

P2 (Xs) = {is€[~7,12]| 3%, €[0,10],3a € [0,00], &5 = Gy +a—1}  (16)
= [-7,12] N (]0,10] 4+ [0, 00[+1) = [-7,12] N [1,00] = [1,12].

Example 4 Assume that the constraint between the two adjacent variables x; and X; is
gwen C,; ; = {(x;,x;) € R" x RY | x; =f(x;)}. Then,

P (X)) = {xeX | eX;, x =)} =f(X)NX,, (17)

Proposition 2: In H, if x; and x; are adjacent, the statement X; := p3 (X;) leaves the

consistency domains of H unchanged. Moreover, after this statement, x,I'x;.

Proof: The consistency domain Xk of x;, is made with all X;’s of X, such that all other
variables can be instantiated in their domains so that all constraints are satisfied. Now, the
statement X := py’ (X;) eliminates values for x; that cannot satisfy the constraint C;; and
therefore, this statement cannot modify X,. The fact that the statement X; := P (X))
yields the property x,I'x; is a direct consequence of the definition of I' (see equation (7)).

3 Set propagation

Set propagation will make it possible to compute consistency domains. The ideas pre-
sented here are taken from [5], [21] and [2].

Notation: Recall that the graph of the CSP H has been assumed to be a tree G. Let

X -

15+ -+, Xj, be k variables of H. The smallest subtree of G which contains x;,,...,x;, will

7
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Figure 2: Sequencing of the contractions in FALL; the root x; of the tree 7 corresponds
to the leftmost node;

be denoted by 7 (x;,,...,%;, ). The set of all x; involved in a given subtree 7 of G will
be denoted by var(7). Note that var(7 (x,,,...,%;.)) D {Xj,.-.,X;, }-

Let 7 be a subtree of G, such that x; € var(7). Consider the recursive following algorithm.

Algorithm FarL(x;, 7)
1 mark x;;
2 for all x; € V such that adj(x;,x;);

3 if x; is not marked and if x; is a variable of T

4 FALL(x,,7); (18)
5 X = pd (X0)

6 end if;

5 end for.

The name FALL is due to the fact that x; can be considered as the root of 7 and that
algorithm operates from the leaves of 7 down to its root. As for botanical trees, the root

is at the bottom of the tree, and the leaves at the top.

Proposition 3: After completion of FALL(x;,7), X; is consistent with all variables of
var(7T) (ie., Vx; € var(T), x,I'x;).

This proposition, proven in [13], is illustrated by the consistency graph of Figure 2. This
graph represents the sequencing of the operations of FALL. An arrow from the node x;
toward the node x; indicates that the operation X; := pi’ (X;) has been performed which

implies that the relation x;I'x; holds true.

Consider the recursive following algorithm where all variables have initially been un-
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Figure 3: Sequencing of the operations in CLIMB; the contractions are performed from

the root upto its leaves

marked.

Algorithm CLiMB(x;,7T)
1 mark x;;
2 for all x; € V such that adj(x;,x;);

3 if x; is not marked and if x; is a variable of T
4 X; = p3 (X5);

5 CLIMB(x;,7);

6 end if;

5 end for.

The algorithm operates from the root x; of 7 upto its leaves.

Proposition 4 (proven in [13]): If (Vx; € var(7T ), x,I'x;), after completion of CLIMB(x;, T),
we have (Vx; € var(7), Vx; € var(7), x,I'xy,).

This proposition is illustrated by the consistency graphs of Figure 3 which depicts the
sequencing of the operations in CLIMB. Small arrows indicate that before running CLIMB,
the root (leftmost node) x; is consistent with all other nodes. Big arrows indicate that the
operation X; := Px; (X,) has been performed by CLIMB and thus that the relation x;I'x;
is valid. After completion of CLIMB, if the subtree 7 corresponds to the whole graph G
of the CSP 'H, then H is globally consistent.

Example 5 Consider the CSP 'H with 5 variables Xy, ...,X5 related by the following

constraints

x; = f3(x3),
xy, = fu(xy),
xy, = fy (X5) ) (19>
xy = fh(xy).



