
1

Online interval depth localization of an
underwater robot with ballast

Luc Jaulin

Abstract

This paper presents an efficient online method to simulate a dynamical system with interval uncertainties.
These uncertainties can be either on the initial state vector, on the time-dependent inputs, or on the evolution
function. Compared to other techniques used for the guaranteed integration of differential inclusion, the
presented approach is online and requires a small and fixed number of operations at each sampling time. An
illustration related to underwater robotics will be provided. The application involves a robot with a ballast
that can move from the surface to the sea floor. We would like to guarantee that the robot will reach a given
depth at a given time.

Index Terms

Differential inclusion, ballast, underwater robot, Interval analysis, Interval integration, Reachability

I. INTRODUCTION

Reachability has been studied by many authors using set-membership tools [4] [6] [9] [10] [11] [21] [27].
Often, the objective of reachability is to predict the future of a dynamical system under uncertainties [26].
In this paper, we will focus on an underwater robot equipped with a ballast, namely a float, shown in Figure
1. The float can only move upward to the surface and downward to the seafloor. The state equations are

Fig. 1. The buoyancy of the robot may change depending of the position of the piston

given by
ṡ = u

v̇ = gβs
1+βs −

cx
2(1+βs)ℓ v · |v|

ḋ = v

(1)

where the state variables are:
• The sinking coefficient s (or buoyancy) which corresponds to the position of the piston of the ballast.

When s = 0, the density of the float is exactly that of the water ρ0. When s > 0, the float sinks and
when s < 0, it surfaces. The derivative of s can be controlled by a motor and corresponds to the input
u. Equivalently, u corresponds to rate of fluid which enters in the ballast.

2

• The depth d expressed in meters. It is the derivative of the vertical speed.
• The vertical speed v. Its evolution depends of the forces (gravitational, buoyant, drag).

The parameters, assumed to be constant, are:
• The acceleration due to gravity g
• The amplification rate of the piston β: When the piston of the ballast is at position s, the average

density of the robot is (1 + βs).
• The drag coefficient cx with respect to the vertical.
• The length ℓ with respect to the vertical position

To get this model, it suffices to apply the Newton’s second Law:

mv̇ = mg︸︷︷︸
gravitational force

− ρ0Aℓg︸ ︷︷ ︸
buoyant force

− 1

2
cxρ0A · v · |v|︸ ︷︷ ︸

drag force

(2)

where ρ0 is the density of the water, and A is the cross-sectional area of the robot. Since the mass of the
float is m = (1 + βs) ρ0Aℓ, we get

v̇ = g − ρ0Aℓg

(1 + βb) ρ0Aℓ
− 1

2

cxρ0Av · |v|
(1 + βb) ρ0Aℓ

(3)

which corresponds to (1). Note that much more accurate models can be found in [18].
We assume that we know intervals containing the initial state variables and a tube (i.e., an interval of

trajectories) containing the input u(t). Our goal is to find a tube for the three state variables. The notion of
tube is illustrated by Figure 2. A tube can be seen as an array containing two lists of intervals: the gates
[x](k) and the slices JxK(k) (see [24]). A tube is the set of all trajectories that cross all gates and that are
always enclosed in the slices. More formally, the slices and the gates are intervals that should satisfy

∀k, x(kδ) ∈ [x](k) (for the gates)
∀t ∈ [(k − 1)δ, kδ], x(t) ∈ JxK(k) (for the slices)

(4)

For simplicity, this tube is denoted by [x](t).

Fig. 2. A tube which encloses the trajectory x(t)

We can now be more precise on the problem we want to solve. Assume that

3

• we know an initial box [s−0 , s
+
0]× [v−0 , v

+
0]× [d−0 , d

+
0] containing the state (s, v, d) at time t = 0.

• we know a tube [u](t) containing u(t) for all t ≥ 0.
We want to find a tube for each state variable. Moreover, we want the method to be online [22]. More
precisely, as illustrated by Figure 3, we want an interval estimator of the form [s](k)

[v](k)
[d](k)

 = F

 [s](k − 1)
[v](k − 1)
[d](k − 1)

 , JuK(k)

 JsK(k)
JvK(k)
JdK(k)

 = G

 [s](k − 1)
[v](k − 1)
[d](k − 1)

 , JuK(k)

 (5)

such that the corresponding tubes enclose the signals s(t), v(t), d(t). Note that we have gates [s](k), [v](k), [d](k)
for s, v, d and a slice JuK(k) for u. The interval state estimator should execute a fixed set of operations
at each sampling time, otherwise we do not have an online predictor. As a consequence, interval methods
based on Picard fixed point methods ([2] [13] [20]), bisection based methods (see, e.g., [14]) are not allowed.
Moreover, the memory used by estimator should be fixed and thus zonotope approaches [1] [3] [7] should
be avoided. In our case, only the three gates for s, v, d will be memorized.

Fig. 3. Online interval state estimator

We will take advantage of the fact that the float is composed of three SISO (Single-Input Single-Output)
systems in series, as illustrated by Figure 4.

Fig. 4. The float is composed of three SISO systems in series

4

The paper is organized as follows. Section II recalls some classical results for differential inclusion for
systems with a single state variable. Section III introduces the notion of interval flow which will be main
operator used for a reliable discretisation of differential inclusions. Section IV studies the well-known Riccati
differential equation. This part will be needed for the resolution of the sinking body problem proposed in
Section V. Section VI combines all these tools to derive an online interval predictor for the float with interval
uncertainties. Section VII concludes the paper.

