
Physically motivated structuring and optimization of neural 
networks for multi-physics modelling of solid oxide fuel cells
Andreas Rauh a, Julia Kersten b, Wiebke Frenkel b, Niklas Kruse b 

and Tom Schmidt b

aLab-STICC (Robex) of ENSTA Bretagne, Brest, France; bChair of Mechatronics, University of Rostock, Rostock, 
Germany

ABSTRACT
Neural network models for complex dynamical systems typically do 
not explicitly account for structural engineering insight and mutual 
interrelations of various subprocesses that are related to the multi- 
physics nature of such systems. For that reason, they are commonly 
interpreted as a kind of data-driven, black box modelling option 
that is in opposition to a physically inspired equation-based system 
representation for which suitable parameters are subsequently 
identified in a grey box sense. To bridge the gap between data- 
driven and equation-based modelling paradigms, this paper pro-
poses a novel approach for a physics-inspired structuring of neural 
networks. The derivation of this kind of structuring, an optimal 
choice of network inputs and numbers of neurons in a hidden 
layer as well as the achievable modelling accuracy are demon-
strated for the thermal and electrochemical behaviour of high- 
temperature fuel cells. Finally, different network structures are 
compared against experimental data.
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1. Introduction

Solid Oxide Fuel Cells (SOFCs) [1–4] are high-temperature fuel cells that are investigated 
as an option to set up a decentralized supply with electricity and heat. This kind of co- 
generation approach is especially promising for the implementation of future distributed 
power supply grids due to the wide range of different fuels that can be used by SOFCs. 
Moreover, SOFCs are characterized by high efficiency factors. They operate in an 
environmentally friendly manner if the required fuel – that is composed of hydrogen 
and/or hydro-carbonates – is produced from renewable sources. When modelling SOFCs 
for control purposes, it can be observed that numerous effects from different physical 
domains are strongly interconnected. These effects include heat and mass transport 
phenomena, exothermic electrochemical reactions, and electric power supply of con-
sumers via the systems’ terminals. From the modelling perspective, these phenomena 
need to be described in terms of balance relations for the change of the internal energy of 
a fuel cell stack module – related to its temperature distribution – and by balancing mass 
transport phenomena of the gases supplied at both the anode and cathode sides. Finally, 
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also strongly nonlinear phenomena of the electrical characteristics need to be addressed 
which include regions of activation polarization, Ohmic polarization, and concentration 
polarization in the electric current–power as well as current–voltage relations [1,3,5–11].

On the one hand, the process of electric power production is directly related to the 
supplied gas mass flows and the resulting fuel utilization. On the other hand, its achiev-
able efficiency shows a strong dependence on the fuel cell stack temperature. Especially 
the latter effect becomes important if a fuel cell is operated not only in the close vicinity of 
a predefined quasi-static operating point, but if a certain variability of the provided 
electric power is also desired in the case that the fuel cell is operated dynamically. In such 
cases, the mass flow of supplied anode gas (typically hydrogen or the output of a gas 
reformer unit mixed with nitrogen) is then utilized to control the power production 
process and to prevent fuel starvation. In addition, controlling the inlet temperature of 
preheated ambient air at the cathode side [12] allows for keeping the stack module’s 
temperature within certain limits [13]. Lower temperature bounds need to be obeyed to 
ensure sufficiently good ion conductivity of the cell material, while an upper temperature 
threshold must not be violated to prevent thermal stress and material degradation that 
may lead to accelerated ageing and undesirably high costs of maintenance.

The aforementioned goals can be achieved by implementing nonlinear control pro-
cedures that are designed on the basis of low-order, however, sufficiently accurate 
dynamical system representations [13–15]. Due to the reason that these control 
approaches typically require the real-time capable estimation of non-measurable system 
states and disturbance variables, during both transient heating phases and non-stationary 
high-temperature operation, suitable system models are often restricted to finite- 
dimensional sets of ordinary differential equations (ODEs) [16]. Although the underlying 
dynamics posses a distributed parameter characteristics, most control-oriented models 
for SOFCs are derived by means of an early lumping procedure, i.e., introducing a finite- 
dimensional approximation before designing (temperature) controllers. For that pur-
pose, finite element, finite difference, or finite volume schemes can be used. In the latter 
case, the distributed system properties are approximated by nonlinear ODEs which 
represent locally averaged variations of the thermal energy and, accordingly, spatially 
averaged variations of temperatures within finitely large elements [7]. Because these finite 
volume models have to be valid over large intervals for the operating temperature and 
because the internal storage variables represent the variations of thermal energy in an 
averaged sense, experimental parameter identification routines are inevitable to find the 
most suitable system parameters [17,18]. Modelling approaches that are closely related to 
this type of system representation are given in terms of Hammerstein models [19]. Other 
alternatives, like nonlinear models of coupled partial differential (PDE) as well as partial 
differential-algebraic equations [20,21] are more commonly used during offline design 
stages and are more challenging concerning their computational complexity if real-time 
control implementations are desired. The other extremal model, namely purely algebraic 
(look-up table-like) input–output mappings cannot be used for variable operating con-
ditions due to their limited domains of validity [22,23].