Figure 4: The graph G of the CSP is a tree, the chosen root is x;

The graph G of 'H is gwen by Figure 4, where arrows indicate the direction in which
the functions apply. Since it does not contain any cycle, this graph is a tree. The tree
T (x1,X3,X4,X5) 1S equal to the initial tree G. The tree T (X1,X4) 18 a chain with the 3
nodes X1,Xy and x,. The consistency domains Xl of x; is obtained by FALL(xy,G). In this

context, FALL translates into the following algorithm

Algorithm FALL(inout: X;,X,, Xy, X, X;)

1 Xy =Xy Nk (X); /) Ky = pE (Xy)

2 Xy=X,NE1(Xy); /Xy =p (Xp) (20)
(X1)
(X1)

9 X=X n1f(Xs); /X=X
4oX=Xn61 (X)) /X =2 (X

After Step 1, x9I'xs; after Step 2, x,I'xy; after Step 3, x,I'x3; after Step 4, x1I'xy. Thus

X1 18 consistent with Xq, X3, X4, X5 and Xq s equal to its consistency domain X;.

Example 6 Consider the CSP of Example 5 and assume that V x; € V, x1I'x;. To get
the consistency domain of a giwven variable, say X, it suffices to call FALL(x5,7 (X1,X3)),

which translates into the sequence
XQ = XQ M f2 <X1> 3 Xg, = Xg, M fgl (XQ) 3 (21>

After completion of the sequence, xsI'xy. By transitivity, ¥V x; € G, x50'x;.

Example 7 Consider again the CSP of Examples 5 and 6 and assume thal V x; € G,

x:1I'x;. To compute all consistency domains, it suffices to run CLIMB(x1,G). In this

10



context, it translates into the following algorithm.

Algomthm CLIMB (mout Xl; XQ, Xg, X4, Xg))
5 XQ = XQ N f2 <X1> 3 // XQ = pi; (XQ)

6 Xy =Xsnf' (X1); //Ksi=p2 (Xy) (22)
T X=X N1E (Xs); /X =22 (Xs)
8§ Xy =X Nnf (Xy); /Xy = p2(Xy)

After completion of CLIMB H is globally consistent.

Remark 3 When the graph is not a tree and when the constraints are not binary, it is
possible to group variables into vectors to build a new CSP, the graph of which is a tree.

This is the purpose of so-called clustering techniques [7].

The computation of f(X), £ (Y) or XNY, needed by FALL and CLIMB, can only be
approximated in the general case [13]. However in some particular cases it is possible to
perform these tasks exactly and in a finite number of steps. This is illustrated by the

following examples.

Example 8 When all X;’s are polytopes and when the constraints x; = £ (x;) are such
that £ is linear, all domains handled by FALL and CLIMB will also be polytopes [27]. The
computation of the consistency domains of the CSP can thus be done in a finite and exact

way.

Example 9 Assume that all functions £ involved in the CSP are such that for all boxes
[x] and [y] of appropriate dimensions, £([x]) and £ ([y]) are boxes. If all X;’s are boxes
then all consistency domains are also boxes and can be computed exactly by FALL and

CLIMB. An example of such a box-conservative function is

o\ —x3+2
f ( To ) B ( xy + exp(xy) ) ' (23)

Example 10 A corner is a subset of R" of the form [x] = [x1,00[x -+ X [z, ,00[. There
exists some functions that are corner-conservative. For instance, the inverse of the corner

Y = [y;, 00X [y, , 0] by the function
£ T . min (a:l + 2, 3,172 + 4) (24>
To min (5,171 + 6, 7372 + 8) ‘

11
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If all domains are corners, the consistency domains can be computed exactly provided that

only corner-conservative functions are involved in the set propagation.

Example 11 General compact sets of R™ can be approrimated by union of boxes with
an arbitrary accuracy. For instance, an inner and outer approzimation of the set X =
{(@1,29) | 1 <2t + 23 + z129 < 2} is depicted in Figure 5. Interval methods can thus
be used to compute the reciprocal or the direct images of X by nonlinear function in a

guaranteed way [14]. For instance, the reciprocal image of X by the function

e [ o sin(x;) + x2
T\ 2 22 + sin(xy)

15 approximaled as illustrated by Figure 6. This approximation has been obtained by the
algorithm SIVIA (Set Inversion Via Interval Analysis [14]) in 0.5 sec. on a Pentium 300.

