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One of the fundamental tasks of robotics is to solve the localization problem, in which a robot must determine its true pose without any
knowledge on its initial location. In underwater environments, this is specially hard due to sensors restrictions. For instance, many times,
the localization process must rely on information from acoustic sensors, such as transponders. We propose a method to deal with this
scenario, that consists in a hybridization of probabilistic and interval approaches, aiming to overcome the weaknesses found in each
approach and improve the precision of results. In this paper, we use the set inversion via interval analysis (SIVIA) technique to reduce the
region of uncertainty about robot localization, and a particle filter to refine the estimates. With the information provided by SIVIA, the
distribution of particles can be concentrated in regions of higher interest. We compare this approach with a previous hybrid approach
using contractors instead of SIVIA. Experiments with simulated data show that our hybrid method using SIVIA provides more accurate
results than the method using contractors.
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1. Introduction

Estimating the precise localization of autonomous under-
water vehicles (AUVs) is an important requirement for a
wide range of underwater applications, such as area cov-
erage, monitoring, demining, reconnaissance of objects in
hostile waters and prevention of algae blooms in drink
water reservoirs [1–3]. Furthermore, solving this problem is
a very challenging task in robotics, specially given that the
sensors availability in underwater environments is quite
restricted when compared to terrestrial environments.
Many studies about autonomous underwater vehicles were
presented in the last years, detailing the variety of naviga-
tion techniques, the different sensors used, among other
topics [4–6]. In our work, we focus on the development of a
strategy for obtaining robust robot localization based on
seamarks detection.

The localization problem is one of the three fundamental
tasks of robotics along with mapping and navigation, and
consists in estimating the robot pose using sensor infor-
mation [7]. If the initial pose of the robot is known, the
problem is called local localization or position tracking. In
this case, the robot, dealing with noisy readings, uses the
sensors observations to correct its motion estimate. How-
ever, if the initial pose is not known, there is a significant
increase in the difficulty of the problem. In this situation,
called global localization, the goal is to first reduce the
uncertainty associated to the multiple hypotheses of robot
pose, since the robot can be initially in any place of the
environment [7].

The resolution of the global localization problem
depends directly on the proper treatment of uncertainties,
that are generally associated to the sensor readings, but also
to the ambiguities of the environment. Two of the main
approaches to handle uncertainties in robotics are the
probabilistic and the interval approaches [7,8].

Probabilistic approaches, such as those based on
Bayesian filtering, are extensively used to treat problems of
high dimensionality in various fields. Among them, the
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particle filter is a method widely used in robotics, mainly
due to its capacity of treating nonlinear models and multi-
modal distributions [9]. However, the quality of the solution
found with the particle filter is dependent on the number of
samples used. If the uncertainty is too large, the particle
filter may require a very large number of particles to cover
the solution space, making its use prohibitive. In addition,
due to the randomness in the sampling and resampling
process, an unfortunate sequence of samples can cause
wrong convergence of the method, leading to poor final
results in the robot localization.

In contrast, interval approaches deal with high dimen-
sional problems through the reduction of domains. Such
reductions are performed based on the constraints of the
problem. Given the correct modeling of the problem, we can
say that the result obtained with an interval method is
mathematically guaranteed, i.e. this method provides a
delimited region that contains the correct solution. None-
theless, the final solution may not be enough significant due
to the conservative nature of interval methods, where no
feasible solution is discarded. In other words, purely interval
results are composed of a set of possibilities, all of which are
equally true. When the final result is a big set, it does not
provide enough information about the robot localization.

We proposed, in [10], a hybrid method combining
probabilistic and interval strategies to solve the global lo-
calization problem. The method reduces the uncertainty
about the robot pose using contractors from interval anal-
ysis, then propagates particles inside the resulting space to
enhance the quality of the localization. To summarize, the
results have boundaries of uncertainty well defined and
mathematically guaranteed, but with a higher precision
given by the particles distribution.

In this work, we make a detailed study about the strat-
egy in [10], proposing modifications to improve the quality
of its results, in terms of precision. We analyze the use of a
more precise method from interval analysis, called set in-
version via interval analysis (SIVIA) [11], in comparison
with the former strategy using contractors. SIVIA reduces
the search space to a region that delimits the robot locali-
zation using bisections. This technique presents a compu-
tational cost higher than contractors, however, by
partitioning the solution space in multiple boxes its accu-
racy is superior. The metrics of our analysis are the preci-
sion in localization and the computation time.

