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Abstract— Probabilistic approaches are extensively used to
solve high-dimensionality problems in many different fields. The
particle filter is a prominent approach in the field of Robotics,
due to its adaptability to non-linear models with multi-modal
distributions. Nonetheless, its result is strongly dependent on the
quality and the number of samples required to cover the space
of possible solutions. In contrast, interval analysis deals with
high-dimensionality problems by reducing the space enclosing
the actual solution. Notwithstanding, it cannot precise where
in the resulting subspace the actual solution is. We devised a
strategy that combines the best of both worlds. Our approach
is illustrated by solving the global localization problem for
underwater robots.

I. INTRODUCTION

One of the main goals of robotics is to create autonomous
robots able to operate without human supervision. Therefore,
several challenges need to be addressed, such as acquiring the
true state of the robot in the environment. This information is
essential to different kinds of tasks that robots are expected to
perform, which are usually repetitive, dangerous or difficult
to humans. Examples include tasks like search and rescue,
fire control, monitoring and surveillance, reconnaissance of
people or other objects in hostile waters and the prevention
of algae blooms in drink water reservoirs [1] [2].

Independently of the task or environment, a robot gen-
erally needs to know its correct position to perform its
task successfully. Such necessity gives rise to the class
of problems of localization, that consists in estimating the
robot pose in an environment using sensor information.
Additionally, this class of problems can be partitioned into
two subclasses: local and global localization.

In the local localization problem, also called position
tracking, the robot aims to actively estimate its pose from
a known initial pose. Specifically, in mobile robotics, the
robot must determine its most likely world pose using noisy
sensor readings.

On the other hand, in the global localization problem, the
robot must determine its pose without prior knowledge about
its initial localization. This is the commonly called kidnapped
robot problem. A different variation of global localization
is the wake-up robot problem, in which a well-localized
robot is carried to another position during its navigation
without being told. In both problems, it is necessary to handle
multiple candidate poses at same time [3].
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Localization problems are usually addressed by probabilis-
tic methods [3] or interval analysis [4]. The probabilistic
approach provides an efficient solution to the localization
problem, however, it is not mathematically guaranteed that
the true robot pose is represented by the estimated solution.
In contrast, interval methods are always guaranteed to com-
pute a region that contains the true robot pose, considering
that the problem is well modeled. Nevertheless, interval
methods do not provide a precise robot pose, only a region
that contains it, which may be too conservative.

In this paper, we discuss a new approach that combines
probabilistic and interval strategies to solve the global loca-
lization problem in underwater environments. Through the
use of interval analysis, the proposed method reduces the
global uncertainty to a specific limited region. Then, knowing
this region, a particle filter is performed to obtain enhanced
information about the robot localization. With this approach,
particles will be distributed in a smaller region, and the
result will have boundaries of uncertainty well defined and
mathematically guaranteed.

This paper is divided as follows. Section II shows related
work. Section III introduces the localization problem and
present the probabilistic and interval approaches. Our hybrid
method is described in Section IV. Section V shows the
results of the experiments performed to evaluate the hybrid
method. Finally, Section VI presents the conclusions and
discusses some future work.

II. RELATED WORK

Probabilistic and interval approaches for localization pro-
blem are easily found in the literature. Corke et al. [5] deal
with AUV localization using two different methods, one
based on a geometric approach employing acoustic sensor,
and other using visual odometry with stereo cameras. Their
methods were tested in an unstructured environment that
contains sensor nodes. Le Bars et al. [6] use interval analysis
to deal with offline state estimation problem, i.e., nonlinear
estimation with fleeting data. Nak-Yong et al. [7] proposes
an underwater localization approach using particle filter and
time difference of arrival (TDOA) of acoustic signals from
beacons scattered in the environment.

Forney et al.[8] use particle filter combined with an active
control system to estimate the 2D planar position, velocity,
and orientation states of a tagged shark. They use an AUV
equipped with a stereo-hydrophone and a receiver system
that detects acoustic signals transmitted by the tag. The AUV
continually follows the single acoustic tag on the shark and
estimates the shark position.



Meizel et al. [9] use set-membership estimation to treat lo-
calization problems of a vehicle in a polygonal environment.
Their method does not require any explicit management of
matching hypotheses, being able to deal with ambiguous
situations. Their results show robustness to outliers and the
ability to deal with nonlinear observation models without any
approximation.