Remark 4 If we consider the sel operation ‘computing Py (X;) exactly’ as an elementary
operation, then the complexity of both algorithms FALL and CLIMB is linear with respect
to the number of variables in the tree. Unfortunately, often in practice, Px (X,) can only
be approximated and computing its approximation can only be performed by an algorithm

whose complexily is exponential with respect to the dimension of X,.

12



Figure 6: The reciprocal image of X by f computed by the algorithm Stvia

4 Application to control

State-space equations (1) can be cast into binary relations as follows:

xp = f(z1),

{Xk = (x5 1,u5.1), o X = Tx (21) | (26)
Ye = g<Xk)7 u, = 7Tu<zk)7
Ye = 8(Xx)

where k € {1,...,k} and where 7, and 7, are the projection operators defined by the

following equivalence
z=(x u) & (u="my,(z) and x = 74 (2)). (27)

Our control problem can be represented by the CSP H = (V, D, C) with

V = {ug,..., U 1,X0, X1, X5, %0, Z5, Vi > Yi} 5
D = {Uo,...,UEil,Xo,Xl,...,XE,RnZ,...,RnZ,Yl,...,YE}, (28>
C = {Xk =f(z 1), Xz = 7x (22) , 0 = Ty (Z1) , Y1 = 8(Xz), k = 1,...,12:}.

The graph G of H is the tree shown in Figure 7.

4.1 Open-loop set controller

Let us recall that xg is known, i.c., its domain X, is a singleton {xy}. The control

sequence (Ug,...,0; 1) € Uy x «-- x U;_; is feasible if the simulation of (1) leads to

13



Figure 7: Graph G associated with the system to be controlled

X;’s and yi’s that belong to their domains. The following algorithm computes a feasible

sequence Ug, - - ., Uj_q-
Algorithm OPENLOOPCONTROL(in: Xy, Uy, Yy,...,X;, Us_4, Yi; out Uy, ..., 05 4)
1 Zo:=R"; ... Zy_q =R,
2 FALL(ug,G);
3 if Uy =0, return ("no control can be found”);
4 fork:=1tok—1
5 choose g 1 € Uy 1; Up 1 :={u_1};
6 FALL(uy, 7 (ug_1,uy));
7 choose u;_; € U;_;.

Remark 5 If we consider set operations such as (i) computing the direct image, (ii)
computing the reciprocal image, (i) intersecting, (iv) projecting, ... as elementary oper-
ations, then the complexity of OPENLOOPCONTROL is linear with respect to the number
k. Again, recall, that, in practice, these operations can only be approximated and their

complexities are often exponential with respect to n,.

Comments: Step 2 computes the consistency domain @0 of ug. After Step 2, ug is
consistent with all other variables, i.e., if the relation x;I'x; is represented by an arrow
from x; to x;, there exists a path from any other variable to ugy (see the consistency
graph of Figure 8 (a)). If @0 is empty, no feasible control sequence can be found and
the algorithm stop at Step 3. At Step 5, one ug is chosen in I[AJO. After the statement
Uy := {0y}, up will remain consistent with all other variables (see (ii) of Proposition 1)

and the associated oriented tree is still given by Figure 8 (a). The consistency domain

14
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Figure &: Principle of the algorithm OPENLOOPCONTROL

for u, is then obtained by FALL(uy, 7 (ug,u;)) at Step 6 (see Example 6). After Step 6,
the left part of consistency graph is given by Figure 8 (b). At this stage, both uy and
u; are consistent with all other nodes. After instantiation of u;, the variable u; remains
consistent with all other variables, but z; is not consistent with u; anymore (see Figure 8
(c¢)). This reasoning can be repeated k times to build the feasible control sequence. Note

that the statement FALL(uy, 7 (u;_1,u;)) at Step 6 amounts to performing the following

statements:
L1 = Ly N7yt (Upy);
Uk = Uk N Tu (Zk) 3

Note that since 7 (uy_1,ug) is a chain, FALL(ug, 7 (uy_1,u;)) could also be replaced by
CrLIMB(uy_1, 7 (ug_1,uy)) at Step 6 of OPENLOOPCONTROL.

Remark 6 The conceptual algorithm OPENLOOPCONTROL, where Step 6 is replaced by
the sequence (29) is similar to that of Bertsekas [4] which has been obtained without taking

into account that the graph associated with the constraints is a tree. However, a practical

15



implementation of this algorithm requires some computations with sets (such as £ (Zy_1)
and wy (Zy,) ), which can be performed (in an approzimate but guaranteed way) only with

interval methods, exceptl for particular systems.

