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Abstract

In this paper we propose a new approach for nonlinear parameter esti-
mation under additive Gaussian noise. We provide an algorithm based on
interval analysis and set inversion which computes an inner and an outer
approximation of a set enclosing the parameter vector with a given prob-
ability. The principle of the approach is illustrated by examples related
to parameter estimation and range-only localization.
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1 Introduction
Parameter set estimation deals with characterizing a set (preferably small) which en-
closes the parameter vector p of a parametric model from a finite set of data collected
on the system. In a bounded-error context [26][22][31] the measurement errors are
assumed to be bounded and computing the feasible set for p can be described as a
set inversion problem [14] for which interval methods [24] are particularly efficient,
even when the model is nonlinear. In a probabilistic context, the error is not any-
more described by membership intervals , but by probability density functions (pdf)
instead. The correspondence between the two approaches has been studied by Vladik
Kreinovich [17] [20]. In this context, Vladik proposed showed that the interval es-
timation problem was intractable [19], even in a linear context when experimental
factors are uncertain [18]. He also provided some links with a fuzzy representation of
uncertainties [21] and how to deal with outliers [29].

In a Bayesian context, the Bayes rule makes it possible to get the posterior pdf for
p (see, e.g., [8]). The set to computed becomes the credible set [2] and corresponds
to the minimal volume set, in the parameter space, which contains p with a given
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probability η. This problem cannot be cast into a set inversion problem but existing
interval methods can still be used [10]. Unfortunately, the approach is limited to few
parameters (typically less than 3) and few measurements (typically less than 10).

Recently, an original approach [3] named Sign-Perturbed Sums (SPS) has proposed
to constructs non-asymptotic confidence regions which is guaranteed to contain the
true parameters with a given probability η. This approach has been used for nonlinear
models to compute confidence regions [5] which have not a minimal volume (at least
in the Gaussian case). Interval analysis has also been considered to deal with the SPS
method [16] to compute guaranteed confidence regions. Other methods such as [6] or
[11] are also able to compute guaranteed confidence regions using interval analysis, but
the computed set is not of minimal volume and it is difficult to evaluate the resulting
pessimism.

There exist other approaches that combine bounded-error estimation with proba-
bilistic estimation [1] [25] [32], [9] or use other frameworks such as random sets [23]
[33] [28] or fuzzy-sets [7][30], but all these methods do not solve a problem which is
expressed only in terms of probabilities only and can thus not be used to compute
confidence regions.

This paper considers a problem which can be considered as classic on probabilistic
parameter estimation: compute a set which encloses the parameter vector with a fixed
probability η. Our main contribution is to be able to solve this problem in a reliable
way in the case where the error is Gaussian and the model is nonlinear.

Section 2 recalls the principle of set-inversion for the specific case where the noise is
Gaussian and proposes different shape for the set to be inverted. Section 3 3 recalls the
principle of the linear Gaussian estimation that will be used for comparison. Section 4
illustrates the proposed approach on three simple simulated examples and gives a
comparison with a classical linear Gaussian estimator. Section 5 concludes the paper.

2 Set Inversion for Nonlinear Gaussian Estima-
tion

This section recalls the principle of set inversion and considers the special case where
the set to be inverted is a confidence region of a Gaussian probability density function.
Consider the following parameter estimation problem

y = ψ(p) + e, (1)

where ψ is the model, y ∈ Rn is the vector of all measurements (which is known) and
e is the error vector. Without loss of generality we assume that e : N (0, In).

Remark. As illustrated by Figure 1, a random variable y following a normal
distribution N (µ,Γ) can always be whitened into a random variable x distributed as
N (0, In) by the affine transform x = Γ−1/2 (y − µ).

Definition. Define the function f (p) = y − ψ (p) corresponding to the error e
and a set Eη containing e with a probability η. The probabilistic set associated to Eη
is defined as

P̂Eη = f−1 (Eη) . (2)

It contains p with a prior probability of η [11]. As a consequence, a probabilistic
set estimation can be viewed as a set inversion problem for which guaranteed interval
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techniques could be used. Now, there exists several manners to choose such a set
Eη. We compare two different types of sets: a sphere (which is a confidence region of
minimal volume) and a box, which is a good representation for interval methods.