II. DIFFERENTIAL INCLUSION

This section recalls some classical results related to differential inclusions [5]. These results will be used
further in order to build a reliable procedure to predict the evolution of the float with interval uncertainties.

We consider the scalar system
v̇(t) = f(v(t),u(t))
v(0) = v0 ∈ [v0]
u(t) ∈ JuK ⊂ Rn

(6)

The signal u(t) is inside the box JuK ⊂ Rm. Note that u(t) in chosen as a vector and this is why is it
written bold. It varies with time in contrast to the box JuK which is assumed to be constant with time. We
have here a differential inclusion [5] with many solutions, as many as we have different signals u(t) in the
box JuK. Finding an envelope for the set of all solutions v(t) is a difficult problem which can be solved
using optimal control theory [15] for some cases.

A. Comparison theorem

We recall here a theorem which can be used directly to find an envelope for a differential inclusion with
one state variable [8]. It takes into account the monotonicity of the subsystems [25] to facilitate the interval
integration.

Proposition 1. Assume that the initial condition satisfies v0 ∈ [v−0 , v
+
0] and denote by [f] an inclusion

function for f [17]. An envelope for any solution v(t) is [v−(t), v+(t)], where:

v̇− = lb([f](v−, [u])) , v−(0) = v−0
v̇+ = ub([f](v+, [u])) , v+(0) = v+0

(7)

The operator lb takes the lower bound of its interval input and ub returns its upper bound.

Proof: The minimal and maximal solutions for (6) satisfy [16]:

v̇ = f(v, argmin
u∈[u]

f(v,u)) , v(0) = v−0

v̇ = f(v, argmax
u∈[u]

f(v,u)) , v(0) = v+0
(8)

It is a consequence of the Hamilton-Jacobi-Bellman theorem in the scalar case [15]. Let us recall the
comparison theorem for scalar differential equations

ẋ1 = φ1(x1)
ẋ2 = φ2(x2)
φ1 ≤ φ2

x1(0) ≤ x2(0)

⇒ ∀t, x1(t) ≤ x2(t). (9)

5

Now, for all v, we have
lb([f](v−, [u])) ≤ f(v−, argmin

u∈[u]
f(v−,u))

ub([f](v+, [u])) ≥ f(v+, argmax
u∈[u]

f(v+,u))
(10)

Therefore, using the comparison theorem, we conclude the proof of the proposition.

B. Example: the sinking body

We consider a body totally immersed in the ocean as represented by Figure 5. As it will be seen later
this example is chosen since it is an important component of our underwater robot.

Fig. 5. Sinking body

The speed v of the body satisfies the following differential equation

v̇ = a− bv|v| (11)

where b > 0 corresponds to a dumping coefficient. If the body has a negative buoyancy, the coefficient a
is positive and the body sinks toward the bottom. If it has a positive buoyancy, a is negative and the body
goes up toward the surface. We assume that both a and b are constant and belong to the intervals [a−, a+],
and [b−, b+], respectively.

First, note that the system is stable and v(t) converges to

v̄ = sign(a)

√
|a|
b
. (12)

Taking into account Proposition 1, we get a tube [v−, v+] containing v(t). The two bounds v− and v+ are
defined by the two differential equations

v̇− = lb
(
[a]− [b]v−|v−|

)︸ ︷︷ ︸
f−
[a],[b](v

−)

, v−(0) = v−0

v̇+ = ub
(
[a]− [b]v+|v+|

)︸ ︷︷ ︸
f+
[a],[b](v

+)

, v+(0) = v+0
(13)

The tube [v−, v+] is minimal, i.e., it is the smallest with respect to the inclusion which contains all feasible
v(t). As a consequence, we can find a good approximation for the two bounds v−(t) and v+(t) using any
Runge-Kutta method. For example:

v−(t+ δ) = v−(t) + δ · f−[a],[b]
(
v−(t) + δ

2 · f−[a],[b](v
−(t))

)
v+(t+ δ) = v+(t) + δ · f+[a],[b]

(
v+(t) + δ

2 · f+[a],[b](v
+(t))

) (14)

6

If δ is small, this approximation is very close to the minimal tube, but it does not provide any guarantee.
Guaranteed bounds will be given later in Section V.

We consider four illustrative cases, illustrated by Figure 6.
Case a. We have (v0, a, b) ∈ [0.9, 1.1]× [0.9, 1.1]× [1.9, 2.1]. This means that for t = 0, the body goes

to the bottom. Since a > 0, it sinks (as represented by stones in the cube of the subfigure at the top). The
two trajectories v−(t),v+(t) in red are obtained by the Runge-Kutta integration (14). We observe that the
velocity interval [v−(t), v+(t)] converges to the interval [v̄] = sign([a])

√
|[a]|
[b] .

Case b. We have (v0, a, b) ∈ [−1.1,−0.9]× [−1.1,−0.9]× [1.9, 2.1]. This means that for t = 0, the body
goes to the surface. Since a < 0, it floats (as represented by the bubbles in the cube of the Subfigure (b)).
Again, the two trajectories v−(t),v+(t) in red are obtained by the Runge-Kutta integration (14). And again,
we observe that v(t) converges to a value v̄.