As an alternative to an equation-based system modelling, the derivation of neural 
networks can be seen as a data-driven substitute. From a modelling and application point 
of view, both equation-based and data-driven alternatives have well-known advantages 
and disadvantages. While data-driven procedures allow for rapidly determining accurate 
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simulation models by means of training neural networks with a predefined structure, the 
equation-based option has big advantages if model-based control procedures are to be 
derived. Those control procedures successfully exploit structural properties such as 
quasi-linearity of the dynamical ODE model1 or affine couplings between control inputs 
and internal system states. For that reason, this paper tries to bridge the gap between 
data-driven and equation-based modelling paradigms by means of a physically inspired 
structuring of neural network representations of complex multi-physics processes. The 
physically inspired structuring of neural network models in this paper, which in a similar 
way is also used in [24], makes use of the following fundamental stages:

(1) Define physically independent subprocesses such as heat conduction and exother-
mal reactions for the SOFC system with their corresponding subsystem inputs (e.g. gas 
mass flows and preheater temperatures) and outputs (variation rates of the internal 
energy or temperature);

(2) Define interconnections of these subnetworks (e.g. additive superposition of 
different sources for temperature variations) and multiplicative couplings (representing 
proportionality of the exothermal heat production and the electric SOFC power with 
respect to the measurable stack current);

(3) Define those network outputs for which experimental data are available so that 
they can be employed together with measured system inputs to set up appropriate 
training data sets for the structured network representation;

(4) Include further structural insight such as linear dynamical elements to turn 
feedforward function approximation networks into nonlinear ODE models for the 
respective subsystem dynamics.

Moreover, this kind of structuring approach allows for simplifying the derivation of an 
optimal configuration of neural networks, in terms of the required numbers and cou-
plings of both hidden layers and associated neurons. In addition, those input quantities 
can be identified systematically that represent the most relevant information content for 
the investigated input–output relations.

To structure the corresponding system models for SOFCs according to the four 
fundamental steps above, a finite number of storage variables is firstly specified in 
accordance with the equation-based system representations of previous work [7]. 
Then, the nonlinear relations at both the system inputs and outputs are defined as 
feedforward neural networks [25,26], for which the most suitable numbers of neurons 
in the hidden layers as well as the combinations of non-redundant and information- 
carrying inputs are determined by a principal component analysis method exploiting 
a singular value decomposition of suitable input–output pairs according to [27].

At this point, it should be mentioned that the area of physics-inspired neural network 
modelling has gained a significant attention [28–31] in recent years. The current research 
directions in this field mostly employ deep-learning networks to approximate the multi- 
dimensional space and time dependencies of distributed process variables such as volume 
flows and pressures in fluidic systems. Based on the approximation of these process 
variables (which can be interpreted as a solution to a PDE), tasks such as the highly 
accurate training of the PDE structure, PDE discretizations, simulations for alternative 
sets of input data and boundary conditions or the identification of selected parameters 
can be solved. For that purpose, the complete PDE model is typically constructed by 
applying techniques for automatic differentiation [32] to the aforementioned deep neural 
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network [33,34] to compute the involved (space) derivatives. Due to the fact that the 
space and time dependence of the solution is directly approximated, a large number of 
training data are required for such approaches. Loss functions are either energy-related 
expressions or squared solution deviations at initial and boundary points as well as at 
specific collocation points. In contrast to these techniques, the current paper proposes to 
structure a shallow neural network by means of physical insight as sketched above to 
obtain a computationally inexpensive model that is yet sufficiently accurate to perform 
control and state estimation tasks in future work.