With this research it was possible to improve the pre-
cision in the robot localization using the hybrid probabi-
listic-interval approach. The hybrid approach with SIVIA
obtains enhanced information about the robot localization
and keeps the benefits presented in the first hybrid ap-
proach [10]. Some of the benefits are the higher coverage of
the uncertainty region and a fast detection in case of wrong
convergence.

The paper is organized as follows. We first present the
related work about the localization problem in Sec. 2. We
show some of the most relevant methods using probabilistic
and interval analysis, and the existent hybrid methods. In
Sec. 3, we present a background on interval analysis, de-
tailing both SIVIA and the contractors strategies. In Sec. 4,
we present our hybrid methods for global localization: the
one from [10]. In Sec. 5 is presented the modification of the
hybrid method, now using SIVIA. In Sec. 6, we evaluate and
discuss the methods through the analysis of results from
simulated experiments. Finally, in Sec. 7, we conclude and
discuss future work.

2. Related Work

To perform the localization of AUVs, the methods in liter-
ature generally rely on inertial sensors, such as accel-
erometers and gyroscopes; acoustic transponders, i.e.
beacons with known positions; and geophysical sensors,
such as sonars and cameras, that are able to detect and
identify features in the environment [6]. Corke et al. present
a method for AUV localization based on visual odometry
using stereo cameras, along with an acoustic localization
system based on geometric intersections of uncertainty
regions [12]. Another method based on vision is presented
by Kim et al. for AUVs in structured environments [13]. The
method detects artificial landmarks inserted in the envi-
ronment through a template matching technique and then
uses a particle filter to estimate the localization of the ve-
hicle. In such method, the dead-reckoning information is
used for the prediction step of the filter, while the landmark
detection is used for the update step.

Probabilistic approaches, such as particle filters, are the
core of many methods in robotics. Ko et al. present a par-
ticle filter strategy for localization of AUVs using dead-
reckoning for prediction, and the time difference of arrival
(TDOA) of acoustic signals emitted from multiple beacons
for correction [14]. Forney et al. use a particle filter to
perform, from an AUV, the tracking of a `tagged' agent, e.g. a
second AUV or a shark [15]. An active control system is
used to make the AUV follow the trail of the agent, in order
to stay close to the source of the acoustic signals. Some
strategies use other Bayesian filters, instead of particle fil-
ters. This is the case of Wang et al., that proposes a locali-
zation method combining Extended Kalman filter (EKF) and
Moving Horizon Estimation (MHE) for AUVs using a single
beacon [16]. Maurelli et al. propose a sonar-based approach
for structured and unstructured environments using a
particle filter integrated with an EKF [17]. The localization
starts with a particle filter (since there are no knowledge
about the initial robot pose), once the filter converges the
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localization process passes to an EKF. If the filter diverges,
for instance in a situation of kidnapped robot, the particle
filter is re-started with uniform samples to regain the di-
versity of solutions.

On the other hand, there is a recent growth in popularity
of interval approaches, in which the measurements inac-
curacy is expressed in terms of bounds on the possible
errors. An earlier work in this area is the one from Meizel
et al. which uses set-membership estimation to localize a
vehicle using range measurements [18]. It has the advan-
tage of not requiring a large number of data — good to
avoid outliers — and can deal with ambiguities by allowing
disconnected components of localization estimates.
According to Meizel et al., SIVIA was used and provided
systematic, efficient and general solutions.

Jaulin propose a similar interval method more robust to
outliers, reliable in respect to nonlinearities and tested it in
an AUV localization [19]. The method based on relaxed set
inversions (RSIVIA) is an extension of SIVIA [11], and
consists in performing the intersection of all intervals of
uncertainty except a small number q of intervals, where q is
an estimate of the number of outliers. The tests were per-
formed considering a 2D underwater environment.

Based on such technique, Langerwisch and Wagner
present a method for localization using laser sensors, which
is able to detect and mark outliers in the laser scans [20].
Another method of localization using range sensors is the
one from Guyonneau et al. [21]. They define localization as a
constraint satisfaction problem (CSP) and combine bisec-
tions and contractors techniques to solve the problem.
Their experimental results showed the efficiency of the
method in a real context.

Seddik et al. [22] deal with localization of underwater
robots using an acoustic signal. The proposed algorithm is
based on contractors and bisections and the authors in-
troduce the time constraint satisfaction problem (TCSP). A
set of measurements is used to compute the robot position.
This set is stored in a buffer and used according to a time
window. In this way, the solution is not computed from a
single measurement, but from a set of measurements col-
lected during this time window.

