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Abstract: Simulating dynamic systems with bounded uncertainty in initial conditions and
selected parameters is a common task for the reliability analysis of closed-loop control
structures as well as for a simulation-based parameter identification on the basis of uncertain
measurements. However, dealing with bounded uncertainty is not a trivial task. On the one
hand, the naive application of interval analysis often leads to excessively large bounds which
may yield state enclosures that are by far too pessimistic to be useful in practice. On the other
hand, the use of grid-based or probabilistic and Monte-Carlo like simulation approaches suffers
from the disadvantage that they do not provide a guarantee of the correctness of the obtained
solutions. Using insufficiently many or badly chosen samples may lead to the phenomenon that
critical system states are not detected so that the computed results underestimate the range of
reachable states. Therefore, a novel ellipsoidal state enclosure technique is presented which does
not require the online solution of linear matrix inequalities (LMIs). It uses the newly introduced
representation of state domains by means of thick ellipsoids. These domains simultaneously
represent inner and outer enclosures of the reachable states and directly provide a measure for
the tightness of the obtained results, regardless of whether the system is linear or nonlinear or
whether it is stable or not.

Keywords: Robustness analysis, Bounded Uncertainty, Ellipsoidal state enclosures, Thick
ellipsoids, Verified simulation, Interval analysis.

1. INTRODUCTION

The use of interval analysis for a reliable parameter iden-
tification has been studied for numerous applications such
as high-temperature fuel cells or other thermal systems
(Rauh and Kersten, 2020). Although it has been possible
for these applications to derive point-valued bounding
systems due to the property of cooperativity (i.e., the
monotonicity of the trajectories with respect to initial
conditions and selected parameters, see Rauh and Kersten
(2020)), many models in engineering as well as computa-
tional physics or biology do not posses this property. Then,
it is either necessary to find similarity transformations into
a new frame of coordinates in which these monotonicity
properties are satisfied or to use more general set-valued
simulation approaches that directly work on the complete
bounded parameter domains of interest, see Mazenc and
Bernard (2010); Rauh et al. (2019). The second approach
is necessary especially in cases where transformations into
a cooperative form are either not available or prohibitively
conservative due to an unavoidable wrapping effect if the
system representation may either have real or complex
eigenvalues depending on the actual parameter value.

In this paper, we restrict ourselves to the set-valued sim-
ulation of discrete-time systems. For those, a naive use of
interval analysis (Jaulin et al., 2001; Moore et al., 2009)
may lead to a blowup of the widths of state enclosures even
if the dynamics are linear. The reason for such behavior
is the solution representation by axis-aligned boxes which

are propagated further in subsequent time steps. Despite
its simplicity, this box representation has the drawback
that information about the correlation between individual
components of the state vector is lost by the axis-aligned
representation and that — due to this so-called wrapping
effect — a model is actually evaluated that is more con-
servative than necessary. A possible countermeasure, at
least for (quasi-)linear systems, is an iterated evaluation
that tries to relate the actual system states in a recur-
sive manner to the initial conditions. As shown in Rauh
et al. (2007), the corresponding procedures rely on storing
modified interval-valued system matrices in addition to the
actual state enclosures. Alternatively, specific implemen-
tations of affine system and uncertainty representations
could be used (Stolfi et al., 2003).

In general, the use of axis-aligned boxes has the disad-
vantage that each transformation (even the application
of a pure rotation matrix) leads to pessimism. In con-
trast, the use of ellipsoids (Kurzhanskii and Vályi, 1997;
Kurzhanskiy and Varaiya, 2006; Neumaier, 1993) is often
more efficient, when in a suitably chosen coordinate frame
linear transformations such as rotation and scaling can be
carried out in an overestimation-free manner. Moreover,
ellipsoids are natural representations of state domains if
quadratic Lyapunov function approaches are used for the
analysis of stability properties. Therefore, we introduce
a novel uncertainty model — called thick ellipsoids —
in this paper. It allows us, in contrast to the works of



Neumaier (1993) as well as Kurzhanskii and Vályi (1997),
to simultaneously represent inner and outer enclosures of
reachable state domains and in such a way provides a
direct measure for the worst-case overestimation that is
included in the result of a dynamic system simulation.
Thick ellipsoids can be interpreted as a generalization of
a similar concept that was already introduced in terms of
thick intervals and thick boxes, where each of the interval
endpoints or interval edges is represented itself by an
interval-valued quantity (Desrochers and Jaulin, 2017). In
contrast to existing ellipsoidal approaches for state esti-
mation, the proposed technique avoids the online solution
of LMIs or complex minmax optimization tasks (Dabbene
and Henrion, 2013; Durieu et al., 1996) and significantly
reduces computational complexity, cf. Rauh et al. (2021).