Abdallah et al. [10] propose a method called Box Particle
Filter (BPF). The method, which was applied to the localiza-
tion problem of a land vehicle, combines particle filter with
interval approach, replacing groups of particles by boxes,
called box particles. BPF require a number of box particles
smaller than the particles number of a traditional particle
filter. In the comparison with the traditional particle filter,
the BPF showed a reduction in the running time. On the
other hand, it showed no reduction in the error about the
robot pose estimation.

III. SOLVING LOCALIZATION PROBLEM

In real world, robot sensors and actuators are not totally
reliable, making it difficult to solve problems in robotics.
Thus, it is necessary to develop methods that can deal
efficiently with uncertainties that may arise from limited
perception of sensors or actuators extremely inaccurate [3].

In this section we discuss two prominent approaches to
solve the localization problem: the probabilistic approach of
particle filters [3], and an interval approach using contractors
[4].

The target environment treated in this work is underwater
and unstructured, with distinguishable markers spread in the
space. In this case, the markers are transponders and their
location are supposed to be precisely known. The robot is
able to detect the transponders signal and to compute the
distance to each marker. Furthermore, the robot needs to
extract information about its own motion, such as linear
velocity and orientation (euler angles).

A. Particle filter localization

The particle filter, also known as Monte Carlo localization
(MCL), is among the most popular approaches to solve
the localization problem. The method performs the robot
localization using a sample-based representation. From a set
of controls ut and measurements zt captured by the robot
at time-step t, the particle filter computes the belief bel(xt)
about the robot localization using a set of particles, where
each particle represents a different estimation of the robot
pose [3], [11].

A set of M particles can be denoted by:

χt = {xt[1], x
t
[2], ..., x

t
[M ]} (1)

Each particle xt[m] has associated a probability given by:

P (xt|ut−1, zt) (2)

Algorithm 1 describes the particle filter localization
method [3]. The first step is to randomly create a set of
particles χ spread over the whole map, in the case of global

localization, or only around a specific pose, when dealing
with the tracking problem. At each time-step, particles are
propagated according to the input control ut (line 3) and
weighted (line 4). The weight of a particle m is obtained
by comparing the current sensor measurements zt with the
observations that the particle should be taking at its current
pose xtm :

P (zt|xtm) (3)

This probability is proportional to the similarity between
the information collected by the particle and the information
collected by the robot sensors. The smaller the difference
between such information the larger will be the particle
importance factor.

Next, such factors are used to perform the resampling step,
when particles are selected to join the new population χt

(line 7). This step is usually implemented using the roulette
wheel method, where particles with lower importance factors
are more likely to be discarded.

Algorithm 1: Monte Carlo Localization

Data: χt−1,map, ut−1, zt

Result: χt
1 χt ← χt ← ∅
2 for i← 0 :M do
3 xt[i] ← move(xt−1

[i] , u
t−1);

4 wt[i] ← weight(xt[i], z
t,map);

5 χt ← χt + 〈xt[i], w
t
[i]〉

6 end
7 χt ← resampling(χt)
8 return χt

Among the main advantages of the particle filter are its
ability to represent multimodal distributions and the low
difficult of its implementation. Nevertheless, particle filters
are subject to approximation errors that arise from several
different reasons [3], such as:

• The randomness in the resampling phase. By using
a random method in the resampling step, the method
can accidentally discard good particles or cause loss
of diversity. For instance, when the robot stays in
the same pose during consecutive resampling steps,
particles are discarded even without new information
(z, u). Over time, the result will be a population of
particles composed of multiple copies of a few different
hypotheses.

• The difference between proposal and target distribu-
tions. The proposal distribution computed in the parti-
cles propagation relies on the robot motion model based
on the odometry, while the target distribution computed
in the particles weighting is based on the observation
model of the robot sensors. When the difference be-
tween the accuracy of both models is large, the method
might converge to a wrong place.



• The particle deprivation problem. When the search
space is high-dimensional, some relevant regions with
high likelihood to contain the true robot pose may not
be covered. This often occurs due to the use of a small
number of particles or unlucky random sampling that
leaves some regions uncovered.

B. Interval State Estimator

Interval analysis gives a set of mathematics rules to do
interval computations [12]. As the use of interval compu-
tations is increasing, some libraries have been created to
facilitate the development of interval algorithms. Among
them is IBEX1, which was used in this research.

Interval analysis was first introduced to deal with the
problem of rounding errors and input data uncertainties in
calculations. The main idea is to represent the data as inter-
vals and perform the computations using interval arithmetic.
The use of interval analysis appears to be a good choice in
robotics, since it deals with uncertainties in both data and
computations [4].