To highlight the practical applicability of this approach, this paper performs 
a comparison of the physically structured neural network modelling procedure with 
equation-based alternatives derived in previous work of the authors, especially with the 
model described in [7] which served as the basis for a robust control design in [13]. The 
physically structured neural network models for the thermal system behaviour and 
exothermic reaction processes are composed of Hammerstein-type input nonlinearities 
and nonlinear state dependencies. In such a way, these mappings allow for 
a representation of the temporal variations of all storage variables so that they can be 
combined with linear dynamical elements representing the required integration with 
respect to time. A more general structuring of neural networks into static Hammerstein 
and Wiener parts that are coupled with linear transfer function elements can be found in 
[35]. This article and the references therein provide a good overview of current research 
activities concerning training techniques for finding optimal parameters of the static 
nonlinearities as well as of the included dynamical (sub-)transfer functions. These 
approaches as well as the approaches for a stability analysis of feedforward neural 
networks in a NARX configuration published in [36] could be combined in future 
work with the models and structuring techniques developed in this paper.

In addition, the structured neural network models proposed in this paper are extended 
to describe nonlinear dynamics in the electric power production that depend on the 
temporal variations of the supplied hydrogen mass flow, the fuel cell temperature (in 
terms of couplings with the thermal subsystem networks), and the electric current. In 
contrast, state-of-the-art neural network models for fuel cell systems are typically 
restricted to a representation of the quasi-stationary input–output behaviour [37–39] 
(both from an electrochemical and thermal point of view) which are less suitable for 
a control synthesis aiming at a dynamical system operation or, if they are given by 
dynamical representations, they focus directly on temporally discretized state equations 
[40] (in this reference for predictive control).

The remainder of this paper is structured as follows. Sec. 2 summarizes the basics of an 
equation-based modelling of the fuel cell system and as such provides the basis for the 
structural restrictions imposed to the neural network models derived in Sec. 3. Besides 
the presentation of three different system structures for the thermal SOFC behaviour and 
one dynamical model for the electric SOFC power, the optimization of these models with 
respect to the required numbers of hidden neurons as well as the relevant input quantities 
are discussed. Sec. 4 gives a comparison of the modelling accuracy of the equation-based 
and neural-network based system models. This section further focuses on the advantages 
of the presented neural network representations, highlights a simulation-based robust-
ness analysis of two of the proposed novel network models, and gives an outline on how 
they can be interfaced with a robust control design that is based on the use of linear 
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matrix inequality techniques for dynamical systems [41] with a polytopic uncertainty 
representation. Finally, conclusions and an outlook on future work are presented in 
Sec. 5.

2. Equation-based modelling of the thermal behaviour of a solid oxide fuel 
cell stack

In previous work of the authors [7,13], it has been shown that an equation-based model 
for the thermal behaviour of an SOFC system can be applied successfully to perform tasks 
such as model-based parameter and state estimation as well as control design for the 
heating and high-temperature reaction phases. Besides floating-point techniques for 
parameter identification, making use of local either gradient-based or gradient-free 
approaches, also guaranteed identification techniques on the basis of interval analysis 
were employed [42]. In the current paper, the equation-based model of the SOFC stack, 
which is separated from the gas preheater dynamics in Figure 1, serves as a reference 
solution against which different neural network models are compared. Those data-driven 
neural network models represent the system dynamics alternatively. If an equation- 
based, lumped parameter model is of interest, the overall dynamics of the SOFC stack 
is typically subdivided into a model for the temperature distribution in the interior of the 
stack module and into its associated electrochemical behaviour.

The lumped parameter representation of the thermal SOFC behaviour according to [7] 
is based on integral energy balance equations in a finite volume representation. It serves as 
a substitute for more detailed physically-oriented descriptions that could be given by 
nonlinear PDEs [1,2]. Although PDE models theoretically represent the distributed para-
meter nature of processes such as heat exchange and transport phenomena of ions in the 
interior of the fuel cell, they are difficult to handle if a real-time capable state estimation or 
control task is to be solved. The reason for this is twofold. The complex geometry as well as 
the large variety of involved materials in the interior of the SOFC stack lead, on the one 
hand, to an excessive number of variables to be specified (respectively, identified 

Figure 1. Semi-discretization of the fuel cell stack module with gas preheaters according to [7] for 
a parallel flow configuration of cathode and anode gas.
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experimentally) and to strongly coupled nonlinear equations for which boundary and 
interface conditions can hardly be specified in an accurate way. On the other hand, the 
spatial resolution of such models is by far too detailed (assuming that it would be possible 
to solve the aforementioned parameterization task perfectly) for any real-time control task.