Case c. We have (v0, a, b) ∈ [0.9, 1.1] × [−1.1,−0.9] × [1.9, 2.1]. For t = 0, the body is thrown toward
the bottom. Since a < 0, the body floats. We observe that after approximately 1 sec, the body stops sinking
and then starts its course to the surface. For the simulation, we need to compute the time at which v(t)
changes its sign.

Case d. We have (v0, a, b) ∈ [−1.1,−0.9]× [0.9, 1.1]× [1.9, 2.1]. For t = 0, the body is thrown toward the
surface. Since a > 0, the body sinks. We observe that after approximately 1 sec, the body stops surfacing
and then starts its course to the bottom.

III. INTERVAL FLOW

In the previous section, we have shown how an integration of a differential inclusion can be performed
in case of interval uncertainties. However, no guarantee was provided, mainly with respect to the time
discretisation. In order to get a reliable integration approach, this section presents the new notion of interval
flow.

A. Interval flow

Given a sampling time δ > 0, an interval flow associated with (6) is a function Φf which satisfies

Φf :
R× IR× IRm → IR× IR
(δ, [v0], JuK) → ([v], JvK) (15)

with
v(0) ∈ [v0]

∀t ∈ [0, δ],u(t) ∈ JuK
v̇(t) = f(v(t),u(t))

([v], JvK) = Φf (δ, [v0], JuK)

⇒
{

v(δ) ∈ [v]
∀t ∈ [0, δ], v(t) ∈ JvK (16)

The interval flow will be used for the discretisation of a differential inclusion. Indeed, if we know an interval
for the state v(tk) at time tk = kδ, and if we know an interval for the input u(t) for all t ∈ [tk, tk + δ] the
interval flow returns an interval containing v(t), t ∈ [tk, tk + δ] and an interval for v(tk + δ).

B. Example: the integrator

Consider the integrator with an uncertain input u(t) and initial state v0:
v̇(t) = u(t)

v(0) = v0 ∈ [v0]
u(t) ∈ JuK = [u−, u+]

(17)

7

Fig. 6. Sinking body (with stones inside) or floating body (with bubbles inside) for different initializations. There is no guarantee
that the tubes contain the trajectory v(t)

From Proposition 1, we know that any solution v(t) is inside [v−(t), v+(t)], where :

v̇− = u− , v−(0) = v−0
v̇+ = u+ , v+(0) = v+0

(18)

8

As a consequence, an interval flow is

Φf (δ, [v0], JuK) =
(

[v0] + δJuK
[v0] + [0, δ] · JuK

)
(19)

C. Example: first order system

Consider a first order linear system with uncertain input u and initial state v:

v̇(t) = av(t) + u(t)
v(0) = v0 ∈ [v0]

u(t) ∈ JuK = [u−, u+]
(20)

From Proposition 1, we know that any solution v(t) is inside [v−(t), v+(t)], where :

v̇− = av− + u− , v−(0) = v−0
v̇+ = av+ + u+ , v+(0) = v+0

(21)

i.e.

v−(t) = eatv−0 +
∫ t
0 e

a(t−τ)u−(τ)dτ

= eat
(
v−0 +

∫ t
0 e

−aτu−(τ)dτ
)

= eat
(
v−0 + u−

∫ t
0 e

−aτdτ
)

= eat
(
v−0 + u−

[
− 1

a (e
−aτ)

]t
0

)
= eat

(
v−0 − u−

a

(
e−at − 1

))
v+(t) = eat

(
v+0 − u+

a

(
e−at − 1

))
(22)

As a consequence, an interval flow for the scalar first order system is

Φf (δ, [v0], JuK) =

 eaδ
(
[v0]− JuK

a

(
e−aδ − 1

))
ea[0,δ]

(
[v0]− JuK

a

(
e−a[0,δ] − 1

))
 (23)

D. Real time interval integration

Recall that our goal is to integrate the equation of the float (1) with some interval uncertainties. Now, it will
be shown later that the float is a serial composition of several subsystems for which we have an analytical
interval flow. To show how this real-time interval integration can be done, we consider two compositions:
serial and parallel, as illustrated by Figure 7. Note that the parallel composition will not we used for our
application, but is given here to illustrate that our approach is not limited to serial systems.

9

Fig. 7. S1 is serial composition of two systems; S2 is a parallel composition

Serial systems. Consider the system S1 (see Figure 7)

S1 :

{
ẋ = f(x, u)
ẏ = g(y, x)

(24)

The following algorithm computes a tube for the output y(t).

in: [x0], [y0]
1 [x] = [x0]
2 [y] = [y0]
3 for k = 1 to kmax

4 Read JuK = JuK(k)

5

(
[x]
JxK

)
= Φf (δ, [x], JuK)

6

(
[y]
JyK

)
= Φg(δ, [y], JxK)

7 write(k, [y], JyK)

Proof: Assume that ,
x(tk−1) ∈ [x](k − 1)

x([tk−1 − δ, tk−1]) ∈ JxK(k − 1)
y(tk−1) ∈ [y](k − 1)

y([tk−1 − δ, tk−1]) ∈ JyK(k − 1)

(25)

with tk = kδ. Now, from Step 5,(
[x](k)
JxK(k)

)
= Φf (δ, [x](k − 1), JuK(k)) (26)

From Equation (16), {
x(tk) ∈ [x](k)

∀t ∈ [tk − δ, tk], x(t) ∈ JxK(k) (27)

Moreover, from Step 6, (
[y](k)
JyK(k)