A real interval [x] is considered a connected subset of the
R, and is composed by a lower bound x− and an upper
bound x+. A real interval is defined as:

[x] = [x−;x+] = {x ∈ R | x− ≤ x ≤ x+}

Boxes are used to represent multidimensional data. A box
is a subset of Rn and is defined as the Cartesian product of
n intervals [4]:

[x] = [x1]× [x2]× · · · × [xn],where

[xi] = [x−i ;x
+
i ] to i = 1, . . . , n

Each vector component [xi] is the projection of the [x] in
the ith Cartesian axis.

Interval analysis allows to compute functions with inter-
vals using arithmetic and set-theory operations. An interval
image I of a real function f([x]) is defined as:

I(f, [x]) = [min{f([x]) | x ∈ [x]}; max{f([x]) | x ∈ [x]}]

Any function f composed by arithmetic operators and
elementary functions can be defined as an inclusion function,
when [4]:

f([x]) ⊂ [f ]([x])

For instance, considering the function f(x) = x2+2x+4,
we can define [f ]([x]) = [x]2+2[x]+4 as inclusion function.
If [x] = [−3; 4]: f([x]) = [3; 28] is subset of [f ]([x]) =
[−2; 28].

When the result of [f ]([x]) is the smallest possible box,
the function is called minimal. In most cases, this minimal
inclusion function is not available. To circumvent this, we
can use contractors [4].

Contractors are operators used to contract domains ac-
cording to the proposed constraints, keeping the guarantee
that no feasible value of the domain will be discarded.
Contractors are often associated to the Constraint Satisfaction

1http://www.emn.fr/z-info/ibex/

Problem (CSP). A operator C is a contractor if, given a
constraint c and a domain [x], it complies with the two
following properties:

(c ∩ [x]) ⊂ C([x]) (completeness)
C([x]) ⊂ [x] (contractance)

There are different kinds of contractors. Here, we highlight
the one called forward-backward. A constraint can be written
like a function y = f(x) or in the inverse form x = f−1(y),
forward-backward works in two steps:

1) Forward: Contract y using [y] ∩ [f ]([x])
2) Backward: Contract x using [x] ∩ [f−1]([y])

For instance, regard the equation x3 = x1 + x2, where
[x1] = [−∞; 5], [x2] = [−∞; 4] and [x3] = [6;∞].

• x3 = x1 + x2 ⇒ z ∈ [6;∞] ∩ ([−∞; 5] + [−∞; 4]) =
[6;∞] ∩ [−∞; 9] = [6; 9]

• x1 = x3 − x2 ⇒ x ∈ [−∞; 5] ∩ ([6;∞] − [−∞; 4]) =
[−∞; 5] ∩ [2;∞] = [2; 5]

• x2 = x3 − x1 ⇒ y ∈ [−∞; 4] ∩ ([6;∞] − [−∞; 5]) =
[−∞; 4] ∩ [1;∞] = [1; 4]

After contraction the new domains are: [x1] = [6; 9],
[x2] = [2; 5], [x3] = [1; 4].

Contractors can be used to deal with the localization
problem as shown in Algorithm 2. This interval method is
based on the same input data of the probabilistic method,
yet, intervals are created considering the uncertainties.

Algorithm 2: Localization using Contractors
Data: [x], [u], [z]
Result: S

1 S = ∅
2 for i=0 : n do
3 F = constraint set, based on Equations 4 and 5;
4 [x]= Contract([x],F);
5 S = [x]
6 move([x], [u]); move the box, according Equation 6
7 end
8 return S

The box [x] represents the search space. It is initialized
to include the whole environment. The control inputs [u] are
defined as the euler angles [φ], [θ], [ψ], which are measured
from a gyrocompass sensor, and the linear speed vector [v],
measured from a loch-doppler sensor. They are obtained from
the raw values φ̃, θ̃, ψ̃, ṽ, as:

[φ] = [−ko . σφ + φ̃, φ̃+ ko . σφ]

[θ] = [−ko . σθ + θ̃, θ̃ + ko . σθ]

[ψ] = [−ko . σψ + ψ̃, ψ̃ + ko . σψ]

[v] = [−kv . σv + ṽ, ṽ + kv . σψ]

The observation measurements z are distances d̃, cal-
culated using the distance d̃ between the robot and each
observed marker, defined as follows:

[z] = [d] = [−kd × σd + d̃, d̃+ kd × σd]



Let σ = (σφ, σθ, σψ, σv, σd) be the standard deviations of
the noise in the sensors, and k = (ko, kv, kd) be a parameter
used to determine the width of the confidence interval.