Therefore, finite-dimensional sets of ODEs are commonly preferred as a compromise 
between modelling accuracy and computational complexity. These ODEs result from 
a spatial semi-discretization of the SOFC stack (shown by the cuboid in Figure 2 with the 
lengths LL, LM , and LN). When performing this spatial discretization by means of a finite 
volume technique, the stack is subdivided into nx ¼ L �M � N equally sized elements. For 
each sub-cuboid with the edge lengths lL ¼ LL

L , lM ¼ LM
M , and lN ¼ LN

N in Figure 2, the element 
temperature #I :¼ #I ðtÞ, I :¼ ði; j; kÞ 2 fð1; 1; 1Þ; . . . ; ðL;M;NÞg, is described by 
an ODE 

_#I ¼
1

cImI
_QIHT þ

X

G2fAG;CGg

_QIG;I�j þ
_QIEL þ

_QIR

0

@

1

A: (1) 

Here, the individual summands account for the following phenomena according to 
Figure 3:

• HT: heat transfer due to heat conduction and convection (as a linearized model for 
heat radiation),

• G: enthalpy flows of the supplied gases, where χ in Figure 2 denotes all relevant gas 
fractions,

• R: exothermic reaction enthalpy, and EL: Ohmic losses due to electric currents II .
In addition to the thermal subsystem model, the electrochemical behaviour is com-

monly described by equivalent circuit models or phenomenological linear transfer func-
tion representations, see also Sec. 2.2.

Figure 2. Spatial semi-discretization of the fuel cell stack module (arrangement of finitely large 
volume elements in up to three space coordinates).
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2.1. Quasi-linear structure of the dynamical system model for the thermal SOFC 
behaviour

Following the procedure described in [43,44], the nonlinear ODE model for the thermal 
system behaviour can be re-written into the quasi-linear, input-affine state equations 

_x ¼ A x; pð Þ � x þ B x; pð Þ � u: (2) 

This results from the assumption of heat transfer terms _QIHT that are linear in the stack 
temperatures as well as from the representation of the heat capacities of all gases and 
reaction enthalpies in _QIG;I�j and _QIR by means of temperature-dependent polynomials. 

Hence, a multiplicative coupling between the system matrix A :¼ A x; pð Þ and the state 
vector x containing all finite volume element temperatures is obtained. Therefore, this 
system matrix, as well as the input matrix B :¼ B x; pð Þ in which Ohmic losses _QIEL are 
included, depend on the state and parameter vectors x and p, respectively.

If a discretization using three finite volume elements located in the direction of the gas 
mass flow according to L ¼ N ¼ 1 with M ¼ 3 is performed, the structure of the system 
and input matrices turns into 

A ¼
a11 a12 0
a21 a22 a23
0 a32 a33

2

4

3

5 and B ¼
b11 b12 b13 b14
b21 0 0 b24
b31 0 0 b34

2

4

3

5: (3) 

Then, the state vector is defined as x ¼ #ð1;1;1Þ #ð1;2;1Þ #ð1;3;1Þ
� �T ; all inputs (control 

and disturbance variables, i.e., the ambient temperature, the anode and cathode gas inlet 
temperatures and the electric current) are summarized in the vector 
u ¼ #A #AG;in #CG;in

1
3 I

� �T , where a locally homogeneous current distribution 
according to Ið1;1;1Þ ¼ Ið1;2;1Þ ¼ Ið1;3;1Þ ¼ 1

3 I is assumed.
If an in-depth structural analysis of this system model is performed in the frame of 

a model-based, robust control and state observer design [43,44], the following properties 
become visible:

(1) all off-diagonal elements in the system matrix (3) are non-negative (so-called 
Metzler matrix);

Figure 3. Local energy balance of the semi-discretized fuel cell stack module.
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(2) all diagonal elements in A x; pð Þ need to be strictly negative to reflect physically 
motivated stability properties if no further disturbance terms are included in (2);

(3) all elements of B x; pð Þ are non-negative;
(4) from a thermal point of view, #CG;in is the control input, all other entries in u are 

disturbance inputs.