Finally, merging probabilistic and interval approaches to
improve the quality of the estimation process has been the
focus of recent studies. Abdallah et al. propose the box
particle filter (BPF), which is a method that allows the re-
duction of the number of particles in comparison to tradi-
tional particle filters, by defining particles using boxes
(cartesian products of intervals — one interval for each
space dimension) [23]. In the traditional particle filter, ef-
ficiency and precision are mainly dependent on the number
of particles used, which can be significantly large for some
applications. In that aspect, the use of interval data in BPF
makes it more efficient, reducing the computational time.

On the other hand, the BPF does not show improvements in
terms of results precision.

In the combination of particle filter and intervals, a box
may represent the uncertainty about the localization of a
single particle, but may also represent a set of particles
distributed in the area covered by the box. It was based on
the idea of particles contained inside boxes, that we pro-
posed, in [10], our hybrid method to solve the global
localization problem.

3. Background on Interval Analysis

The study of interval techniques began about 50 years ago,
and since then, interval approaches have been applied to a
large number of problems from different areas, including
robotics [8]. The main feature of such approaches is that by
applying interval operations over data properly modeled
using intervals, like an estimate of a robot pose, there is a
guarantee that the correct solution will be contained in the
resulting interval.

This section presents some fundamental concepts of in-
terval computation, and also two approaches, used in this
work, for reducing the size of intervals without discarding
viable solutions: contractors and SIVIA.

3.1. Interval computation

A real interval ½x� is considered a connected subset of R, and
it is composed of a lower bound x and an upper bound x . We
define a real interval to represent one-dimensional data as

½x� ¼ ½x; x� ¼ fx 2 Rjx � x � xg:
If a multi-dimensional representation is required, we can

model data using boxes [8]. A box is a subset of Rn that can
be described by a Cartesian product of intervals,

½x� ¼ ½x1� � ½x2� � � � � � ½xn�;
where ½xi� ¼ ½xi; xi� to i ¼ 1; . . . ; n, and n represents the
number of dimensions of the box ½x�. Thus, each interval
component ½xi� is a projection in one of the Cartesian axes.

If we want to refine the representation of some data to
increase its precision, then a single box may not be appro-
priate. A possible alternative is to use a subpaving, which is
a set of nonoverlapped boxes that together represent a
solution set [8].

Classic operations used in real computations ¦ ¼
ðþ;�; �; =Þ can be naturally extended to interval computa-
tions [24]. Considering the real intervals ½x� ¼ ½x; x� and
½ y� ¼ ½ y; y�, interval computations are defined by

½x� ¦ ½ y� ¼ fw ¦ z 2 Rjw 2 ½x�; z 2 ½ y�g:
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Interval computations using functions are also possible. An
interval image I of a real function f ð½x�Þ can be defined by

Iðf ; ½x�Þ ¼ ½I ; I �
¼ ½minf f ðxÞjx 2 ½x�g;maxf f ðxÞjx 2 ½x�g�:

A function f composed of arithmetic operators and ele-
mentary functions can be an inclusion function. An interval
function is an inclusion function ½ f � if it satisfies the prop-
erty [8,25]

f ð½x�Þ � ½ f �ð½x�Þ:
When the inclusion function result is the smallest pos-

sible interval or box that contains the result, the function is
called minimal ½ f ��ð½x�Þ [8].

One of the main goals in interval approaches is to rep-
resent information with the smallest possible representa-
tion. Nevertheless, interval computations do not always
generate so precise results. In this sense, some techniques,
such as contractors and SIVIA, can be used to reduce the
size of intervals based on constraints.

3.2. Contractors

Contractors are used to reduce domains from a set of con-
straints. An operator C is a contractor if given a constraint c
and a domain ½x� it satisfies the following properties [26]:

. Completeness: ðc \ ½x�Þ � Cð½x�Þ
All values in the interval ½x� that satisfy the constraint c
are contained in the result of the operator Cð½x�Þ, in other
words, no feasible solution is discarded.

. Contractance: Cð½x�Þ � ½x�
The resulting box of the contraction Cð½x�Þ is contained in
the initial domain ½x�.