The Equations 4 and 5 show the constraints of the pro-
blem. The constraints used by the method are associated to
observed transponders and search space (line 3).

S =
⋂N
n=1

{
(x, y, z) ∈ R|

√
(x− xn)2 + (y − yn)2 + (z − zn)2 ∈ [d]n

}
(4)

S ∩ [x] (5)

After defining the constraints, the search space is con-
tracted (line 4). The contracted box is updated according to
the Equation 6, enabling the box to aggregate the information
about robot movements (line 6). This new box is used as the
search space to the next iteration.

[x]t+1 = [f ]([x]t) = [x]t + [R]([φ],[θ],[ψ]) × [v] (6)

IV. SOLVING UNDERWATER LOCALIZATION PROBLEM
WITH HYBRID METHOD

In this section, we describe our approach to deal with the
underwater localization problem. The proposed method is
hybrid: it inherits interval and probabilistic characteristics,
using contractors and particle filter.

The chosen interval approach uses contractors to reduce
the uncertainty about the robot localization to a box. Since
this box is calculated using interval rules, we can assume
that the true robot pose is contained in the box, provided
that a correct modeling of the process is made (sensors and
motion models).

However, this box representation may be large and little
informative. To extract more information from the box is
used a probabilistic approach, such as the particle filter.

The method works as described in Algorithm 3. At each
iteration, the method use contractors and particle filter to
find a solution through a sequence of steps. In the first step,
the constraints are defined (line 3) and the search space is
contracted into a smaller box (line 4).

In the first iteration, a population with m particles will
be created inside of the defined search space (line 6). These
particles are randomly spread in the space considering the
box bounds. In the remaining iterations, the particles are
evaluated and discarded, if situated outside the search space
(line 11). For each particle discarded, a new particle is
randomly created in the search space and added to current
population (line 12).

The next steps are the weighting (line 16) and the resam-
pling (line 17) of the population. The weighting is based
on Equation 3 and the resampling uses the roulette wheel
method. After these steps, the particles average pose will be
computed and defined as the current robot localization (line
18). The current population and the box that represents the
current search space are propagated according to Equations
2 and 6 respectively.

Some expected hybrid approach advantages are:

Algorithm 3: Contractor + Particle F ilter

Data: [x], u, z, [u], [z]
Result: S

1 S = ∅
2 for i=0 : n do
3 F = constraint set based on Equations 4 and 5;
4 [x]= Contract([x],F);
5 if ! P then
6 P = createParticle(m, [x]);
7 end
8 else
9 for j=0 : m do

10 if pj ∩ [x] = ∅ then
11 P = P \ pj ;
12 P = P ∪ createParticle(1, [x]);
13 end
14 end
15 end
16 weight(P);
17 resampling(P);
18 S = S ∪ avgParticle(P);
19 move([x], [u]);
20 move(P, u);
21 end
22 return S

• High coverage of the uncertainty region. Given the
reduction of search space, the particles may be better
used. The interval method bounds all possible poses
of the robot, thus the particles are forced to remain
inside this limit. Without increasing the number of
particles, it is possible to increase the coverage of the
real interesting region.

• Fast detection of the wrong coverage. If the method
converges to a wrong place, due to flawed propagation
models, the interval approach produces an empty solu-
tion set. This situation is an indicative of the occurrence
of errors.

• The solution has the uncertainty mathematically guar-
anteed. The interval approach does not discard any
feasible solution. Thus, the interval solution is mathe-
matically guaranteed, given that the problem was well-
modeled. Additionally, the results of the particle filter
process are included in the interval limits, therefore the
particle uncertainty is also defined by these limits.

• More information can be extracted using the particles,
in case the interval result is not enough informative.
As said earlier, the interval method does not discard
any feasible solution, so the result can be a box of
large size, that provides little information. By using a
particle filter inside this region, it is possible to extract
probabilistic information about the robot localization in
the box interior.

V. EXPERIMENTS

We performed simulated experiments to evaluate the pro-
posed method.



The results obtained by our hybrid method are compared
to the results of the traditional particle filter. The test
environments used for the data extraction were simulated
using MORSE Simulator [13]. In the simulations, we defined
transponders as markers. Also, the robot was equipped with
gyrocompass sensor and loch-doppler sensor to extract the
euler angles of its orientation and its linear velocity. The
robot used in the simulations was the generic submarine
provided by the MORSE.