4.2 Closed-loop set controller

Assume now that the initial state vector is not known anymore and that at time k, a
measurement yj of yz is collected. In a bounded-error context, to each measurement is
associated a set-membership relation of the form yy, € Z (yy) where 7 is the interpretation
function which associates to the noisy data yy, a set Z (yy) to which the noise-free output
y; should belong. Thus, when the measurement y; is collected, the domain Y;, of y; has
to be contracted into Yy NZ (y3).

Assume that at time k the state vector is known to belong to X (# ). The closed
loop control problem at time k amounts to finding u, € Uy such that all future specifica-
tions can be satisfied. The following algorithm takes into account that at time k a new

measurement vector is collected, in order to compute a feasible control sequence.

Algorithm CLOSEDLOOPCONTROL(in: Xg, Ug, Yy,...; out: g,..., 0z 1)
1 Zoy:=R"; ... Zg_; :=R™;

2 PFALL(ug,G);

3 fork:=0tok—2

4 if Uy, = 0 return (" fail”);

5 choose v € Uy; Uy := {up};

6 apply the control u;, to the system;

7 wait for a measurement yy1; Y1 :=Z (¥ey1) N Yy
8 FALL(ugyq, T (U, Upg1, Yii1));

9  end for;

10 choose uz_, € Uz_;.

Comments: This algorithm is similar to OPENLOOPCONTROL. The main difference is
that measurements are collected at time k£ and contract the domains in an unpredictable
way. After Step 2, the consistency graph is given by Figure 9 (a). If the consistency
domain associated with ug is empty, then nothing can be done to find a feasible control
sequence and a failure is returned at Step 4. At Step 5, a ug is chosen in Uy. It can be
chosen in an optimal way, but an optimal strategy often corresponds to choosing a point

that is on the border of Uy and increases the probability of failure at the next steps. A

16



@ ) @ © @ ®

Figure 9: Principle of the algorithm CLOSEDL.OOPCONTROL

robust strategy may correspond to choosing a point that is deep inside Uy. Once ug has
been instantiated, the new domain for Uy becomes equal to the singleton {ug} at Step 5.
At this level, the consistency graph is still given by Figure 9 (a). After applying to the
system the control Uy, we wait for the measurement y;. This translates into a contraction
of Y, and x; is not anymore consistent with y;. The consistency graph is now given by
Figure 9 (b). Step 8 computes the consistency domain for u; and the consistency graph

is now given by Figure 9 (¢). Note that Step 8 translates into the following statements.

Zy. = Zpy Nyt (Uyp);

Xep1 = X NF(Ze) Ng™t (Yaya); (30)
LZiyr = Ly Nt (Xpga)s

Uki1 = Uppr Ny (Zgga) 5

Step 3 to 9 are repeated several times, until the index k becomes equal to k — 2.

5 Test cases

5.1 Test case 1

Consider the timed-event graph illustrated by the Petri net (see [23] for a survey) of Figure
10.

In this system, tokens (represented by black points) circulate following the directions
of the arrows. Transverse segments correspond to transitions and circles correspond to

places. At time k, a transition is fired when all its upstream places contain at least one
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Figure 10: Discrete-time system to be controlled

Figure 11: Evolution of the Petri net for k = 1,2,3 and 4

token. In such a case, one token is removed from each of the upstream places and one
token is added to all downstream places. This operation takes place until at least one of
the upstream places becomes empty. At time k = 0, there exists 7 tokens in the system
(see Figure 10). Assume that at time k = 1 two tokens have been inserted in the Petri
net through the control transition u. The evolution of the system for k =1,2,3 and 4 is
illustrated by Figure 11.

Denote by % (ux and yg, respectively) the number of tokens that have crossed the tran-
sition z; (u and y, respectively) at time k. For instance, in the situation represented in
Figure 11, we have 2} = 0,21 = 0 and z; = 2, for k¥ > 2. Note the sequences %, u;, and
Y Increase with k. The evolution of the system can be described by the following state-

space equations (see [6] for more details on the state-space representation of timed-event
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graph):

1 . 5
Lk min(ug—1, T3_y)
2 1
Ty Tr 1
3 2
Ty, Tr 1
4 3
Ly, Ty q
x x| +3
= ) (31)
28 xl
k k-1
7 6
Ly, Ty q
8 1
Ty Tr g
43 42
Ty, Tr 1

We shall assume that at time k¥ = 0 no transition has been fired, i.e., for all 7, ) = 0.
The output to be considered is the number of tokens that leave the system. This leads us

to the observation equation

Yx = 37%37 (32>

where z}® corresponds to the rightmost transition.