)
= Φf (δ, [y](k − 1), JxK(k)) (28)

10

Thus, from (16), {
y(tk) ∈ [y](k)

∀t ∈ [tk − δ, tk], y(t) ∈ JyK(k) (29)

Parallel systems. Consider the system S2 of Figure 7:

S2 :

ẋ = f(x, u)
ẏ = g(y, u)
z = x+ y

(30)

The following algorithm computes a tube for the output z(t).

in: [x0], [y0]
1 [x] = [x0]
2 [y] = [y0]
3 for k = 1 to kmax

4 Read JuK = JuK(k)

5

(
[x]
JxK

)
= Φf (δ, [x], JuK)

6

(
[y]
JyK

)
= Φg(δ, [y], JuK)

7

(
[z]
JzK

)
=

(
[x] + [y]
JyK + JyK

)
8 write(k, [z], JzK)

Proof: The proof is similar to that provided for serial systems.

IV. ANALYTICAL SOLUTION OF THE RICCATI EQUATION

To be able to simulate our float with an interval uncertainty, we need to find an interval flow for each of
the three blocks of Figure 4. For the first and the last blocks which are both integrators, the interval flow
has been given in Subsection III-B. For the block of the middle, the interval flow needs a specific analytical
resolution. Now, this resolution can be derived from the analytical solution of a Riccati equation that is
considered in this section. All results given here are taken from [19] but only those that are useful for our
application have been extracted from this book.

A Riccati equation is given by

v̇ = a− bv2 (31)

We assume here that v0 > 0.

Proposition 2. If a > 0 then the solution of (31) is

v(t) = v̄ ce2
√

abt−1
ce2

√
abt+1

c = v̄+v0

v̄−v0

v̄ =
√

a
b

(32)

11

Proof: Set E(t) = ce2
√
abt, we have Ė = 2

√
abcE. We have

v̇ = a− bv2

⇔ v̄ d
dt

(
E−1
E+1

)
= a− b

(
v̄E−1
E+1

)2
⇔ v̄

(
Ė(E+1)−Ė(E−1)

(E+1)2

)
= a− b

(
v̄E−1
E+1

)2
⇔ v̄

(
2
√
abcE(E+1)−2

√
abcE(E−1)

(E+1)2

)
= a− b

(
v̄E−1
E+1

)2
⇔

√
a
b

(
2
√
abE (E + 1)− 2

√
abE (E − 1)

)
= a (E + 1)2 − a (E − 1)2

⇔ 4aE = E2 + 2aE + 1−
(
E2 + 2aE + 1

)
(33)

which is true.
The solution of the Riccati equation, as given by Proposition 2 is singular when a = 0 and numerically

ill-conditioned a is near zero. Now, this singularity has no physical reason and can be avoided by the using
the exponential cardinal function expc(ν) defined by

expc(ν) =
eν − 1

ν
(34)

with expc(0) = 1. This function is continuous and differentiable everywhere. It is a monotonic function,
strictly positive and its graph is similar to that of exp ν. The singularity we observe in the expression for
ν = 0 is artificial and should not be considered as such.

Proposition 3. If a ≥ 0 then the solution of (31) is

v(t) =
e2bv̄t(v̄ + v0) + v0 − v̄

1 + e2bv̄t + 2v0bt · expc(2bv̄t)
(35)

Note that, thanks to the use of the expc function, this expression for v(t) has no more singularity for
t = 0.

Proof: Let us first check that the formula is correct when a > 0. We have

v(t) = v̄
v̄+v0
v̄−v0

e2bv̄t−1
v̄+v0
v̄−v0

e2bv̄t+1
= v̄ (v̄+v0)e2bv̄t−(v̄−v0)

(v̄+v0)e2bv̄t+(v̄−v0)

= v̄ v̄(e2bv̄t−1)+v0(e2bv̄t+1)
v̄(e2bv̄t+1)+v0(e2bv̄t−1) = v̄(e2bv̄t−1)+v0(e2bv̄t+1)

(e2bv̄t+1)+v0

(
e2bv̄t−1

v̄

)
= v̄(e2bv̄t−1)+v0(e2bv̄t+1)

(e2bv̄t+1)+2v0bt·expc(2bv̄t)

(36)

Let is now check that the formula is correct when a = 0. Since v̄ =
√

a
b = 0, we have

v(t) =
v0
(
e0 + 1

)
1 + e0 + 2v0bt

=
v0

1 + v0bt
. (37)

Thus
v̇ = a− bv2

⇔ v̇ = −bv2

⇔ v0
−v0b

(1+v0bt)2
= −b

(
v0

1+v0bt

)2 (38)

which is true.