2.2. Modelling of the electric fuel cell power

As stated in [7,44], the electric fuel cell current Ik ¼ IðtkÞ at the sampling instant tk as well 
as the consumed mass flow of hydrogen are related to each other via Faraday’s law of 
electrochemistry. In addition, the terminal voltage Uk ¼ UðtkÞ of the fuel cell stack can be 
determined with the help of information on the stack’s open-circuit voltage (related to 
the Nernst potential), from which various voltage drop phenomena need to be sub-
tracted. These voltage loss phenomena (namely, activation polarization, Ohmic polariza-
tion, and concentration polarization) can be represented with the help of quasi-static 
relationships, such as the analytic approximation 

Uk¼ a0 þ a1 � Ik þ a2 � I2
k þ a3 � ln Ikð Þ þ a4 � _mH2;in;k

þa5 � Ik � _mH2;in;k þ a6 � Ik � _m2
H2;in;k:

(4) 

This approximation was investigated in [8] for the purpose of a maximum power point 
tracking procedure which is based on the online estimation of the coefficients ai, 
i 2 f0; . . . ; 6g, by means of a Kalman Filter procedure. An extension of this estimation 
approach towards a real-time implementable optimization of the fuel efficiency was 
published in [45]. In (4), the included logarithmic term of the electric current is 
inspired by Tafel’s equation [46,47]. Multiplying this voltage expression with the 
total electric current directly yields the quasi-static electric power in terms 
of PEL;k ¼ Uk � Ik.

Due to the dependence on the overall mass flow of hydrogen and the electric current 
(which is proportional to the consumed hydrogen mass flow), stationary operating points 
can be predicted with such kind of models. However, if the coefficients are not adapted 
online, this model is only valid in the close vicinity of the stack and inlet temperatures for 
which the parameters were identified. Dynamical dependencies further arise due the 
relatively fast exchange of charge carriers in the interior of the SOFC stack and, if the 
power is controlled by using the hydrogen mass flow over longer time scales, by fluidic 
inertia of the transported gases and by couplings with the thermal system state.

For a constant thermal operating point, it was shown in [15] that linear transfer 
functions between _mH2 and PEL of at least third order are required to implement control 
procedures that allow for smooth transitions between various electric operating points. 
However, these models show errors in stationary gains and time constants of more than 
50% (compensated for in [15] by a robustification2 of the control procedures) if the stack 
and input temperatures significantly deviate from the point of identification.
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3. Physically structured neural network modelling

The structural investigation of an equation-based model gives rise for three different 
alternative neural network configurations for the thermal dynamics of the SOFC stack. 
These models are sketched in the following subsections, where all sigmoid-type hidden 
layers are implemented as hyperbolic tangent functions. All connections for which the 
weights are a-priori defined, for example, for the representation of matrix-vector products 
or unweighted summations of various sub-network outputs, are highlighted by means of 
non-filled arrow heads in the corresponding graphical representations; all connections 
with weighting factors to be adapted during training are visualized with filled ones.

3.1. Fundamental data-driven thermal SOFC model

As stated in the introduction of this paper, it is desired to derive continuous-time 
network models. These are given by means of a static mapping between the current 
system states 

x tkð Þ ¼ x1 tkð Þ . . . xn tkð Þ½ �
T (5) 

as well as the collection of all measurable (time-dependent) control, input, and distur-
bance variables 

q tkð Þ ¼ q1 tkð Þ . . . qm tkð Þ½ �
T (6) 

in the input layer of a function approximation neural network and the respective outputs 

_x tkð Þ ¼ _x1 tkð Þ . . . _xn tkð Þ½ �
T (7) 

of the net.
Before the training takes place, all input and output vectors of the fundamental network 

structure in Figure 4 are low-pass filtered with identical time constants so that undesirable 
phase shifts between the input–output relations are avoided. The system dynamics are then 
represented by interpreting the network outputs as the right-hand side of a set of ODEs 

_x tkð Þ ¼ fnet x tkð Þ; q tkð Þð Þ: (8) 

In such a way, the neural network representation serves as a substitute for the 
previously described analytic system model summarized in Eqs. (1) and (2).

In the fundamental neural network model according to Figure 4, the state vector x tkð Þ

defined in (5) represents the finite volume element temperatures according to Sec. 2 with 
n ¼ 3. The model (8) does not explicitly distinguish between the different physical 
reasons for temperature variations. However, this knowledge and their separation are 
essential if a control synthesis is of interest. Such control procedures typically aim at 
manipulating the cathode gas enthalpy flow (in the following included in a heat transfer 
subnetwork) by variations of the cathode gas inlet temperature and the respective mass 
flow which are both components of the vector (6). Using such a control procedure, 
temperature variations caused by the exothermal reaction enthalpies are suppressed. 
Therefore, the models in the following two subsections provide a more detailed repre-
sentation of the dynamics by distinguishing these two phenomena with the help of 
a structured network model.
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3.2. Separation of heat transfer and exothermic reaction enthalpies

As a first in-depth modelling approach for the thermal system behaviour, the dynamics 
for temperature variations due to exothermic reaction enthalpies are separated from heat 
transfer phenomena in the differential equations (8). The exothermic processes are only 
relevant for non-zero (i.e., strictly positive) electric currents I tkð Þ. This can be reflected by 
the variation rates _xR;i, i 2 f1; . . . ; ng, which depend in a multiplicative way on the 
electric current, see also the input-affine structure in Eq. (2).