There are different kinds of contractors in the literature, but
one of the most used in approaches for robotics is the for-
ward-backward contractor [8]. Since a constraint can be
written like a function y ¼ f ðxÞ or in the inverse form
x ¼ f �1ð yÞ, forward–backward works in two steps:

(i) Forward: Contract y using ½ y� \ ½ f �ð½x�Þ
(ii) Backward: Contract x using ½x� \ ½ f �1�ð½ y�Þ
For example, considering the equation x3 ¼ x1 þ x2, and
the initial domains ½x1� ¼ ½�1; 5�, ½x2� ¼ ½�1; 4� and ½x3� ¼
½6;1�.
. x3 ¼ x1 þ x2 ) z 2 ½6;1�\ ð½�1;5� þ ½�1;4�Þ ¼ ½6;1�\

½�1;9� ¼ ½6;9�.
. x1 ¼ x3� x2 ) x2 ½�1;5�\ ð½6;1��½�1;4�Þ ¼ ½�1;5�\

½2;1�¼ ½2;5�.
. x2 ¼ x3� x1 ) y2 ½�1;4�\ ð½6;1��½�1;5�Þ ¼ ½�1;4�\

½1;1�¼ ½1;4�.

After contraction the new domains are: ½x1� ¼ ½2; 5�, ½x2� ¼
½1; 4� and ½x3� ¼ ½6; 9�.

Contractors can be used to increase the precision of the
results of inclusion functions. Thus, they can be useful to
deal with high-dimensional spaces, due to their polynomial
complexity in the number of constraints [8].

One disadvantage is that, despite ensuring the inclusion
of the correct result in the final solution, its precision may
not be as high as expected. Also, by always maintaining a
single box, the representation of disconnected sets of
solutions may lead to high uncertainty, specially when they
are too far apart.

3.3. SIVIA

SIVIA algorithm, presented by Jaulin and Walter, is a method
that solves the set inversion problem [11], defined by

X ¼ fx 2 R
nj f ðxÞ 2 Yg ¼ f �1ðYÞ:

In other words, we want to define X given a function f
and the image function Y. The main idea of the SIVIA
algorithm is to generate subpavings based on the bisection
of the solution space. The algorithm can be summarized in
four iterative steps, given an initial search space modeled
using a box ½x�:
(i) If f ð½x�Þ does not have intersection with Y, ½x� is dis-

carded.
(ii) If f ð½x�Þ is contained in Y, ½x� is considered part of the

solution.
(iii) If f ð½x�Þ has intersection, but is not contained in Y, ½x� is

considered undetermined. If the box is undetermined
and its width wð½x�Þ is bigger than a predefined limit,
then the box is bisected, and the resulting boxes will be
tested.

(iv) If the box ½x� has a width smaller than the predefined
limit and it is undetermined, ½x� is considered part of
the solution.

An example of solutions obtained with the SIVIA algorithm
can be seen in Fig. 1. These figures show two scenarios
where a robot observes landmarks in the environment. On
the left, the robot observes the landmark L1 at some given
distance (modeled as an interval ½d; d�). Therefore, the robot
can be anywhere inside a shade region around L1. This
circular region represents the solution of the problem and it
is composed of a large set of small adjacent boxes. On the
right, the robot observes two landmarks, L1 and L2. Now the
solution is the intersection of the region constrained by the
observation of L1 and the region constrained by the obser-
vation of L2.

By using a set of boxes to represent the result, SIVIA
can be much more precise than contractors. It can also
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represent with high precision disconnected sets of solu-
tions. However, the bisection process has high computa-
tional cost. In fact, it has an exponential complexity
according to the number of dimensions of the space [8].

4. Solving the Localization Problem with a Hybrid-
ization of Probabilistic and Interval Approaches

Particle filter is one of the most prominent approaches to
solve the localization problem [9]. Its main idea consists in
approximating a target probability distribution using a set

of particles (weighted samples), and updating those parti-
cles in an iterative process of weighting and resampling. In
localization, each particle represents a hypothesis about the
robot localization, and its weight is given by the similarity
between the robot observations and the virtual observa-
tions of the particle.

Figure 2 shows an example of the evolution of a particle
filter, where the robot is depicted in black, the landmarks in
blue, the particles in shades of yellow and red, and the
weighted average of the particles in green. The color scale of
the particles represents the importance factor assigned to
each particle, i.e. the closer to yellow, the lower the im-
portance factor, while the closer to red, the higher the im-
portant factor.