This paper is structured as follows. In Sec. 2, the new
notion of thick ellipsoids is introduced. Based on this
definition, a recursive simulation algorithm for discrete-
time dynamic system models is derived in Sec. 3. This
simulation algorithm relies on a Cholesky factorization-
based representation of ellipsoids in a multi-dimensional
state space. Sec. 4 provides simulation results for three
different benchmark applications, before conclusions and
an outlook on future work are given in Sec. 5.

Notation: Throughout this paper, ‖·‖ represents (an inter-
val extension of) the Euclidean norm of the corresponding
vector-valued argument (Rauh and Jaulin, 2021).

2. THICK ELLIPSOIDS

Definition 1. (Thick ellipsoid). Define a thick ellipsoid
((E)) = ((E))

(
µ,Γ,

[
ρ ; ρ

])
as a subset of the power set P (Rn)

so that

((E)) =
{
A ∈ P (Rn)

∣∣ E I ⊆ A ⊆ EO} (1)

with

E I =
{

x ∈ Rn
∣∣ (x− µ)

T (
ρΓ
)−T (

ρΓ
)−1

(x− µ) ≤ 1
}
,

EO =
{

x ∈ Rn
∣∣ (x− µ)

T
(ρΓ)

−T
(ρΓ)

−1
(x− µ) ≤ 1

}
(2)

and 0 ≤ ρ ≤ ρ.

An illustration of this thick ellipsoid is given in Fig. 1.

Definition 2. (Thick ellipsoid binary operators and func-
tion extensions). A thick ellipsoid extension of the binary
operators 1 � ∈ {+,−, ·, /,∪,∩} satisfies the relation{

A ∈ ((A)) , B ∈ ((B))

C = A � B =⇒ C ∈ ((A)) � ((B)) . (3)

The quantity ((C)) = ((A)) � ((B)) is also a thick ellipsoid,
which is typically neither minimal with respect to its width
nor uniquely defined. Analogously, ((f)) is a thick ellipsoid
function extension of f : Rn 7→ Rm, if{

A ∈ ((A))

B = f (A)
=⇒ B ∈ ((B)) = ((f)) ((A)) . (4)

3. RECURSIVE SIMULATION ALGORITHM

3.1 Theoretical Background

Consider a finite-dimensional discrete-time system model

xk+1 = f (xk) , f : Rn 7→ Rn , (5)

1 As in classical interval arithmetic (Jaulin et al., 2001), the value
zero must not belong to the denominator expression.
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Fig. 1. Definition of a thick ellipsoid ((E))k enclosing the
domain Ak and its mapping via the system model (5).

where f is assumed to be differentiable. Given a thick

ellipsoid representation ((E))k = ((E))
(
µk,Γk,

[
ρ
k

; ρk

])
at

the time instant k, it is desired to determine a thick

ellipsoid ((E))k+1 = ((E))
(
µk+1,Γk+1,

[
ρ
k+1

; ρk+1

])
at the

instant k + 1 that is defined such that E Ik+1 is an inner

boundary containing certainly reachable states and EOk+1
is a guaranteed outer enclosure, see Fig. 1.