Let us now illustrate the methodology followed by OPENLOOPCONTROL to find a control
sequence which satisfy some given specifications. For instance, assume that it is required
that at time k = 24 two tokens and for k = 33 three tokens should have left the system.
Taking into account the fact that y; is an increasing sequence, these specifications yield

the following domains for .

k 0—23(24—32|33— 34
Yk [0,00[ [2700[ [3700[

(33)

All other domains are taken as | — 0o, 00[. FALL(ug, G) provides the following domains for
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uy, and .

5)

k Uy
0 [0, 00
1—4 [
5—13 ||
14—16 ||
17—19|] -

]

]

]

8

21818888138

(34)

20 — 23
24 — 32
33 — 34

I EEEE

Note that, since all initial domains are corners (except Xo which is known and can
be removed from V), and since all set operations involved in FALL(ug,G) are corner-
conservative, FALL(ug, G) can be implemented in a very efficient way (less than 0.1 second
in a Pentium IIT). Now, at Step 5, OPENLOOPCONTROL chooses any ug in Uy. At Step

6, FPALL(uy, 7T (ug,uy)) translates into the sequence of statements

ZO = 7T;1 (X()) N 7T7;1 (Uo) N Zo,
Xl = fl<Z0) N Xl,

Zl = 7T;1 <X1> N Zl,

Ul =Ty, (Zl) .

(35)

S R

Now, before this sequence, Z; is the corner: Z; = X; x U;. After Step 3, Z; := m! (X;) X
U, where X/l C Xj. Its projection onto the u;-space remains the same. Therefore,
any Instantiation of ug does not change the domain for u;. This reasoning made for
k = 0 can also be done for k = 1,2,.... This shows that the set of all feasible control
sequences (g, . .., usy) in a corner of R? and that any arbitrary choice of u;, at Step 5 of
OPENLOOPCONTROL will not restrict the choice for uy 1, usy9,... This means that, for
our testcase, the u;’s can be chosen independently in their domains immediately after Step
2. Note that the corner of all feasible control sequences contains feasible sequences that
are not monotonic, but which satisty all constraints. Of course, such decreasing sequences
have no physical meaning and should not be chosen. A as-late-as-possible strategy would

lead to the sequence
(ug, ..., uzq) =(0,1,1,1,1,2,2/2,2/222 223 3,...,3) (36)

which is the smallest feasible sequence. The same sequence would have been obtained

using the residuation theory applied to optimal control of timed-event graph [19, 6].
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5.2 Test case 2

Consider the discrete-time system described by the following state-space equations

ajllc = %ajllcfh
TP = Tpguert 1 (37)
ye = sar(zy) + sqr(zg)

where k € {1,...,5}. The required domains for the elements of the state vectors and the

output are X; =X, =X; =X, =X, =[-1,1] x[-1,1],and Y, =Yy, = Y3 =Y, = Y5 =
[—1,1]. The initial domains for the controls are Uy = U; = Uy = Uz = U, = [0,5]. The

initial state is taken as xo = (1, —1).

For this test-case, the computation of f(X), f~!(Y) or X NY, needed by FALL and
CLIMB, can only be approximated. This can be done, for instance, by using the AQCS
solver (approximate quantified constraint solving) developed by one of the authors [25, 26].
AQCS computes inner and outer approximations of sets with an arbitrary accuracy and

implements set computation using such approximations.