Among the main advantages of particle filters are the
capacity to represent multi-modal distributions (they do
not require parametric assumptions, such as Kalman filter-
based approaches), the ease of implementation, and the
possibility of increasing precision given the available
computational resources. On the other hand, particle filters
suffer with the particle depletion problem, associated to the
differences between proposal and target distributions and
the randomness in the resampling step, that discard good
particles, eventually losing diversity [7].

In [10], we proposed a hybrid method for localization
using a particle filter and contractors. The basic idea is to
reduce the uncertainties in the robot localization by per-
forming interval computations while applying the particle

(a) (b) (c)

(d) (e) (f)

Fig. 2. (Color online) Example of evolution of the traditional particle filter. Robot (black circle), landmarks (blue points), particles (yellow
to red points), weighted average of the particles (green circle).

Fig. 1. Example of subpavings obtained with SIVIA, in a scenario
with one constraint (left) and two constraints (right).
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filter. With contractors, the uncertainty about the robot lo-
calization is reduced to a box. As this box is computed using
interval rules, we can assume that the true robot pose is
contained in the box. Nonetheless, even with the reduction
of uncertainty, the size of the resulting intervals may be
larger than the expected. Thus, to refine the robot locali-
zation we apply particle filter over the interval result.

The hybrid method is described in Algorithm 1. Initially,
the algorithm does not have any information about the
robot localization, only about the initial search space, i.e.
the whole environment. The boundaries of this space can
be defined or not. Undefined limits are modeled through
infinity intervals (e.g. ½�1;þ1�). Then, the first set of
constraints is defined using the initial sensors observations
z0 (line 4) and passed to the contractors (line 5). After,
particles are generated inside the current solution space ½x�
(line 6).

The constraints are generated according to the k ob-
served markers at instant t and they are described by

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xkÞ2 þ ð y � ykÞ2 þ ðz� zkÞ2

p
g � ½dk�;

where xk 2 ½xk�, yk 2 ½ yk� and zk 2 ½zk� define the localiza-
tion of marker k, and the interval ½dk� is defined from the
robot observation zkt associated to the marker k, consider-
ing the sensor uncertainties se,

½dk� ¼ ½dk ; dk � ¼ ½zkt � se; z
k
t þ se�:

Algorithm 1 Hybrid Method using Contractors
1: Data: f, [x], u1:n, z0:n

2: Result: S

3: S = ∅
4: F = set of constraints f using z0;
5: [x]= Contract([x], F);
6: P = createParticles(m, [x]);
7: for t = 1 : n do
8: moveI([x], [u]);
9: F = set of constraints f using zt;

10: [x]= Contract([x], F);
11: move(P, u);
12: for j = 0 : m do
13: if pj ∩ [x] = ∅ then
14: P = P \ pj ;
15: P = P ∪ createParticles(1, [x]);
16: end if
17: end for
18: weight(P);
19: resampling(P);
20: S = avgParticle(P);
21: end for
22: return S

(a) (b) (c)

(d) (e) (f)

Fig. 3. (Color online) Example of evolution of the hybrid approach using contractors. Robot (black circle), current search space (black
box), landmarks (blue points), particles (yellow to red points), weighted average of the particles (green circle).
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If the exact marker location is known, the resulting intervals
are punctual.

For each iteration, the solution box moves according to
the robot motion ut (line 8). Then, the box is contracted
using the constraints associated to the current observations
(lines 9–10). The box movement is given by the inclusion
function of the motion model,

½x�tþ1 ¼ ½ f �ð½x�tÞ ¼ ½x�t þ ½R�ð½��;½��;½ �Þ � ½v�; ð1Þ
where ½v� is the linear speed of the vehicle and ½R�ð½��;½��;½ �Þ is
a 3D rotation matrix using the Euler angles representing its
orientation.

The particle filter is updated by moving the particles
with the robot motion model (line 11). Then, each particle
is tested against the box representing the search space
(lines 12–17). Particles that fall outside the box are dis-
carded, and, in their place, new particles are randomly
created inside the box. In the next step, the current set of
particles is weighted and resampled (lines 18–19). During
the weighting process, all particles receive an importance
factor according to the robot observation. Particles with
observations similar to the robot observations receive
higher importance factors. During the resampling process, a
new set of particles is generated from the current set. We
can use, for instance, the roulette wheel method, in which
particles with higher importance factor have more proba-
bility to survive [7]. Finally, we choose the particles
weighted average as the best estimate for the robot pose
(line 20).