Theorem 3. (Thick ellipsoid enclosures). Define the state
enclosure at the time instant k by the thick ellipsoid ((E))k
according to Def. 1. For a differentiable state equation (5),
with

Ak =
∂f

∂xk
(µk) invertible , (6)

((E))k+1 = ((E))
(
µk+1,Γk+1, ρk+1

, ρk+1

)
(7)

is a thick ellipsoid enclosure of the solution set f (((E))k) with

µk+1 = f (µk) and Γk+1 = Ak · Γk (8)

as well as

ρ
k+1

= (1− ρI,k) · ρ
k

and ρk+1 = (1 + ρO,k) · ρk . (9)

Here,

ρI,k = max
‖x̃k‖≤1

∥∥∥b̃I,k (x̃k)
∥∥∥ , (10)

b̃I,k (x̃k) = ρ−1
k

Γ−1k A−1k ·
(
f
(
ρ
k
Γkx̃k + µk

)
− f (µk)

)
−x̃k

(11)
and

ρO,k = max
‖x̃k‖≤1

∥∥∥b̃O,k (x̃k)
∥∥∥ , (12)

b̃O,k (x̃k) = ρ−1k Γ−1k A−1k ·
(
f (ρkΓkx̃k + µk)− f (µk)

)
−x̃k .

(13)

Proof. The proof consists of two parts. First, the outer
boundary EOk+1 of the thick ellipsoid ((E))k+1 is verified. For
that purpose, set

x̃k = ρ−1k · Γ
−1
k · (xk − µk) . (14)

According to Def. 1, EOk as the outer bound of ((E))k becomes

x̃k ∈ Sx :=
{
x̃k
∣∣ ‖x̃k‖ ≤ 1

}
. (15)

Second, define

x̃k+1 = x̃k + b̃O,k (x̃k) (16)

with b̃O,k (x̃k) given in (13). Hence, according to the
triangle inequality,

‖x̃k+1‖ ≤ ‖x̃k‖+
∥∥∥b̃O,k (x̃k)

∥∥∥ = 1 + ρO,k (17)

holds with

ρO,k = arg min
ρ∈R+

{
ρ ∈ R+

∣∣ ∥∥∥b̃O,k (x̃k)
∥∥∥ ≤ ρ , ∀x̃k ∈ Sx} .

(18)



Alternatively, (16) can be expressed as x̃k+1 ∈ Sx ⊕ SOb,k,
where ⊕ is the Minkowski sum of two sets and

b̃O,k (x̃k) ∈ SOb,k := {x̃k | ‖x̃k‖ ≤ ρO,k} . (19)

Therefore, x̃k+1 belongs to a ball of radius 1 + ρO,k as
illustrated in Fig. 2. According to (13) and (16), the
equality

x̃k+1 = ρ−1k · Γ
−1
k ·A

−1
k · (xk+1 − µk+1) (20)

holds. Substituting this equality into (17) yields the outer
boundary EOk+1 of the thick ellipsoid according to (7)–(8).

For the second part of the proof, set

x̃k = ρ−1
k
· Γ−1k · (xk − µk) (21)

instead of (14). Then,

x̃k+1 = x̃k + b̃I,k (x̃k) (22)

with b̃I,k (x̃k) given in (11) yields

b̃I,k (x̃k) ∈ SIb,k := {x̃k | ‖x̃k‖ ≤ ρI,k} (23)

with

ρI,k = arg min
ρ∈R+

{
ρ ∈ R+

∣∣ ∥∥∥b̃I,k (x̃k)
∥∥∥ ≤ ρ , ∀x̃k ∈ Sx} .

(24)
The maximum ellipsoid in the interior of the solution set
that is parallel to the outer domain boundary EOk+1 results

from the Minkowski difference SI = Sx 	 SIb,k. Applying

Eq. (20) after the replacement of ρk by ρ
k

leads to E Ik+1 as

an inner approximation of SI. Summarizing both E Ik+1 and

EOk+1 into the single thick ellipsoid ((E))k+1, cf. (7), completes
the proof. 2
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Fig. 2. Recursive computation of ellipsoidal state enclo-
sures (simplified for ((E))k = E Ik = EOk , leading to Sb,k =

SOb,k = SIb,k, b̃k = b̃O,k = b̃I,k and ρ∗k = ρO,k = ρI,k in

the illustration).