Using AQCS, OPENLOOPCONTROL computes the following feasible control sequence in
about one second on a 500MhZ Linux machine. The feasible control sequence and the

corresponding states and outputs are given by the following table (rounded to 3 digits).

k 0 1 2 3 4 5
ug || 1.866025 | 2.272732 |  2.05 1.96 0.5

x} 1, 0.5 0.25 0.125 | 0.0625 | 0.03125
x2 -1 —0.866 | —0.968 | —0.985 | —0.93 | 0.535
Yr 2 1 0.9995 | 0.986 | 0.869 | 0.2872

6 Robust control

6.1 Robust control problem

In a robust control and a bounded-error contexts, it is generally assumed that bounded
perturbations wy occur in the system and that the initial state vector xg is unknown. The
robust control problem amounts in finding a feasible sequence uy, ..., u; which satisfies

all required specifications for all feasible perturbations w;, and for all feasible initial states
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Xg. This problem is much more difficult than the non-robust control problem proposed in

Section 1, since the quantifier V now occurs in the formulation of the constraints.

The equations (1) should now be written
xp = f(xp 1, U1, Wi 1) ked{l,... k} (38)

where wy, € R™ is the perturbation vector which assumed to belong to domain Wy. The
initial state vector x¢ is assumed to belong to the set Xy. For simplicity, we assume that
no output specification are required. The output equation has thus been removed. Recall
that the control and state vectors ug, x; are all assumed to belong to known domains Uy,

and X which may be arbitrarily large.
The robust control problem can be formulated as follows.

Robust control problem : find uy € Up,u; € Uy,...,u;_; € Uz, such that

VW() < Wo, e ,VWE,I < Wg,l,
Vxg € Xo, Ix; € Xy,...,3x; € X, (39)

x; = (%o, U0, Wo), ..., Xz = (x5, 051, Wy )

We shall assume here that we are able to compute with sets (i.e., to compute the reciprocal
or the direct image of a set by a function, to project a set, ...). Let us recall that
sometimes, (e.g., when sets are polygons and functions are linear), set computation can
be performed exactly. When the sets involved have low dimensions it is possible (for most
practical systems) to approximate the set operations by using interval solvers. In this
section, we shall propose a set algorithm that will be able to solve our robust control
problem. We shall take into account the structure of the problem in order to avoid the
manipulation of high dimensional sets, i.e., the dimension of the sets should not depend

on k.

6.2 Notions of first-order logic

This small section presents some notations and recalls basic notions related to the first-
order logic (see [11] for more information on the topic). These notions will be needed

to transform our robust control problem into a sequence of set operations, where the

dimensions of all sets are k-independent.
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Roughly speaking, a first-order logic involves predicates (such as x; > x5+ 1) and quanti-
fiers 3 and V. The free variables of a first-order formula are those that are not associated

to a quantifier.

For instance, Formula (39) is a first-order formula. Its k free variables are up, uy, ..., u;_,
its 2k 4+ 1 quantified variables are wy,..., Wj_1,Xq,X1,...,X; and its k predicates are
” _ o _ _ _ ”

x; = f (X0, ug, Wo),. .., X = (X1, up_y, wy_y)".

If, in a first-order formula, all quantifiers appear in the front, then the formula is said to

be in a prenex form. This is the case for Formula (39).

If a(a), B (a,b) are two first-order formulas with free variables a, {a,b}, respectively, and

if f is a function, we have the following right shift rules :

(s1) JaceAVbeB ala),f(a,b) < JaecA ala),VbeB, F(a,b)

(s2) YVae AFbeB a(a),f(a,b) < Vaec A a(a),IbeB,F(a,b) (40)

The purpose of these rules is to move the quantifiers on the right of the formula. In order

to show how we shall use these rules, let us prove the following equivalence
da € AVb e B,a(bc),B(a,c) @VbeB a(bc),Jac A F(a,c). (41)

The left formulaJa € A, (Vb € B, (b, ¢)) , 5 (a, ¢) can be rewritten as Ja € A, (), 3 (a, c).
Irom (sl), we get v (¢),Ja € A, 3 (a,c) or equivalently Vb € B, o (b,¢) ,Ja € A, 5 (a,c).

Define the following operators for two sets A and B:
A\B= {a€A a¢B}. (42)

The following rules make it possible to rewrite a formula with quantifiers into a predicate.

(el) Ja€ Aja= f(b) & be f1(A)

(e2) a€ A FeB, (a,b) eC & ae7,((AxB)NC) (43)
(e3) a€AVbeB, (a,b)eC & ae A\m, ((AxB)\C)

(ed) Vae A,(FbeB, b= f(a),a(b,c) & YbeBN f(A), a(b,c)

where m denotes the projection operator with respect to the variable a. Figure 12 give a

graphical interpretation of equivalences (e2) and (€3).