The respective subnetwork for the reaction enthalpies furthermore depends on the 
vector q tkð Þ defined in (6) and on the current state information x tkð Þ as the finite volume 
element temperatures (5). Note, for this subnetwork with the hidden neurons 
R1; . . . ;RL1 , the input as well as output weights of the multiplicative layer need to be 
treated as constant parameters that are all set to the value 1. The a-priori fixing of these 
parameters ensures that the corresponding temperature variation rates _xR;i can be 
described independently by the respective subnetwork outputs and afterwards added to 
the heat transfer outputs _xth;i without any further scaling.

In a similar manner, however, without any multiplicative couplings at the subnetwork 
outputs, the heat transfer behaviour is described by the lower block in Figure 4. This leads 
to the overall system model 

Figure 4. Fundamental neural network model of the thermal SOFC dynamics with the inputs defined 
in (5) and (6) as well as the network outputs (7).
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_x tkð Þ¼ _xR tkð Þ þ _xth tkð Þ

¼ fnet;R x tkð Þ; q tkð Þð Þ þ fnet;th x tkð Þ; q tkð Þð Þ
(9) 

that – as mentioned before – serves as a substitute for the differential equations (8).
This model structure has the clear advantage that fnet;R x tkð Þ; q tkð Þð Þ;0 holds perfectly 

for vanishing currents I tkð Þ;0 during the system’s heating phase so that the actual values 
of fnet;R x tkð Þ; q tkð Þð Þ directly represent the disturbance heat flows to be compensated by 
a control procedure that aims at keeping the fuel cell stack temperature in the close 
vicinity of a desired thermal state.

However, disturbances which also arise in the interior of the heat transfer block, are 
not yet extracted by this representation. As shown by the simulation-based robustness 
analysis in the following section, this may lead to a certain tendency for overfitting the 
training data and hence to an insufficient capability to generalize to perturbed system 
inputs q tkð Þ or uncertainty in the initial stack temperature x t0ð Þ.

Therefore, the following subsection imposes a quasi-linear, input-affine structure for 
fnet;th x tkð Þ; q tkð Þð Þ that is inspired by the equation-based model (2) in Sec. 2.1 so that the 
corresponding neural network model can be employed as the basis for a robust control 
synthesis in future research.

3.3. Quasi-linear data-driven heat transfer model

In the third neural network model, a quasi-linear structure of the thermal SOFC 
behaviour is identified. The model 

fnet;th x tkð Þ; q tkð Þð Þ¼ A x tkð Þ; q tkð Þð Þ � x tkð Þ

þb x tkð Þ; q tkð Þð Þ � #CG;in tkð Þ þ d x tkð Þ; q tkð Þð Þ
(10) 

reflects the quasi-linear state-space representation (2) according to the model-based 
problem formulation in Sec. 2. As in the equation-based approach, a state-dependent 
system matrix A x tkð Þ; q tkð Þð Þ and a state-dependent input vector b x tkð Þ; q tkð Þð Þ are 
introduced. The latter is coupled in an input-affine way with the cathode gas inlet 
temperature #CG;in as the control variable, cf. Sec. 3.1. In addition, all terms that do not 
fit into this structure, as well as dependencies on the ambient temperature #A and the 
anode inlet temperature #AG;in are captured by the disturbance term d x tkð Þ; q tkð Þð Þ.

To represent the corresponding matrix product in the term A x tkð Þ; q tkð Þð Þ � x tkð Þ, its 
linear subnetwork output in Figure 6 represents all matrix elements in a column-wise 
notation. Then, the fixed gains for the subsequent multiplication and summation layers 
are set appropriately to the values 0 and 1 so that the matrix-vector product forming the 
first summand in (10) is obtained. Similarly, also the multiplicative output of the second 
block b x tkð Þ; q tkð Þð Þ � #CG;in tkð Þ is parameterized. In both cases, as well as for summing 
up the terms fnet;th x tkð Þ; q tkð Þð Þ with the subnetwork outputs fnet;R x tkð Þ; q tkð Þð Þ for the 
reaction enthalpies, which remains unchanged as compared to Figure 5, the respective 
weighting factors are not adapted during any training stage.