Proposition 4. If a < 0 then the solution of (31) is

v(t) = v̄ tan
(
atanv0

v̄ − bv̄t
)

v̄ = −
√

−a
b

(39)

12

where
t < t1 =

1

−bv̄

(π
2
− atan

v0
v̄

)
. (40)

The change of sign for v(t) is obtained for

t2 =
1

bv̄
atan

v0
v̄
. (41)

Proof: First, note that a = −v̄2b. We have

v̇ = a− bv2

⇔ d
dt

(
v̄ tan

(
atanv0

v̄ − bv̄t
))

= −v̄2b− bv̄2 tan2
(
atanv0

v̄ − bv̄t
)

⇔
(
1 + tan2

(
atanv0

v̄ − bv̄t
))

· d
dt

(
atan

v0
v̄

− bv̄t
)

︸ ︷︷ ︸
−bv̄

= −v̄b
(
1 + tan2

(
atanv0

v̄ − bv̄t
))

⇔ 1 +
(
tan

(
atanv0

v̄ − bv̄t
))2

= 1 +
(
tan

(
atanv0

v̄ − bv̄t
))2

which is true. The integration is possible until

atan
v0
v̄

− bv̄t ∈]− π

2
,
π

2
[(42)

This condition is satisfied for t = 0. It will still be satisfied until

atanv0

v̄ − bv̄t ≤ π
2

⇔ t ≤ t1 =
1

−bv̄

(
π
2 − atanv0

v̄

) (43)

For this t1, the solution is at infinity. For the initialization, we need to have atanv0

v̄ ∈] − π
2 ,

π
2 [which is

always the case. To get the time of change of sign for v(t), we solve:

atan
v0
v̄

− bv̄t2 = 0. (44)

Thus
t2 =

1

bv̄
atan

v0
v̄
. (45)

Corollary 5. The solution of the Riccati equation v̇ = a− bv2 for b > 0 is

v(t) = ψ+
a,b,v0

(t) = e2bv̄t(v̄+v0)+v0−v̄
1+e2bv̄t+2v0btexpc(2bv̄t) if a ≥ 0

= ψ−
a,b,v0

(t) = v̄ tan
(
atanv0

v̄ − bv̄t
)

if a < 0
(46)

where v̄ = sign(a)
√

|a|
b .

V. SINKING BODY PROBLEM

We consider again the equation of the sinking body given by

v̇ = a− bv|v| (47)

where b > 0. This equation is close to the Riccati equation v̇ = a− bv2. Equivalently (47) can be seen as
a piecewise Riccati equation. In this section, we propose to find an analytic solution for the solution v(t).
This expression is needed to build an interval flow for (47) which will then be used to integrate our float
with interval uncertainties.

13

A. Analytical expression of the solution of the sinking body motion

From the analytical solution of the Riccati equation, we can get an analytical expression of the sinking
body motion in the case where the parameters a, b are constant.

Proposition 6. The solution of v̇ = a− bv|v| is

φa,b,v0
(t) =

sign(a) · ψ+

|a|,b,sign(a)·v0
(t) if av0 ≥ 0

−sign(a) · ψ−
−|a|,b,−sign(a)·v0

(t) if av0 < 0 and t ≤ t2

sign(a) · ψ+
|a|,b,0(t− t2) if av0 < 0 and t > t2

(48)

where t2 = − sign(a)√
|a|b

atan
(
v0
√

b
|a|

)
, where ψ− and ψ+ are defined by (46).

Proof: If a = 0 or v0 = 0, we have av0 ≥ 0 and we easily check that the Proposition is valid. We need
to check four cases.

Case 1: a > 0,v0 > 0. We have v̇ = a−bv2 which is a Riccati equation. From Corollary 5, v(t) = ψ+
a,b,v0

(t)
for all t ≥ 0.

Case 2: a < 0,v0 < 0. We have v̇ = a − bv|v| = a + bv2. Set w = −v. We have −ẇ = a + bw2, i.e.,
ẇ = (−a)− bw2. Thus w(t) = ψ+

−a,b,w0
(t) and finally

v(t) = −ψ+
−a,b,−v0

. (49)

Case 3: a < 0,v0 > 0. We have v̇ = a− bv2 , which is again a Riccati equation. From Corollary 5, we
get

v(t) = ψ−
a,b,v0

(t) if t ≤ t2 =
1
bv̄ atanv0

v̄

v(t) = −ψ+
−a,b,0(t− t2) if t > t2

(50)

Case 4: a > 0,v0 < 0. We have v̇ = a− bv|v| = a+ bv2. We get

v(t) = −ψ−
−a,b,−v0

(t) if t ≤ t2 = − 1
bv̄ atanv0

v̄

v(t) = ψ+
a,b,0(t− t2) if t > t2

(51)

B. Interval flow of the sinking body motion

Corollary 7. If v0 ∈ [v−0 , v
+
0], a ∈ [a−, a+], b ∈ [b−, b+] and t ∈ [t−, t+],we have

φa,b,v0
(t) ∈ [φ][a],[b],[v0]([t]) (52)

where
(i) [φ][a],[b],[v0]([t])) = [φ]a−,[b],v−

0
([t]) ⊔ [φ]a+,[b],v+

0
([t])

(ii) [φ]a,[b],v0
([t]) = [φ]a,[b],v0

({t−, t+})

(iii) [φ]a,[b],v0
(t) =

{
σ · [ψ+]|a|,[b],σv0

(t) if a · v0≥ 0
[φ̂]a,[b],v0

(t) if a · v0< 0

(iv) [φ̂]a,[b],v0
(t) =

φa,{b−,b+},v0

(t)) if t /∈ [t2]
σ · [ψ+]|a|,[b],0(t− [t2]) if t ∈ [t2]
[t2] = t2(v0, a, {b−, b+})

(v) [ψ+]a,[b],v0
(t) = ψ+

a,{b−,b+},v0
(t)

where
t2(v0, a, b) = − σ√

|a|·b
atan

(
v0
√

b
|a|

)
σ = sign(a)

14

and ⊔ denotes the interval hull operator.