Figure 3 shows an example of the evolution of the hybrid
method combining particle filter with contractors. We can
see in comparison to Fig. 2, that the particles distribution
becomes much more condensed using the hybrid approach,
and closer to the real robot pose (black point).

5. Improving the Precision of Localization
with a Set-Inversion Strategy

In [10], we showed that our hybrid method, described in
last section, obtained considerable improvements in terms
of precision when compared to the traditional particle filter
alone. And, more important, this gain in precision does not
degrade the system performance. Based on those results,
we decided to examine if it is possible to obtain higher
precision using methods more precise, such as SIVIA, while
keeping low computational cost.

The method proposed in this work is a hybridization of
SIVIA with a particle filter. Instead of using contractors,
SIVIA is now used to reduce the region representing the
robot localization, which is defined as search space for the
particle filter. This approach enables a better spread of
particles in regions of real interest, since, by using multiple

boxes, SIVIA approximates the space of possible robot poses
in a much better way than with a single box.

Algorithm 2 shows the proposed method step-by-step.
Once again, the initial search space is the whole environ-
ment, because there is no prior information about the robot
pose. SIVIA reduces the space to a set of boxes (line 6)
using the set of constraints defined by the markers posi-
tions (line 4) and the set of initial measurements (line 5).
Then, the set of particles is generated over the reduced
search space (line 7).

Just like before, for each iteration of the process, the
solution space must move according to the robot motion.
However, the estimation of robot motion, as defined in
Eq. (1), for each one of the small boxes can be an extremely
costly task. Not only that, but, by growing and moving each
box independently, boxes overlapping is very likely to
happen, which is not a proper representation of a subpav-
ing. The solution to this problem is to bound all the boxes by
the smallest possible box that contains all boxes, i.e. the hull
of the boxes (line 9), and move this bounding box according

Algorithm 2 Hybrid Method using SIVIA
1: Data: f, [x], ε, u1:n, z0:n

2: Result: S

3: S = ∅
4: F = set of constraints f ;
5: D = set of measurements z0

6: siviaResult= SIV IA(F, D, [x], ε);
7: P = createParticle(m, siviaResult);
8: for t = 1 : n do
9: [bBox]=hull(siviaResult);

10: moveI([bBox], [u]);
11: [x] = [bBox];
12: F = set of constraints f ;
13: D = set of measurements zt;
14: siviaResult= SIV IA(F, D, [x], ε);
15: move(P, u);
16: for j = 0 : m do
17: if pj ∩ siviaResult = ∅ then
18: P = P \ pj ;
19: P = P ∪ createParticle(1, siviaResult);
20: end if
21: end for
22: weight(P);
23: resampling(P);
24: S = avgParticle(P);
25: end for
26: return S
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to the inclusion function defined in Eq. (1) (line 10). The
resulting box is used as search space to the next measure-
ment update (line 11). Using the set of constraints f (line
12) and the current set of measurements zt (line 13), the
algorithm performs the SIVIA method (line 14).

The remaining of the process remains the same of Al-
gorithm 1. First, the set of particles is updated according to
the robot motion (line 15). Then, all particles are tested
against the interval results. Particles that fall outside the
search space are discarded, and to each discarded particle, a
new particle is randomly created inside the current search
space (lines 16–21). The particles are weighted (line 22),
resampled (line 23), and the weighted average of the par-
ticles is selected to represent the robot pose (line 24).

The evolution of the hybrid method using SIVIA is pre-
sented in Fig. 4. It is possible to observe that the set of
boxes resulting of the interval operations (depicted by the
small adjacent gray boxes) may strongly differ from a
squared region.

Our goal in this work is to see if such quality improve-
ment is enough to justify the high computational cost as-
sociated with SIVIA. Therefore, we present and discuss, in
next section, the results of experiments comparing the hy-
brid approaches using contractors and SIVIA.

6. Experiments

Here we present and compare the results obtained by our
hybrid approaches. The hybrid method with SIVIA was
compared with the method presented in [10] and with

particle filter, one of the most popular approaches to deal
with this kind of problem. The results were compared in
terms of precision and computational cost. The graphs and
tables presented in this section show the comparison
among the three methods.

The experiments were performed in a simulated un-
derwater environment containing distinguishable markers,
with positions that are known a priori. We used MORSE
Simulator [27] with a generic submarine, available in
MORSE, equipped with loch-doppler sensor and gyroscope.
The robot is able to detect and distinguish the markers, and
to obtain information about its own linear velocity and
orientation. To simulate the markers, transponders were
spread in the environment.