In contrast to the analytic system model (2), zero elements are not imposed in 
A x tkð Þ; q tkð Þð Þ and b x tkð Þ; q tkð Þð Þ during the neural network training. From 
a modelling perspective, this can be interpreted as a degree of freedom to be exploited 
by the training algorithm so that not only interactions between directly neighbouring 
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elements are accounted for. Interactions from more distant elements hence resemble 
higher-order spatial discretization techniques that are known from solving partial differ-
ential equations numerically [48]. 

Remark 1. Currently, the optimization approach for the presented neural network for the 
quasi-linear system structure of the thermal dynamics is solely based on the minimization 
of the squared distance between the measured temperature derivatives and the corre-
sponding model forecasts. Future work could further account for the following options:

(1) Enforcing the structure of the matrix A x tkð Þ; q tkð Þð Þ as in Eq. (3) during training of 
the neural network (especially, enforcing a Metzler-type parameterization with guaran-
teed non-negative off-diagonal elements);

(2) Minimizing the term d x tkð Þ; q tkð Þð Þ by treating it as a penalty term added to the 
squared forecast error so that the dynamics are represented in a quasi-linear way without 
possible redundancies in the term d x tkð Þ; q tkð Þð Þ.

Remark 2. The use of a single hidden layer with the neurons H1; . . . ;HL2 for the thermal 
system behaviour and using this as the input for all three output terms highlighted in grey 
colour in Figure 6 represents the influence of all physical phenomena (especially, the 
non-exothermic heat transfer in the SOFC stack) by common nonlinear input- and state- 
dependent relations.

Figure 5. Separation between heat transfer and exothermic reaction enthalpies.
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3.4. Data-driven modelling of the electric fuel cell power

In analogy to the unstructured model for the thermal system behaviour according to 
Figure 4, a neural network-based representation for the dynamics of the electric fuel cell 
power can be derived as a dynamical system representation. It describes the relation 
between the vector q tkð Þ and the electric voltage UðtkÞ as the inputs to a finite number 
of time derivatives of UðtkÞ. To avoid unnecessarily stiff system models and to focus on 
long-term voltage variations with their dependence on the thermal operating state, it is 
possible to restrict this network to a single scalar output variable _UðtkÞ. The direct 
proportionality of the electric power to the measurable current is then established by 
integrating _UðtkÞ over time and multiplying it with IðtkÞ. For generalizations of this model 
towards a fractional-order representation of the dynamics, the reader is referred to [45].

Alternatively, a static feedforward function approximation network can be trained at 
this stage for which UðtkÞ needs to be removed from the input layer and treated directly 
as the network output.

For all neural network models presented so far in this section, optimal numbers L 
(resp. L1 and L2) of neurons in the hidden sigmoid layers can be determined by the 
principal component analysis approach [27] summarized in Secs. 3.6 and 3.7. In addition, 
also connections to redundant inputs and not sufficiently rich entries (with respect to 
their information content) of the vectors q tkð Þ are removed by the procedure described in 
the following subsection to limit the network complexity and to reduce the computa-
tional burden during both training and evaluation. 

Figure 6. Quasi-linear, input-affine structuring of the neural network (Detailed representation of the 
heat transfer subnetwork; the reaction enthalpy subnetwork is identical to Figure 5).
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Remark 3. The continuous-time system formulation, in which the nonlinear dynamics 
are represented as static mappings between system inputs, current system states and 
forecasted time derivatives of all state variables, was preferred in this paper over recurrent 
discrete-time network models or other discrete-time representations such as NARX 
models in which temporally delayed state variables are introduced as further network 
inputs. By the proposed choice of modelling, a system representation is obtained in 
Figure 6 that allows in future work for combining data-driven modelling methodologies 
with model-based techniques for a robust control synthesis. With the help of the quasi- 
linear system structure according to Figure 6 (or, respectively, Eqs. (2) and (10)), 
a stabilizing control synthesis can be performed if linear matrix inequality techniques 
are employed. For the purpose of the control design, it will be necessary to extract worst- 
case bounds of all entries of the matrices and vectors A x tkð Þ; q tkð Þð Þ and b x tkð Þ; q tkð Þð Þ, 
respectively. In such a way, the procedures from [43,49] can be extended to system 
models, where the dynamics are internally represented in the form of neural networks. 
Fundamentally, it will become necessary to extract the worst-case realizations from 
A x tkð Þ; q tkð Þð Þ and b x tkð Þ; q tkð Þð Þ. Here, determining the respective matrix element 
bounds by techniques from the field of interval analysis will be a promising direction 
for future work.