6.3 Algorithm

Theorem 1 The robust control problem can be solved by the following set algorithm.
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Algorithm RoBUSTCONTROL (in: Xg, Uy, Yy,...,X;, Uiy, Y;; out 0g,...,0;_4)
1 X,; = X;;

2 for k := k downto 2

3 kal =Xy Ny (kal X Up_1 \ g (kal X Up_1 X Wiy \fﬁl(yk))) ;
4 endfor

5 U i=Up \ oy (Xo % Up N T (Ko % Up x Wo \ £1(X1)) )

6 if @0 = () return ”The robust control problem has no solution”; end;

7  choose ug € I[AJO;

8 XO := Xo;

9 fork:=1tok—1

10 X=X V(X oy, Ty, Wiy):

11 I[/jk = U \ Ty (Yk X Up x Wy \ f71<§k+1)) ;

12 choose u;, € [[Ajk;

13 endfor

The set Xk represents the set of all state vectors at time k such that if x; € X x then
for all feasible future perturbations, it is possible to find a control such that all future

specifications are satisfied.

The set Xk represents all possible (i.e., for all feasible initial state and for all feasible
past perturbations) state vectors that can be reached at time k if the past controls uy =

Ug,...,U; ; = U;_; have been chosen.
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If we assume that the set operations can be executed, then, this algorithm will find (if
exists) the robust control sequence. Recall that, in general (but not always), the set

operations can only be approximated.

The complexity of most set operations is exponential with respect to the dimensions of
the sets. Now, in the algorithm ROBUSTCONTROL all sets involved have a dimension
smaller than ny + ny + 1. Therefore, the complexity of the algorithm can be considered

as linear with respect to k and exponential with respect to ny + ny + ny.

6.4 Proof of the theorem

The proof is by induction. The main idea is to transform the quantified formula into set
computation. We shall first explain how ug can be found. Then, we shall see how u;, can

be found from the knowledge of uy,...,u; ;.
Robust control problem at time k£ =0 : Find uy € Uy such that

3111 < Ul, ey E|ug,1 < UE*I?
VWO € WO, . e 7VWE71 < WE*I?
Vxo € Xo,Ix; € X4,...,3x; € X,

xy = f(x0,u9, W), ..., x5 = f(x;_ 1, up 1, Wy ).

F (uy) : (44)

Note that the only free variable of the first-order formula F' (ug) is ug. Successive appli-

cations of the right shift rules (40) transform F' (ug) into

VXO € Xo, VWO € Wo, Ele € Xl; X4
3111 € Ul, le € Wl, E|X2 < XQ, Xo

1 = f(Xo,uO,Wo)

2 =f
<X17u17W1) (45>

3 . . .

4 Jup, €Upy, Yw € Wiy, 3xp € Xy, x =031, w1, Wi y).

Let us eliminate all quantifiers in a backward way (i.e., the last first). From (el) of (43),

we get that
Ix; € Xpxp = (31, Wy, W) & (X5, 05y, wiy) € £ (Xp) (46)
which eliminates the last quantifier. The previous quantifier (Ywy,_1) is now eliminated
as follows :
Vw1 € Wiy, (X1, w1, wi_y) € 71 (Xp)

(e3)

(47)
& (upg,x5 ) € (Upy X Xy ) \ Tu (X g x Uy x Wiy \ 71 (X))
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The elimination of the (Ju;_;) quantifier is performed using rule (e2). We get that the

line 4 of (45) (the only free variable of which is x;_;) is equivalent to
X; 1 € Xkla (48)
where
Kpor 2 X N e (Upy X Xgog) g (Kpoy x Uy x W) \E71(Xp))) . (49)

The procedure is performed until all quantifiers have been removed. We get that F' (ug)
is equivalent to the predicate 'uy € I[AJO’ where @0 is the set computed Steps 1 to 5 of the
algorithm ROBUSTCONTROL.