Remark 4. Due to the fact that the matrices Γk are
typically not symmetric in the recursive evaluation of the
ellipsoidal simulation procedure, the following algorithm
is based on a Cholesky-like decomposition of the shape
matrix ΓkΓ

T
k of an ellipsoid. The factorized representation

of the shape matrix simplifies the implementation of a
recursive simulation procedure, see line 3 in Algorithm 1.

Remark 5. Eqs. (11) and (13) require that the Jacobian
Ak at the midpoint of the thick ellipsoid ((E))k is invertible.
If this is not the case, the shape matrix can be approxi-
mated in practice by using a representative slope within
the domain of interest or with the help of the matrix square
root of the covariance matrix cov (f (Xk)), where

Xk = [µk −∆1,k . . . µk −∆n,k µk + ∆1,k . . . µk + ∆n,k]
(25)

with ∆i,k, i ∈ {1, . . . , n}, are determined in analogy to the
sigma points of an Unscented Kalman Filter according to

∆i,k =
√
n · Γi,k with Γk = [Γ1,k . . . Γn,k] . (26)

3.2 Implementation of the Algorithm

The implementation of the thick ellipsoid simulation pro-
cedure is summarized in Algorithm 1.

Algorithm 1: Recursive simulation approach

input : f (xk), {µk,Γk, ρk, ρk}
output: {µk+1,Γk+1, ρk+1

, ρk+1}

1 µk+1 = f (µk)

2 Ak = ∂f
∂xk

(µk)

3 Γk+1 = Ak · Γk
4 ρI,k ← Compute norm depending on ρ

k
5 ρO,k ← Compute norm depending on ρk
6 ρ

k+1
= (1− ρI,k) · ρ

k

7 ρk+1 = (1 + ρO,k) · ρk

Algorithm 2: Compute norm

input : µk,Γk,Γk+1, ρι ∈ {ρk, ρk}
output: ρι,k

1 [xι,i,k] = µi,k+
∥∥∥ρι · ΓTi,k∥∥∥·[−1 ; 1] , i ∈ {1, . . . , n}

2 [xι,k] = [xι,1,k]× . . .× [xι,n,k]

3 [Jf ,ι] =
[
∂f
∂xk

]
([xι,k])

4

[
b̃ι,k

]
=
(
Γ−1k+1 · [Jf ,ι] · Γk − I

)
· [−1 ; 1]×n

5 ρι,k = sup
{∥∥∥[b̃ι,k]∥∥∥}

For the computation of ρI,k and ρO,k in the lines 4 and 5
of Algorithm 1 according to Theorem 3, it is necessary to
evaluate the Euclidean norm of the vectors b̃I,k (x̃k) and

b̃O,k (x̃k) over the respective domains E Ik and EOk . For that
purpose, both (11) and (13) are evaluated in Algorithm 2
with the help of interval analysis. For that purpose, we
exploit b̃I,k (0) = 0 and b̃O,k (0) = 0 and perform the
interval evaluation by a centered form representation.

According to Rauh and Jaulin (2021), this is given by

b̃ι,k ∈

[
∂b̃ι,k
∂x̃k

]
([x̃k]) · [x̃k] , ι ∈ {I,O} , with

(27)

∂b̃ι,k
∂x̃k

(x̃k) = Γ−1k ·A
−1
k ·

∂f

∂xk
(E ιk) · Γk − I

= Γ−1k+1 ·
∂f

∂xk
(E ιk) · Γk − I and (28)

∂f

∂xk
(E ιk) ∈

[
∂f

∂xk

]
([xι]) , (29)



where the interval vectors [xι], ι ∈ {I,O}, represent tight
axis-aligned boxes enclosing the ellipsoids E ιk for which the
interval extension of the Jacobian is evaluated in (29).

These boxes, exemplarily highlighted in the upper left part
of Fig. 2, are determined by finding those points x∗ι,i of
the ellipsoids E ιk that have an outward directed normal
vector being parallel to the i-th unit vector ei, ‖ei‖ = 1,
of Rn. From those points, the i-th vector component is
extracted to represent the box widths in the corresponding
directions. Specifically, these points x∗i are obtained from
the collinearity condition (∝ denotes proportionality)

∇E ιk ∝

{
ρ−2
k

Γ−Tk Γ−1k ·
(
x∗I,i − µk

)
= αIei for ι = I

ρ−2k Γ−Tk Γ−1k ·
(
x∗O,i − µk

)
= αOei for ι = O

(30)
for the normal vectors ∇E ιk, which yields

ρ−1
k

Γ−1k ·
(
x∗I,i − µk

)
= αIρkΓ

T
k ei

ρ−1k Γ−1k ·
(
x∗O,i − µk

)
= αOρkΓ

T
k ei .