Remark 8. In the previous formulas, we use an enumeration notation with braces. The resulting calculus
returns the smallest interval which contains all possibilities obtained from the list. For instance

sin({0, 1}) = [0, sin(1)]
[φ]a,[b],v0

({t−, t+}) = [φ]a,[b],v0
(t−) ⊔ [ψ]a,[b],v0

(t+) (see Corollary 7, (ii))

ψ+
a,{b−,b+},v0

(t) =
[{
ψ+
a,b−,v0

(t), ψ+
a,b+,v0

(t)
}]

(see Corollary 7, (v))

Proof: (i) Using the comparison theorem, we have

v0 ∈ [v−0 , v
+
0], a ∈ [a−, a+] ⇒ φa,b,v0

(t) ∈
[
φa−,b,v−

0
(t), φa+,b,v+

0
(t)
]
.

It suffices to enclose the two quantities ψa−,b,v−
0
(t) and ψa+,b,v+

0
(t).

(ii) The signal v̇(t) can never change of sign. Indeed, v̇(t) = 0 if a− bv|v| = 0 and in this case, v̇(t) = 0
for all t. As a consequence, the extreme values for φa,b,v0

(t) are obtained for t ∈ {t−, t+}.
(iii) Assume that (a, v0, t) is fixed. If a ·v0 ≥ 0, we have no stop point. Thus φa,b,v0

(t) = σ ·ψ+
|a|,[b],σv0

(t)
as seen in 48. Otherwise, we are in a situation with a stop point.

(iv) We have a stop point. This stop point can be inside or outside the time window [t]. We have

∂φa,b,v0
(t)

∂b
= 0 ⇔ t = t2 = −sign(a)√

|a|b
atan

(
v0

√
b

|a|

)
. (53)

Thus, if t /∈ [t2], where [t2] = t2(v0, a, {b−, b+}), φa,b,v0
(t) is monotonic in t and thus

φa,b,v0
(t) ∈ φa,{b−,b+},v0

(t) (54)

otherwise
φa,b,v0

(t) ∈ σ · ψ+
|a|,[b],0(t− t2(v0, a, {b−, b+})). (55)

(v) The result comes from the monotonicity of ψ+ with respect to b.

Corollary 9. An interval flow of the sinking body motion is :

Φf :
IR× IR2 → IR× IR

([v0], JaK, JbK) →
(

[v]
JvK

)
=

(
[φ]JaK,JbK,[v0](δ)

[φ]JaK,JbK,[v0]([0, δ])

)
(56)

C. Example

We take again four cases already treated in Subsection II-B.
Case a. We have (v0, a, b) ∈ [0.9, 1.1] × [0.9, 1.1] × [1.9, 2.1]. In red, we have the envelope already

obtained by the Runge-Kutta method. No pessimism can be observed which is consistent with the fact that
φa,b,v0

(t) is monotonic. The magenta bar corresponds to the initial interval [0.9, 1.1] for v0.
Case b. We have (v0, a, b) ∈ [−1.1,−0.9]× [−1.1,−0.9]× [1.9, 2.1]. The envelope is symmetrical to that

obtained for Case a. Again, due to the monotonicity φa,b,v0
(t), no pessimism can be observed.

Case c. We have (v0, a, b) ∈ [0.9, 1.1]× [−1.1,−0.9]× [1.9, 2.1]. The pessimism of the enclosure is too
small to be observed; compared to the trajectories obtained by a Runge Kutta integration (red). From the
tube, we can conclude that the speed of the float will cancel and the float will come back.

15

Case d. We have (v0, a, b) ∈ [−1.1,−0.9]× [0.9, 1.1]× [1.9, 2.1]. The situation is similar to that given in
Case c.

Fig. 8. Sinking body for four different initializations. The tubes contains the trajectory v(t)

In the figures, the units are t(sec) and v (m/sec).

16

VI. ONLINE INTEGRATION OF THE FLOAT

Consider again the float described by Equation (1). Due to the serial structure of the system, we can
integrate the differential inclusion using interval flows for each component, as explained in Subsection
III-D. The corresponding decomposition is expressed by Figure 9 and is consistent with the initial goal (see
Equation 5). For each sampling time, five steps have to be performed sequentially in the right order. Between
sampling times k to k+1, three intervals have to be transmitted through the memory: [s](k), [v](k), [d](k).

Fig. 9. Sequence to be followed for one step interval integration

At Step 1, we read the input slice JuK(k) which contains all u(t) for t ∈ [(k − 1)δ, kδ]. At Step 2, we
integrate JuK using the interval flow for the integrator presented in Subsection III-B. As a result, we get a
slice JsK(k) for s(t). Using a static interval evaluation, we then get at Step 3 two slices JaK(k) for a(t) and
JbK(k) for b(t). These two slices will then feed the interval flow [φ]JaK,JbK,[v] which yields the slice JvK(k)
and the gate [v](k) at Step 4. The slice JvK(k) is then used at Step 5 by the last block to generate the slice
JdK(k) and the gate [d](k).

The resulting computations correspond to the following algorithm

In: [d0], [v0], [s0]
Init [d] = [d0]

[v] = [v0]
[s] = [s0]

Main loop For k = 1 to kmax

Step 1 Read JuK = JuK(k)
Step 2 JsK = [s] + JuK · [0, δ]

[s] = [s] + JuK · δ
Step 3 JaK = g ·

(
1− 1

1+βJsK

)
JbK = cx

2(1+βJsK)ℓ
Step 4 JvK = [φ]JaK,JbK,[v]([0, δ])

[v] = [φ]JaK,JbK,[v](δ)
Step 5 JdK = [d] + JvK · [0, δ]

[d] = [d] + JvK · δ
write(k, [d], JdK, [v], JvK, [s], JsK)

The only memory needed by this interval simulator are the three gates [s], [v], [d].