Let us now recall [27] some results useful to get a set which encloses the normal
error e with a given probability η.

Theorem. The minimal volume confidence region of probability η associated with
e : N (0, In) is the centered n-dimensional sphere Sη of radius α, where (α, η) are
linked by the relation

η =

∫ α2

0

z(
n
2
−1)e−

z
2

2
n
2 Γe

(
n
2

) · dz (3)

where Γe the Euler function. Recall that for n ∈ N the Euler function satisfies

Γe (n) = (n− 1)! (4)

Proof. The random variable z = eT · e follows a χ2 distribution with n degrees of
freedom whose probability density function is

π(z, n) =
z(

n
2
−1) · e−

z
2

2
n
2 Γe

(
n
2

) . (5)

The minimal volume confidence region Sη is the set of all e such that

z = eT · e ≤ α2 (η) (6)

and the probability η to have e ∈ Sη is

η =

∫ α2

0

π (z, n) · dz =

∫ α2

0

z(
n
2
−1)e−

z
2

2
n
2 Γe

(
n
2

) · dz. (7)
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For n = 1, n = 2 or n large, from the integral in Equation (3), we can have an
expression of the radius α(η) [2] as recalled in Table 1.

n α(η)

1 α =
√
2erf−1(η)

2 α =
√
−2 · log (1− η)

n� 1 α '
√
n+ 2

√
n · erf−1

(
2η + erf

(
−
√
n

2

)) .

Table 1: α(η) for n = 1, 2 and n� 1

In our context, the dimension of e is large and we can consider that the formula
corresponding to n� 1 is correct.

Theorem. With n � 1 , the probability φη to have e : N (0, In) inside, the
box-hull [Sη] of Sη is

φη = erf

(√
√
n · erf−1

(
2 · η + erf

(
−
√
n

2

))
+
n

2

)n
. (8)

Proof. From Table 1 with n� 1, for a given confidence η, the radius α of Sη is

α =

√
2 ·
√
n

[
erf−1

(
2η + erf

(
−
√
n

2

))]
+ n. (9)

Now, [Sη] is the Cartesian product of n intervals [ei] of length 2α:

[Sη] = [e1]× [e2]× . . .× [en] . (10)

From Table 1 with n = 1, we know that the probability to have ei ∈ [ei] is

Pr (ei ∈ [ei]) = erf
(
α√
2

)
. (11)

Therefore

Pr (e ∈ [Sη]) =

n∏
i=1

Pr (ei ∈ [ei]) = erf
(
α√
2

)n
. (12)

By combining (9) with (12), we get (8).
Remark. ∀η > 0, limn→+∞ Pr (e ∈ [Sη]) = 1. It means that even for low values of
η the probability Pr (e ∈ [Sη]) increases dramatically fast with the dimension of e.
Therefore when n is large inverting [Sη] yields too much pessimism as illustrated by
Figure 2.

Theorem. The minimal volume box Bη which encloses e : N (0, In) with a prob-
ability η is the centered cube with half-width

α=
√

2erf−1 ( n
√
η) . (13)
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Figure 2: Pr (e ∈ [Sη]) as a function of n

Proof. The symmetry of the problem implies that Bη should be centered. Since
the ei are independent, we have:

η = Pr (∀i, ei ∈ [−α, α]) =
∏n
i=1 Pr (ei ∈ [−α, α])

=
∏n
i=1 erf

(
α√
2

)
=

(
erf
(
α√
2

))n (14)

i.e., α=
√

2erf−1
(
n
√
η
)
.

Theorem. We have
lim
n→∞

vol (Sη)

vol (Bη)
= 0. (15)

Proof. Since the volume of a n-dimensional sphere Sη of radius α is

Vn =
π
n/2αn

Γe (n/2 + 1)
,

we have:

ρη (n) =
vol (Sη)

vol (Bη)
=

π
n/2·

√
n+2
√
n·erf−1

(
2η+erf

(
−
√
n

2

))n
Γe(n/2+1)(

2
√

2erf−1
(
n
√
η
))n

The Stirling formula Γe (n+ 1) = n! ∼
√

2πn
(
n
e

)n implies that

ρη (n) ∼
π
n/2 ·

√
n+ 2

√
n · erf−1

(
2η + erf

(
−
√
n

2

))n
√

2π n
2

(
n
2e

)n
2 ·
(
2
√

2erf−1
(
n
√
η
))n .
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Now, 2η + erf
(
−
√
n

