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Approaches for Bounded Error State Estimation

State estimation for dynamic systems with bounded uncertainty in
initial conditions, parameters, and external disturbances can be classi-
fied generally into predictor–corrector approaches [7] and interval ob-
servers [6].

In the case of predictor–corrector approaches, the open-loop dy-
namics are evaluated with the help of set-based methods (employing,
for example, intervals, ellipsoids, or zonotopes) until the point in time
at which measured data become available. Then, the predicted state
enclosures are contracted with the help of measurement information
(being subject to bounded uncertainty). This contraction procedure
can be replaced by a Luenberger-like observer approach as shown in [1].

In all approaches listed above, it is necessary to tune the estimators,
especially by choosing an observer gain matrix so that stability of the
error dynamics can be ensured and that the computed bounds tightly
enclose the sets of reachable states that are compatible with the system
dynamics, the uncertainty model, and the measured data.



Pessimism of Interval Observer Synthesis

In the frame of the design of interval observers, further restrictions need
to be accounted for. These are essentially order relations between the
lower and upper bounding trajectories. These relations can be ensured
if the observer dynamics represent a cooperative system model, i.e., a
model that shows monotonicity of each component of the state trajec-
tory with respect to the initial conditions [9]. A sufficient condition
for cooperativity is that, in the case of a linear observer (here stated
for a continuous-time model)

˙̂x(t) = A · x̂(t) +B · u(t) +H · (ym(t)−C · x̂(t)) (1)

with the measurement ym(t), the matrix A−HC is Metzler [2]. This
means that all off-diagonal elements of this matrix need to be non-
negative. Moreover, the diameters of the computed interval enclosures
only remain bounded if the matrix is additionally Hurwitz.

Especially the prerequisite of finding a parameterization that leads
to a Metzler matrix is extremely challenging if the matrices A and C
are subject to bounded uncertainty or if they are derived from nonlin-
ear systems that are reformulated into the quasi-linear form

ẋ(t) = A (x(t)) · x(t) +B (x(t)) · u(t) +w(t) (2)

y(t) = C (x(t)) · x(t) + v(t) . (3)

Although coordinate transformations, rendering a non-cooperative
realization cooperative [3] or an extension of the observer structure
by further degrees of freedom [10] mitigate this issue to some extent,
there still exist system models for which the tuning of the observer gain
is demanding even though cooperativity can be ensured by a design
based on linear matrix inequalities in combination with a polytopic
uncertainty model [4]. This polytopic model overapproximates the
possible ranges of each of the matrices included in (2) and (3).

Extracting lower and upper bounding trajectories for the observer
(1) with a polytopic model for each of the matrices and an element-wise
minimization (resp., maximization) of each of the equations introduces



a further degree of pessimism. This procedure corresponds to the ap-
plication of Müller’s theorem [5]. However, the resulting bounding
models may reflect combinations of values for the state variables that
cannot be reached in reality.

In our contribution, we aim at quantifying this pessimism by a
direct zonotopic evaluation of the observer dynamics without firstly
extracting the bounding trajectories. In addition, we make a com-
parison between parameterizations for the observer gains H that are
chosen so that cooperativity is enforced in addition to the optimization
of a (typically H∞) performance criterion and for a choice of the gain
in which the cooperativity constraint is removed. This goes along with
a thorough analysis of the influence of order reduction strategies for
zonotopes which become necessary to limit the computational effort
and memory requirements.

Use of the Zonotopic Observer as a Contractor

As the open-loop simulation, the interval observer, and the zonotopic
observer all provide guaranteed enclosures for the state, the different
solution approaches can mutually serve as contractors for their results.
We demonstrate how the different state estimation approaches can
mutually benefit from the properties of the individual implementations.
This is realized in the form of a contractor scheme [8].
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[6] T. Räıssi, D. Efimov, and A. Zolghadri. Interval state estimation
for a class of nonlinear systems. IEEE Trans. Automat. Contr.,
57:260–265, 2012.

[7] A. Rauh, S. Rohou, and L. Jaulin. An ellipsoidal predictor–
corrector state estimation scheme for linear continuous-time sys-
tems with bounded parameters and bounded measurement errors.
Frontiers in Control Engineering, 3:785795, 2022.

[8] S. Rohou, B. Desrochers, and F. Le Bars. The Codac library: A
catalog of domains and contractors. Acta Cybernetica, 26(4):871–
887, 2024.

[9] H. L. Smith. Monotone Dynamical Systems: An Introduction to
the Theory of Competitive and Cooperative Systems, volume 41.
Mathematical Surveys and Monographs, American Mathematical
Soc., Providence, 1995.

[10] Z. Wang, C.-C. Lim, and Y. Shen. Interval observer design for
uncertain discrete-time linear systems. Systems & Control Letters,
116:41–46, 2018.