(31)

Choosing αI = 1∥∥ρ
k
ΓT

k
ei

∥∥ and αO = 1

‖ρkΓT
k

ei‖ ensures that

the Euclidean norm of both lines in (31) is equal to 1, and
that x∗I,i and x∗O,i lie on the respective ellipsoid surfaces.

The line 1 of Algorithm 2 is verified by taking the i-th
vector component according to eTi ·

(
x∗ι,i − µk

)
which

corresponds to(
x∗ι,i − µi,k

)
=


∥∥∥ρ

k
ΓTk ei

∥∥∥ for ι = I∥∥ρkΓTk ei
∥∥ for ι = O

(32)

and is identical to the Euclidean norms of the i-th matrix
columns of ρ

k
ΓTk and ρkΓ

T
k , respectively.

Remark 6. This procedure is a generalization of the one
used in Rauh and Jaulin (2021) for a one-step evaluation
of nonlinear functions, where a classical, i.e., non-thick
ellipsoid was assumed to be parameterized by a symmet-
ric square-root factorization of its shape matrix. Here,
the recursive evaluation typically leads to non-symmetric
matrices Γk which has similarities to a lower triangular
Cholesky decomposition of the thick ellipsoid’s shape ma-
trix, obtained, for example, in Matlab by the command
chol(.,’lower’).

4. SIMULATION RESULTS

In this section, three different scenarios for the use of the
novel thick ellipsoid uncertainty representation are com-
pared. These differ between linear and nonlinear systems,
as well as models with initial conditions that are given by
thick ellipsoids with either identical or different inner and
outer bounds. For each of the following three scenarios,

the initial ellipsoid midpoint is set to µ0 = [1 0.5 0.5]
T

.

4.1 Exactly Known Linear System Model with Thick
Ellipsoid Bounds on the Initial Conditions

In analogy to Rauh et al. (2018), consider the linear system

xk+1 = xk + T ·

([
0 1 0
a21 a22 a23
0 0 a33

]
xk +

[
0
0
b3

]
uk

)
(33)

with a21 = −200, a22 = −15, a23 = −400, a33 = −200,
b3 = 10, the control input uk = 0.8 · x2,k, and the dis-
cretization step size T = 10−3. The initial outer ellipsoid is

a sphere with radius R = 2−2; the inner sphere has the ra-
dius R = 2−3 (where these values result from successively
halving the radius of a unit sphere). Eq. (33) represents the
temporally discretized dynamics of a spring-mass-damper
system with a differentiating controller. It can be inter-
preted as the simplest linear representation of an active
wheel suspension system with first-order lag behavior of
the actuator. Fig. 3 summarizes the asymptotically stable
evolution of all system states for 1, 000 time steps. To
prevent ill-conditioned non-symmetric matrices Γk, the
shape matrix ΓkΓ

T
k was determined each 50-th time step

and subsequently factorized by computing the symmetric
matrix square root before continuing the simulation.

4.2 Uncertain Linear System Model

In the second example (step size T = 10−2)

xk+1 = xk + T ·

 0 1 0
−1 −4x23,k 0
0 0 0

xk , (34)

the initial state domain is characterized by a sphere of
radius R = 2−6. The dependence of the state equations on
the (constant) quantity x3,k can be seen as an uncertain
parameter-dependent model. According to Fig. 4, the
outer enclosure EOk starts to diverge after slightly more
than 200 time steps. This results from the fact that the
relation between the dynamically varying states x1,k and
x2,k as well as the constant quantity x3,k is described by
a single ellipsoid so that conservativeness in the bounds
for the temporally varying states inevitably also leads
to pessimism in x3,k. In the simplest way, this can be
counteracted by performing the simulation over a fixed
time span (here: 100 steps), subdividing the ellipsoid
afterwards equally in each space coordinate leading to
a maximum of Nn (here: N = 4) smaller ellipsoids,
running the simulation again for a fixed time span, merging
all ellipsoids into one and subdividing it again before
continuing the simulation.