2

)
∼ 2η − 1. Therefore

ρη (n) ∼ π
n/2 ·

√
n+ 2

√
n · erf−1 (2η − 1)

n

√
πn
(
n
2e

)n
2 ·
(
2
√

2erf−1
(
n
√
η
))n

Since, n+ 2
√
n · erf−1 (2η − 1) ∼ n, we get:

ρη (n) ∼ π
n/2·
√
nn

√
πn( n2e )

n
2 ·
(
2
√

2erf−1( n√η)
)n

= π
n/2·n

n
2 ·(2e)

n
2

√
nn

n
2 ·
(
2
√

2erf−1( n√η)
)n

∼ (eπ)
n
2

(2erf−1( n√η))n
=

(
√
eπ

2erf−1( n√η)

)n
which converges to zero.

Figure 3: Idealized representation for Sη,Bη, [Sη]

Figure 3 illustrates the configuration for the sets Sη,Bη, [Sη] that are used to ap-
proximate the error vector e. Both Sη,Bη contain e with a probability η.
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3 Linearization method
To compute a set which encloses the parameter vector e with a probability η, the
previous section proposed to compute the probabilistic set P̂Eη associated to Eη, the
set which contains e with a probability η. This set can be expressed as the set inversion
problem P̂Eη = f−1 (Eη) where f (p) = y − ψ (p). For a comparison, we recall the
classical the Maximum Likelihood approach to estimate such a confidence set by a
linearization of the model. Unfortunately, the linearization error cannot be quantified
in a reliable way.

The linearization method searches for the parameter vector p̂ which maximizes
the likelihood function

L (yi | p) =
∏
i

π (yi | p) ∝
∏
i

e−(ψi(p)−yi)2 . (16)

This is equivalent to minimizing

λ (p) = − logL (yi | p) =
∑
i

(ψi (p)− yi)2 (17)

which is corresponds to a non-linear least-square minimization problem. It seems
reasonable to assume that the true value for p is closed to the minimizer p̂ and that
λ (p) can be approximated by a second order Taylor development of Equation 17
around p̂. Since the gradient of λ at p̂ is zero, we get

λ (p) ∼ λ (p̂) +
1

2
· (p− p̂)T ·Hλ (p̂) · (p− p̂) (18)

where Hλ is the Hessian matrix of λ. Now eT ·e ≤ α (η)2 ⇔ λ (p) =
∑
i (ψ (p)− yi)2 ≤

α2 (η). As a consequence, a confidence ellipsoid which contains p with a probability η
is:

λ (p̂) +
1

2
· (p− p̂)T ·Hλ (p̂) · (p− p̂) ≤ α2 (η) .

Note that Hλ (p̂) corresponds to the observed Fisher information matrix at p̂ [31][2]
which is the inverse of the covariance matrix Σp̂ for the estimated maximum likelihood
parameter p̂. Note also that the linearization method provides on ellipsoid associated
to the probability η but this ellipsoid cannot be considered as reliable: the probability
that it contains p is most of the time far from η.

4 Test-cases
To illustrate our method, we consider here three illustrative test-cases involving pa-
rameter estimation under white, additive Gaussian noise.

4.1 Test-case 1
Consider the following model

y(t) = p2 · e−p1·t + p1 · e−p2·t + w(t) (19)

where t ∈ {0, 0.01, 0.02, . . . , 12} and w(t) is a white centred Gaussian noise with a
variance σ2 = 1. Figure 4 represents the collected data y(t).
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Figure 4: Measurements y(t) for Test-case 1

Figure 5 represents the three sets P̂0.99 obtained by an inversion of [S0.99] ,B0.99 and
S0.99. This comparison confirms that the box-hull inversion P̂[S0.99] is too pessimistic.
Figure 6 illustrates a situation where P̂S0.99 6⊂ P̂B0.99 . From Theorem 2 we could have
expected an inclusion. Now, this example is quite atypical: the parametric model
is not globally identifiable, i.e., p1 and p2 can be interchanged without any effect on
the output. Figure 6 also represents the confidence ellipsoid generated by the linear
estimator. Due to the non identifiability problem, we have two global minimizers. We
have chosen to draw the ellipsoid centred around the minimizer corresponding to the
true parameter vector p∗. Otherwise, the 0.99 ellipsoid would not contains p∗.