We proposed 3 test scenarios, whose main difference is the
amount of information available to the localization process.
All scenarios are 3-dimensional and have a size of 400m×
400m× 400m, considering the initial search space as [x] =
[−200; 200][−200; 200][−400; 0]. The environments 1, 2 and
3 have respectively 2, 4 and 8 transponders . Their positions
(in meters) are distributed as follows:

• Environment 1: (-112; -10; -20), (180; 30; -300);
• Environment 2: (-150; 130; -40), (-25; -115; -130),

(180; 30; -300), (90; -75; -60);
• Environment 3: (-150; 130; -40), (-38; 15; -200),

(-112; -10; -20), (-25; -115; -130), (40; 100; -100),
(180; 30; -300), (90; -75; -60), (130; -190; -255);

Table I shows the sensors parameters used by the methods
during the experiments.

TABLE I
PARAMETERS OF THE SIMULATIONS

Measurement Error inserted k
(σ=standard deviation)

Loch-Doppler Sensor 0.04 m/s kv= 3
Gyrocompass Sensor 0.02◦ ko= 3
Transponders Distance 0.3 m kd= 3

The robot made 2 different paths for each environment.
Each configuration was tested 10 times, totalizing 60 tests
with each method. In all tests we used 1000 particles as the
particle filter population.

The tests using the environments 2 and 3 presented very
similar results, therefore, for concision reasons, we decided
to show only the results referent to the environment 3,
compared to the results of environment 1.

As we observed in our tests, there is a limit to insert
transponders and see improvements in the results. However,
the use of an insufficient number of transponders harms the
full potential of the method. This number varies according
to the environment size and transponders range. Nonetheless,
when comparing the graphs of environment 1 with the graphs
of environment 3, we can see that, by increasing the number
of transponders, the results significantly improve for both the
traditional particle filter and our hybrid method.

The graphs depicted in Figures 1 to 8 show the error in
meters between the real robot position and the computed
position by the methods. The vertical axes represent the error
in meters, while the horizontal axes represent the methods
iterations. The black line is the average among the results for
each iteration (considering the ten runs) and the grey lines
are the standard deviation of the average.

Comparing the graphs of the Figures 1 with 2 and 3 with 4
we can see that the hybrid approach obtained better results in
these tests. Moreover, the standard deviation is significantly
reduced. This occurs because the box defined by interval
analysis limits the spread of the particles.

Fig. 1. Traditional particle filter - trajectory 1 environment 1

Fig. 2. Hybrid method - trajectory 1 environment 1

Fig. 3. Traditional particle filter - trajectory 2 environment 1

Fig. 4. Hybrid method - trajectory 2 environment 1

Such improvements are obtained using only two transpon-
ders, when using eight transponders the improvements are
more significant. Comparing the graphs of the Figures 5 with
6 and 7 with 8, paying attention to the scale on the vertical
axis, we see that the improvement regarding accuracy is very
significant. The traditional particle filter generates results
with errors above 20 meters, contrasting with our hybrid



approach that generates results with errors lower than 1.5
meters. The peaks in the Figures 6 and 7 occur due to the
box growth, caused by the increase of the uncertainty that
cannot be reduced by contractors.

Fig. 5. Traditional particle filter - trajectory 1 environment 3

Fig. 6. Hybrid method - trajectory 1 environment 3

Fig. 7. Traditional particle filter - trajectory 2 environment 3

Fig. 8. Hybrid method - trajectory 2 environment 3

Regarding cost, the hybrid method has extra computational
burden, though is only a small percentage of the traditional
particle filter cost. Table II shows the percentage of the
extra time to running the hybrid method compared to the
traditional particle filter in these experiments.

VI. CONCLUSIONS

After the experiments analysis, we can draw some con-
clusions. The main one is that the hybrid method obtains

TABLE II
EXTRA TIME TO EXECUTION

Environment 1 3
Trajectory 1 2 1 2
Extra time 4.3% 4.5% 9.1% 9.6%

better results in this kind of environment, despite the small
increase in the running time. Using interval analysis helps
to reduce the uncertainty area, making it possible to obtain
a better particles distribution. Inconsistencies in the data of
the hybrid method can be more easily detected than in the
traditional particle filter, since such errors usually generate
empty sets in interval methods.

As future work, we intend to improve the method for
applications with indistinguishable markers. Other possibility
is the extension for the SLAM problem.
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