This subdivision is based on the change of coordinates
from Fig. 2 which transforms the non-axis-aligned ellipsoid
into a unit sphere (coordinates x̃k). There, a regularly
spaced rectangular mesh is intersected with the sphere,
where each box is then inscribed (after backward trans-
formation) into an ellipsoid. All ellipsoids are then prop-
agated individually until the merging takes place. There,
the same coordinate transformation is employed to a point
cloud which consists of the worst-case ellipsoid widths
in the coordinates xk and the ellipsoid vertices in the
directions of all principal axes. For those points, the max-
imum distance to x̃k = 0 is determined to compute a new
parameter ρk before the next subdivision. Note, although
x3,k was defined as a constant, its outer enclosure blows
up over time. In future work, interval observers (Efimov
et al., 2013) or predictor-corrector approaches (Rauh et al.,
2021) will be investigated to reduce this effect.

4.3 Nonlinear System Model

As a final application, consider the extended nonlinear
Brusselator model (Goubault et al., 2014; Rauh and
Jaulin, 2021)

xk+1 = xk + T ·

1 + x21,kx2,k − 2.5x1,k + 0.5x23,k
1.5x1,k − x21,kx2,k
−0.5x23,k

 (35)



(a) State variable x1. (b) State variable x2. (c) State variable x3.

Fig. 3. Simulation results for the system model (33) on a logarithmic time scale. Projections of the outer enclosures
(solid lines) and inner enclosures (dashed lines).

(a) State variable x1. (b) State variable x2. (c) State variable x3.

Fig. 4. Simulation results for the system model (34). Projections of the outer enclosures without ellipsoid splitting (solid
lines), outer enclosures with ellipsoid splitting (dotted lines) and inner enclosures (dashed lines).

with the initial sphere radius R = 2−6. The Brusselator,
discretized with T = 0.2, is a simple model which allows
for describing oscillatory behavior in chemical reactions.

For this system, two scenarios are compared in Fig. 5.
First, the simulation is performed with a single ellipsoid.
In this case, the simulation breaks down with diverging
outer ellipsoid bounds EOk after 17–18 time steps. Second,
to avoid this behavior, the initial domain is subdivided
at k = 0 into smaller ellipsoids (here: N = 8), where no
subsequent merging or further subdivisions were necessary
to obtain the outer bounds (dotted lines) in Fig. 5. It
can be seen that these bounds follow the dashed inner
enclosure in a much tighter way than the original outer
bounds. To further investigate the reason for the successful
application of a single subdivision stage, Fig. 6 displays the
comparison of a grid-based simulation with the outer and
inner interval enclosures based on a single thick ellipsoid
and additionally the outer bounds for a union of in total
408 ellipsoids (N3 − 408 = 104 ellipsoids were detected
to lie outside the initial domain). It can be seen that the
union over all subdomains resembles a relatively thin disc,
that could not be represented by a single outer enclosure.

5. CONCLUSIONS AND FUTURE WORK

In this paper, the new notion of thick ellipsoids was
introduced and employed for the development of a re-
cursive simulation routine for discrete-time dynamic sys-
tems. Based on this novel solution procedure as well as
on the results of the presented fundamental strategies
for domain splitting and merging, future work will deal
with extending this approach towards an observer-based
approach for state and parameter estimation of discrete-

time systems. Moreover, observers will benefit from further
investigations for efficient implementations of the union
and intersection operators for thick ellipsoids mentioned
in Def. 2. Finally, it is desired to employ this approach also
for the simulation of continuous-time processes. Obviously,
the part of a Taylor series-based solution technique that
depends on the current state enclosure in tools such as
VNODE-LP (Nedialkov, 2011), can be evaluated directly
with the help of thick ellipsoids so that — after adding the
bounds for truncation errors — a fundamental approach
for finding inner state enclosures can be obtained.
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