We performed tests using three different environments,
with the same size, defined by the box:

½x� ¼ ½�200; 200� � ½�200; 200� � ½�400; 0�:
The differences among the environments are in the

number of markers used. The environments 1, 2 and 3 have
respectively 2, 4 and 8 markers, positioned as shown in
Fig. 5. Two different trajectories were tested, as shown in
Fig. 6.

Table 1 shows the parameters of the tests, where � is the
standard deviation representing the error of the sensors
and w is the parameter used to define the width of the
interval.

All configurations were tested 10 times with each
method, using 5000 particles in each test. Figures 7–10
show the behavior of the average error and standard de-
viation of error over time.

(a) (b) (c)

(d) (e) (f)

Fig. 4. (Color online) Example of evolution of the hybrid approach using SIVIA. Robot (black circle), current search space (gray region),
landmarks (blue points), particles (yellow to red points), weighted average of the particles (green circle).
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Figure 7 shows the error behavior in tests using the
trajectory 1. We can see that, in all environments, the errors
obtained with the hybrid methods are smaller than the
error obtained with the traditional particles filter. Paying
attention to the difference between the scales is possible to
see that the errors become smaller when more markers are
used.

Figure 8 shows the errors obtained with the hybrid
methods in the first trajectory using a different scale for a
better view. We can see that the method using SIVIA has
more precise results, with the average particles error con-
sistently smaller than 0.5m.

The results of the methods using trajectory 2 are presented
in Fig. 9. Once again, both hybrid methods show better
results than the traditional particle filter, as in the results
presented in Fig. 7.

In Fig. 10, the results of the hybrid methods are pre-
sented in different scale. As before, the method using SIVIA
obtained smaller errors than the method using contractors,
specially in the environment with less markers.

In the graphs representing the average error over time
(Figs. 7–10) there is an expressive difference among the
standard deviation of the methods. The hybrid method
using SIVIA presents the smallest standard deviation, fol-
lowed by the hybrid method using contractors. This is re-
lated to the particles dispersion, which is limited by the size
of the solution space. Given that the region defined by SIVIA
is smaller than the region defined by contractors, the par-
ticles dispersion is smaller, as the standard deviation. In this
context, the traditional particle filter distributes particles in

(a) environment 1

(b) environment 2

(c) environment 3

Fig. 5. Markers configuration in the environments.

(a) Trajectories 1

(b) Trajectories 2

Fig. 6. Trajectories tested in the experiments.

Table 1. Parameters used during the experiments.

Measurement Noise (� ¼ standard deviation) w

Loch-doppler 0.04m wv ¼ 3
Gyroscope 0.02� wo ¼ 3
Markers distance 0.3m wd ¼ 3
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(a) environment 1

(b) environment 2

(c) environment 3

Fig. 7. Comparison of the average particles error for trajectory 1.

(a) environment 2

(b) environment 3

Fig. 8. Different scale (magnified) of the average particles error of the hybrid approaches for trajectory 1 in environments 2 and 3.
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(a) environment 1

(b) environment 2

(c) environment 3

Fig. 9. Comparison of the average particles error for trajectory 2.

(a) environment 2

(b) environment 3

Fig. 10. Different scale (magnified) of the average particles error of the hybrid approaches for trajectory 2 in environments 2 and 3.
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the whole environment, thus it has the largest standard
deviation.

Figures 11–13 show boxplots, from descriptive statistics,
that are used to compare the errors concentration. In box-
plot, the error is represented in the vertical axis, and we can
see the maximum and the minimum errors (black trace), the
quartiles and the median (black square). In these plots, the
outliers are discarded. Values 1.5 times higher or smaller
than interquartile region (gray rectangle) are considered
outliers.

Figure 11 shows the concentration of the errors for the
tests in the first environment. We can see the precision gain
obtained by hybrid approaches, specially using SIVIA. Con-
sidering the maximum error, the particle filter, presents
values of 77.7 and 110m for trajectories 1 and 2, respec-
tively. On the other hand, hybrid approaches have maximum
errors of 13.5 and 37.8m, when SIVIA is used, and 33.7 and
91.2m, when contractors are used. With respect to the
minimum errors, the particle filter shows 16.3m in the first
trajectory and 6m in the second, while the method using
SIVIA has values of 0.98 and 1.08m, and the method using
contractors, 5.6 and 5.3m.