Robust control problem at time k:

Assume that ug,...,uz_; have been chosen to be equal to ug,...,u;_;. The problem at
time k is that of finding u; € U, such that

;

Jupyy € Ugyq, oo, Fug g € Uy,
Ywo € Wo,...,Vw;_; € Wi,
F(ug): ¢ Vxo€Xp,3x; €Xy,...,3xz € X, (50)
x; = f(x9, 09, Wo), ..., X = F(xp 1,05 1, Wi 1),
Xp1 = F(Xp, g, Wi), oo X = F(x g, up g, Wi y)

\

Note that in the first-order formula F'(uy), the only unquantified variable is u; (since
Uy, ...,U; ; have already been instantiated, they should not be considered as variable

anymore). Iterative application of the right shift rules yields that F' (uy) is equivalent to

;

1 VXO < Xo, VWO < Wo, E|X1 < Xl; Xq = f(X(), ﬁo,Wo),
2 le EWl, E|X2 EXQ, X9 :f<X1,ﬁ1,W1),
3 . )
4 Vw1 € Wiy, Ix; € X, Xp = F(Xp_1, Up_y, Wiy),
5 Vwy € Wy, Ixpy1 € Kigr, Xpyr = F(xp, ug, wye),
6 Jupy € Uppr, VWi € Wepy, Ixppo € Xpgo, Xpyo = F(Xpq1, Wpgr, Wiy ),
7. .. )
(8 Fupy €Upy, Vwp € Wiy, 3x; € X, x;, = f(x5_ 1,054, Wi y)-

(51)

We have shown that the subformula composed by lines 6,7 and 8 of Formula (51) is

equivalent to 'x; 1 € X k11 - Let us now eliminate the first quantifiers of Formula (51) in
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a forward manner. From (e4), we get that

VXO < Xo,VWO < Wo, E|X1 < Xl,Xl = f(Xo,ﬁo,Wo),Oé (Xl)

52
~ Vxl € Xl mf(X(),ﬁ(),WO),Oé(Xl) ( >
where « (x1) is the subformula given by lines 2,3,. .. 8 of Formula (51). Therefore, Formula
(51) can be replaced by
( Vxl € Xl M f(Xo,ﬁo,Wo)
le - Wl; ElXQ - XQ,XQ = f(Xl,ﬁl,Wl)
- (53)
Vwi o1 € Wy, 3%, € Xp, x5 = F(xp-1, U1, We1)
Vwi € W, 3x 11 € Xpqa, X1 = £, ug, wy,)
H
L Xki1 € Xy
Applying (e4) of (43), k — 1 times yields that Formula (53) is equivalent to
VXk < Xk
Vwy € Wy, 3xp 11 € Xy, Xpq1 = £(xp, ug, wy), (54)
Xpy1 € X!ﬂrl-
where gk 1s defined as follows.
XO = XO? (55>
X, 2 XN f<§kfluﬁkfluwkfl)-
Irom (el), we get that Formula (54) is equivalent to
VXk € Xk,vwk € Wk,f(xk,uk,wk) € §k+17 (56>
1Le.,
VXk € Xk,VWk - Wk; (Xk; uk,wk) € f71<§k+1). (57>

Applying (e4), we get that the formula (57) (and thus Formula (50)) is equivalent to

w, € Uy \ 7 ((X} Uy X W) \ f*l(ikﬂ)) . (58)

7 Conclusion

This paper proposes a new and general algorithm to compute a control sequence of a

discrete-time system described by nonlinear state-space equations. The approach is based
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on constraint propagation and takes advantage a the tree structure provided by the state
formulation. The methodology has been illustrated by two test-cases. An extension to
the case where uncertainties are involved in the system has also been considered. The
special structure of state space equations have been taken into account in order to make

the complexity of the algorithms linear with respect to the number k of samples.

The basic operations needed by our algorithms are difficult set operations such as com-
puting the intersection of two sets, computing the direct image or the reciprocal image
of a set. Computing exactly these set operations is sometimes possible (see Test-case
1), but in most situations, they can only be approximated. Interval algorithms (such as
those used by the solver AQCS) can perform this task, but the computing time of existing

algorithms is too large to allow the resolution of real-life problems.

However, our approach is general and made it possible to solve elementary problems in
a reliable way for the first time. For instance, to our knowledge, Test-case 2 could not
to be solved rigorously by other existing methods. Test-case 1 can be solved by using
the residuation theory, but residuation only applies to timed event graph systems, which

represent a tiny class of discrete-time systems.

Set algorithms seem to be appropriate to deal with the general (robust and non-robust)
control problem. The main limitation of these algorithms is that, at the moment and
for practical problems, their elementary set operations cannot be performed (with the

required precision) in a reasonable computing time.
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