4.2 Test-case 2
Consider the following model studied in [15]

y(t) = 20 · e−p1·t − 8 · e−p2·t + w (20)

which is similar to the model of Test-case 1 but the model is now identifiable. Again,
w(t) is a centred normal noise with a unit variance. We collected 1000 measurements
for y(t) at different times t ∈ [0, 25] as represented on Figure 7.

Figure 8 shows that the inversion P̂S0.99 of the confidence sphere S0.99 is more pre-
cise than the inversion of [S0.99] and B0.99. The set P̂S0.99 has two disjoint components
at a confidence level η = 0.99. Figure 9 shows that the linear estimator was able to
capture the correct parameters vector.

Remark. Figure 8 shows that the proposed approach suffers from an important
pessimism: the border of the computed set is quite thick, and the generated subpaving
is not minimal. This is due to the multiple-occurences in the parameter variables in
the expression of the inequalities describing Sη. Interval methods are sensitive to this
type of situation which adds pessimism in the propagation of uncertainties [13]. To
limit this phenomena, linear approximations such as the centered or affine forms of
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Figure 5: P̂[S0.99] (top left), P̂B0.99(top right), P̂S0.99 (bottom). The black star is the
true parameters vector.



10 Nicola and Jaulin, Reliable Computing Template

Figure 6: Superposition of P̂[S0.99] (light gray), P̂B0.99(gray), P̂S0.99 (dark gray), and
the 0.99 confidence ellipse obtained with a linear estimator. The black star is the true
parameter vector p∗

the constraints could be used.

4.3 Test-case 3
In this example, a lost underwater vehicle tries to get its position by gathering range-
only measurements to three beacons [4] [12]. The position xj =

(
xj yj zj

)
of

the jth beacon is precisely known from a previous survey of the area, as well as the
altitude zm of the robot, thanks to a pressure sensor. The three beacons are almost
aligned, which causes a bad conditioning. The robot is assumed to be static during
the acquisition. For each measurement d̃i to the beacon j we have

d̃ij =

√
(xj − xm)2 + (yj − ym)2 + (zj − zm)2 + w (21)

where w is a white centred Gaussian noise, whose variance is given by the sensor for
each measurement. The signals associated to the three beacons are pictured in Figure
10.

From Figure 12, we observe that P̂S0.99 ⊂ P̂B0.99 ⊂ P̂[S0.99], which confirms that the
P̂S0.99 is more precise than the two other confidence regions. Figure 13 is the super-
position of P̂S0.99 , P̂B0.99 , P̂[S0.99] and the 0.99 confidence ellipse (flat and horizontal) of
a linear estimator. While the linear estimator gives an estimate that is consistent (it
contains the true solution), it is obvious that it doesn’t fully capture the underlying
banana-shaped probability density function, which is more accurately seized by our
nonlinear methods.

Table 2 compares the time it takes to compute P̂[S0.99], P̂B0.99 , P̂S0.99 on a classical
laptop for the three test-cases. As it could have been anticipated, it is clear that
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Figure 7: Collected data y(t) for Test-case 2

inverting boxes, which are convenient representations for interval methods, takes much
less time than inverting a sphere.

Computation time (s) Test-case 1 Test-case 2 Test-case 3
P̂[S0.99] 35 sec 1sec 26sec
P̂B0.99

62sec 6sec 45sec
P̂S0.99 839sec 89sec 510sec

Table 2: Computation times for Test-cases 1, 2 and 3

5 Conclusion

In this paper, we have presented a new approach for parameter estimation of nonlinear
models with additive Gaussian noise. The resulting method makes it possible to
compute a set which contains the parameter vector with a given probability. The
main contribution of this paper is that the results are guaranteed, which is not the
case for existing approaches. Indeed, although if existing methods are also able to
provide an estimation of such a confidence region of probability η, they perform some
linearizations without quantifying the corresponding error. Three simulated test-cases
were presented and compared to existing and linear methods.
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Figure 8: P̂[S0.99] (top left), P̂B0.99 (top right), P̂S0.99 (bottom). The black star is the
true parameter vector p∗
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