In the second environment, the errors from all methods
notably drop, as shown in Fig. 12, but we still can see that
hybrid methods have better results. The maximum errors
with the traditional particle filter are 9.3 and 9.5m, with the
hybrid approach using SIVIA are 0.2 and 0.3m and with
the hybrid method using contractors are 2.4 and 2.7m.
Considering the minimum errors, the particle filter obtained
1.5 and 1.4m, the method using SIVIA obtained 0.07 and
0.05m, and the method using contractors obtained 0.13 and
0.12m.

Finally, Fig. 13 shows the boxplot related to the experi-
ments in the third environment. The particle filter obtained
maximum errors of 15.6 and 4.51m, the hybrid method
using SIVIA obtained maximum errors of 0.24m for both
trajectories, and the hybrid method using contractors
obtained maximum errors of 0.7 and 0.8m. Regarding the
minimum errors, the particle filter has values of 1.14 and
1.08m, while the method using SIVIA has values of 0.05 and
0.04m, and the method using contractors, 0.11 and 0.09m.

Fig. 11. Boxplot with the errors concentration of experiments in
environment 1.

Fig. 12. Boxplot with the errors concentration of experiments in
environment 2.

Fig. 13. Boxplot with the errors concentration of experiments in
environment 3.
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As shown by the results of the experiments, both hybrid
methods are more precise than the traditional particle filter
for localization in the tested scenarios. The gain in precision
is notorious in both cases, and becomes more apparent
when there is more information available in environment.
In addition to the precision gain, the standard deviation is
minimized due to the constraints in the spread of particles.

If we analyze the results in the different environments, it
is possible to perceive that the increase in the number of
markers improves the results of the methods. Nevertheless,
there is a limit to increase the number of markers and still
improve the results. On the other hand, insufficient markers
reduce the capacity of improvement, because the resulting
intervals after applying the constraints may be too large.

Considering only the hybrid approaches, the method
using SIVIA shows more precise results than the method
using contractors. This means that, no matter how good a
contractor is, its results will usually be worse than the ones
obtained with SIVIA, due to the fact that SIVIA does not
have this limitation of using a single box. However, we need
to consider the computational cost associated with the use
of interval analysis. Table 2 shows the average time per
iteration (in seconds) of each tested method. As expected,
both hybrid methods have computational cost higher than
the particle filter. But, while the overhead of the method
using contractors is small (in general, less than 10% if
compared with particle filter results), the method using
SIVIA has an overhead varying from 180% to 3500%.
However, since the average time per iteration of the particle
filter is small, all methods tend to generate results in less
than 1 s. Thus, all methods are feasible to deal with the
localization problem.

7. Conclusions

In this paper, we described a variation of the hybrid
probabilistic-interval approach for localization, presented
in [10]. By using the SIVIA technique, instead of con-
tractors, we obtained improvements in terms of quality of
localization, in expense of increasing the computational

time. Nevertheless, the final time per iteration measured in
our experiments using SIVIA is still suitable for real
applications.

Although susceptible to errors (associated with usage of
the particle filter), both hybrid methods showed increases
in accuracy of localization. In such hybridizations, the un-
certainty is limited to an area represented by a box or set of
boxes. These regions — mathematically guaranteed by in-
terval rules — limit the action of the particle filter. None-
theless, the estimate obtained by the particles is
probabilistic, thus, it is still possible to occur the common
errors associated to particle filters (see Sec. 4). But the great
advantage is that, even in the worst case, the errors do not
exceed the limits imposed by the interval analysis.

It should be noted that the methods presented here can
be used in a broad range of applications without any sub-
stantial changes. This includes applications not only in un-
derwater scenarios, but also in aerial or terrestrial
environments. For instance, the detection of the markers can
be done using acoustic waves, using visual characteristics, or
even using odor sensors. There is the need to know the
location of the markers during the whole process, however,
it is not mandatory that the markers are stationary.

As future work, there are some modifications that could
make the method more generic. One of the possible
improvements is to use indistinguishable makers. Another
opportunity is to use the method in real environments.
Given the uncertainties existent in such environments, the
treatment of outliers becomes necessary. The challenge, in
this case, lies in the implementation of a good method to
discard outliers without eliminating feasible solutions. Fi-
nally, a natural evolution is the extension of the hybrid
approaches to the SLAM problem, in which, the robot must
localize itself and create the map of the environment, at the
same time, using the robot motion and observations.
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