17

The behavior of the interval simulator is illustrated by Figure 10. We took g0 = 9.81m ·s−2, ℓ = 1m,β =
0.1, cx = 0.9 for the parameters and [s0] = [v0] = [d0] = [0, 0.1] for the initial conditions. For the input, we
took JuK(k) = exp(−[(k − 1)δ, kδ]). In the figures, the chosen units are t(sec), d(m) and v (m/sec).

Fig. 10. Sinking float. The tubes contain the trajectories u(t), s(t), v(t), d(t) for t ∈ [0, 2] (left) and for t ∈ [0, 20] (right)

Even if the system is unstable in the Lyapunov sense (indeed the variable d tends to infinity), we do not
observe any exponential explosion of the pessimism, unlike other existing interval methods dealing with
differential inclusions.

The implementation is done using the Codac library [23] and the source codes are available at

https://www.ensta-bretagne.fr/jaulin/reachfloat.html

https://www.ensta-bretagne.fr/jaulin/reachfloat.html

18

VII. CONCLUSION

In this paper, a new interval estimator has been proposed for online state prediction. For this, we have
introduced the concept of interval flow that has to be found analytically for each component of the whole
system. Combining the interval flows of all subsystems, we have shown that an interval estimator containing
the state variables in a guaranteed way could be derived. For simplicity, but also to evaluate the accuracy of the
approach, only the reachability problem has been addressed. This means that no exteroceptive measurements
(i.e., collected by a sensor able to interact with the environment, such as a camera, a lidar or a radar) have
been taken into account in order to contract the domains for the state variables. The interval state estimator
that has been obtained has a fixed number of operations to be performed at each sampling time. This is
a strong requirement rarely considered by classical interval algorithms. Indeed, existing interval algorithms
dealing with differential inclusions use fixed point procedures that are not consistent with real-time issues.
Through an example taken from robotics (an underwater robot with a ballast), we have shown that it was
possible to deal with engineering systems efficiently.

The presented approach can be applied to a complex system as soon as it can be built using a parallel
and a serial composition of specific scalar systems [12]. More precisely, these scalar systems should have
a single state variable, may have several inputs, and an analytical solution should be available for constant
inputs. The existence of such an analytical solution could be relaxed if we accept to use an interval resolution
of a differential equation based on the Picard operator [13].

REFERENCES

[1] Alamo, T., Bravo, J., and Camachoa, E. Guaranteed state estimation by zonotopes. Automatica,
41(6):1035–1043, 2005. DOI: 10.1016/j.automatica.2004.12.008.

[2] Alexandre dit Sandretto, J. and Chapoutot, A. Validated simulation of differential algebraic
equations with Runge-Kutta methods. Reliable Computing, 22:56–77, 2016. DOI: 10.1007/
s11155-016-0001-2.

[3] Althoff, M. and Krogh, B. Zonotope bundles for the efficient computation of reachable sets. In 2011
50th IEEE Conference on Decision and Control and European Control Conference, pages 6814–6821,
2011. DOI: 10.1109/CDC.2011.6160872.

[4] Asarin, E., Dang, T., and Girard, A. Reachability analysis of nonlinear systems using conservative
approximation. In Maler, O. and Pnueli, A., editors, Hybrid Systems: Computation and Control (HSCC
2003), Volume 2623 of Lecture Notes in Computer Science, pages 20–35. Springer, 2003. DOI:
10.1007/3-540-36580-X_5.

[5] Aubin, J. and Frankowska, H. Set-Valued Analysis. Birkhauser, Boston, MA, 1990. DOI: 10.1007/
978-0-8176-4848-0.

[6] Collins, P. and Goldsztejn, A. The Reach-and-Evolve Algorithm for Reachability Analysis of Nonlinear
Dynamical Systems. Electronic Notes in Theoretical Computer Science, 223:87–102, 2008. DOI:
10.1016/j.entcs.2008.12.033.

[7] Combastel, C. A state bounding observer for uncertain non-linear continuous-time systems based
on zonotopes. In Proceedings of the 44th IEEE Conference on Decision and Control (CDC), pages
7228–7234. IEEE, 2005. DOI: 10.1109/CDC.2005.1583327.

[8] Efimov, D. and Raı̈ssi, T. Design of interval observers for uncertain dynamical systems. Automation
and Remote Control, 77(2):191–225, 2016. DOI: 10.1134/S0005117916020016.

[9] Frehse, G. Phaver: Algorithmic verification of hybrid systems. International Journal on Software Tools
for Technology Transfer, 10(3):23–48, 2008.

https://doi.org/10.1016/j.automatica.2004.12.008
https://doi.org/10.1007/s11155-016-0001-2
https://doi.org/10.1007/s11155-016-0001-2
https://doi.org/10.1109/CDC.2011.6160872
https://doi.org/10.1007/3-540-36580-X_5
https://doi.org/10.1007/978-0-8176-4848-0
https://doi.org/10.1007/978-0-8176-4848-0
https://doi.org/10.1016/j.entcs.2008.12.033
https://doi.org/10.1109/CDC.2005.1583327
https://doi.org/10.1134/S0005117916020016

19

[10] Goubault, E., Mullier, O., Putot, S., and Kieffer, M. Inner approximated reachability analysis. In
Proceedings of the 17th International Conference on Hybrid Systems: Computation and Control
(HSCC), pages 163–172. ACM, 2014. DOI: 10.1145/2562059.2562113.

[11] Guernic, C. L. and Girard, A. Reachability analysis of linear systems using support functions. Nonlinear
Analysis: Hybrid Systems, 4(2):250–262, 2010. DOI: 10.1016/j.nahs.2009.03.003.

[12] Jaulin, L. Integral algebra for simulating dynamical systems with interval uncertainties. Interna-
tional Journal of Approximate Reasoning, 178, 2025. DOI: doi.org/10.1016/j.ijar.2024.
109353.

[13] Kapela, T., Mrozek, M., Wilczak, D., and Zgliczynski, P. CAPD: dynsys, A flexible C++ toolbox
for rigorous numerical analysis of dynamical systems. Communications in Nonlinear Science and
Numerical Simulation, 101:105578, 2021. DOI: 10.1016/j.cnsns.2020.105578.

[14] Kieffer, M., Jaulin, L., and Walter, E. Guaranteed recursive nonlinear state estimation using interval
analysis. In Proceedings of the 37th IEEE Conference on Decision and Control (CDC), pages 3966–
3971, Tampa, FL, USA, 1998. IEEE. DOI: 10.1109/CDC.1998.761926.

[15] LaValle, S. Planning Algorithm. Cambridge University Press, 2006. DOI: 10.1017/
CBO9780511546877.

[16] Mitchell, I., Bayen, A., and Tomlin, C. Validating a Hamilton-Jacobi Approximation to Hybrid
System Reachable Sets. In Benedetto, M. and Sangiovanni-Vincentelli, A., editors, Hybrid Systems:
Computation and Control, number 2034 in Lecture Notes in Computer Science, pages 418–432.
Springer Berlin Heidelberg, 2001.

[17] Moore, R. Methods and Applications of Interval Analysis. Society for Industrial and Applied
Mathematics, 1979. DOI: 10.1137/1.9781611970906.

[18] Munson, B., Young, D., Okiishi, T., and Huebsch, W. Fundamentals of Fluid Mechanics. John Wiley
& Sons, 7th edition, 2013. DOI: 10.1002/9781118912652.

[19] Polyanin, A., Andrei, D., and Zaitsev, V. Handbook of Exact Solutions for Ordinary Differential
Equations (2nd ed.). Chapman and Hall, CRC, 2003. DOI: 10.1201/9781420035330.

[20] Ramdani, N. and Nedialkov, N. Computing reachable sets for uncertain nonlinear hybrid systems using
interval constraint-propagation techniques. Nonlinear Analysis: Hybrid Systems, 5(2):149–162, 2011.
DOI: 10.1016/j.nahs.2010.05.010.

[21] Rauh, A., Kersten, J., and Aschemann, H. Techniques for verified reachability analysis of quasi-linear
continuous-time systems. In 2019 24th International Conference on Methods and Models in Automation
and Robotics, pages 18–23, 2019. DOI: 10.1109/MMAR.2019.8864648.

[22] Rauh, A., Lahme, M., Rohou, S., Jaulin, L., Dinh, T., Raı̈ssi, T., and Fnadi, M. Offline and online
use of interval and set-based approaches for control and state estimation: A review of methodological
approaches and their application. Logical Methods in Computer Science, 2023.

[23] Rohou, S., Desrochers, B., and Bars, F. L. The codac library. Acta Cybernetica, 26(4):871–887, 2024.
DOI: 10.14232/ACTACYB.302772.

[24] Rohou, S., Jaulin, L., Mihaylova, L., Bars, F. L., and Veres, S. Reliable Robot Localization. Wiley,
2019. DOI: 10.1002/9781119680970.

[25] Smith, H. Monotone dynamical systems: An introduction to the theory of competitive and cooperative
systems. Mathematical Surveys and Monographs, 41, 1995. DOI: 10.1090/surv/041.

[26] Taha, W. and Duracz, A. Acumen: An open-source testbed for cyber-physical systems research. In
Conference on CYber physiCaL systems, iOt and sensors Networks, 2015.

[27] Wan, J. Computationally reliable approaches of contractive model predictive control for discrete-time
systems. PhD dissertation, Universitat de Girona, Girona, Spain, 2007.

https://doi.org/10.1145/2562059.2562113
https://doi.org/10.1016/j.nahs.2009.03.003
https://doi.org/doi.org/10.1016/j.ijar.2024.109353
https://doi.org/doi.org/10.1016/j.ijar.2024.109353
https://doi.org/10.1016/j.cnsns.2020.105578
https://doi.org/10.1109/CDC.1998.761926
https://doi.org/10.1017/CBO9780511546877
https://doi.org/10.1017/CBO9780511546877
https://doi.org/10.1137/1.9781611970906
https://doi.org/10.1002/9781118912652
https://doi.org/10.1201/9781420035330
https://doi.org/10.1016/j.nahs.2010.05.010
https://doi.org/10.1109/MMAR.2019.8864648
https://doi.org/10.14232/ACTACYB.302772
https://doi.org/10.1002/9781119680970
https://doi.org/10.1090/surv/041