3.5. Application of physically motivated network structures to other dynamical 
systems

Besides modelling of SOFC systems, the proposed physically motivated structuring of 
subsystem representations is useful for a large variety of other modelling tasks. An 
example is the control-oriented representation of state equations for polymer electrolyte 
fuel cells. There, techniques for impedance spectroscopy could provide the identification 
data for the current–voltage characteristics, cf. [50], where a multiplication with the actual 
current leads to the corresponding electric power in analogy to the previous subsection. 
Moreover, direct dependencies of models for the gas partial pressures on the supplied 
hydrogen mass flow could be represented by multiplicative output layers (cf. Figure 5).

Apart from modelling and identification of dynamical systems in electrochemistry, 
compartmental models that are widely used for representing biological systems, medical 
processes or tasks of water purification are obvious candidates. There, suitable neural 
network structures could be extracted from a graph topology that can be used to describe 
such processes [51,52]. For wastewater treatment processes, for example, these may be 
the interconnections between aeration tanks and specific layers in a subsequent settler, 
where oxygen supply necessary for the growth of substrate consuming bacteria only takes 
place in the first component [53].

3.6. Optimal network inputs

The selection of optimal (non-redundant and sufficiently information carrying) network 
inputs in this subsection as well as the choice of the optimal numbers of hidden layer 
neurons in the next subsection are performed by means of a subset selection that is based 
on a singular value decomposition of suitable matrices [27].
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For the case of choosing the optimal network inputs, the training data matrix T 2
R l�m is considered, where l denotes the number of training samples; m is the number of 
inputs to the networks (excluding the state variables that are fed back in the dynamical 
system representations discussed before).

Using this matrix T, a singular value decomposition is performed according to 

T ¼ UTΣTVT
T; (11) 

where UT
TUT ¼ VT

TVT ¼ I with the identity matrix I 2 R m�m holds. Assuming l >m, ΣT 
is a block matrix 

ΣT ¼
diagfσT;1; . . . ; σT;mg

0ðl� mÞ�m

� �

; (12) 

where σT;1 � σT;2 � . . . � σT;m � 0 are the singular values sorted in descending order 
and 0ðl� mÞ�m 2 R ðl� mÞ�m is a zero matrix of appropriate dimension. Due to the large 
number of sampling points available as measurements in this application (typically a few 
hundred thousand), l is chosen during a correlation-based data aggregation stage to be 
larger than m by at least a factor of 100. The actual choice of the l data points for the 
singular value decomposition is described further in Remark 4.

The number ηT > 1 of relevant system inputs is then identified as the largest integer for 
which 

XηT

i¼1
σ0T;i � 1 � �T (13) 

holds with the normalized singular values 

σ0T;i ¼ σT;i �
Xm

i¼1
σT;i

 !� 1

(14) 

and the sufficiently small threshold value 0< �T � 1.
Now, as described in [27], define the matrix �VT as the first ηT columns of VT and 

partition it into 

�VT ¼ �VT;1 �VT;2
� �

(15) 

with �VT;1 2 R ηT�ηT and �VT;2 2 R ðm� ηTÞ�ηT . Performing a QR factorization of �VT
T with 

column pivoting yields a permutation matrix PT 2 R m�m such that 

QT
T

�VT;1 �VT;2
� �TPT ¼ RT;1 RT;2½ � (16) 

holds so that RT;1 is upper triangular and QT
TQT ¼ I. Now, the selected input subset T1 is 

obtained as 

TPT; T1 T2½ �; (17) 

where T1 2 R l�ηT . 
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Remark 4. For the selection of the number l of training data, the percentage from the 
overall experimental network inputs is successively decreased so that this percentage of 
data – chosen randomly – still reflects the fuel cell’s overall input–output relationship. 
For that purpose, the matrix T is expanded by all corresponding system outputs (i.e., the 
time derivatives of the element temperatures or the measured stack voltage). Then, the 
matrix of correlation coefficients C 2 R ðmþnÞ�ðmþnÞ is computed, both for the original 
and reduced data set after deleting certain rows of T and the associated outputs. If the 
correlation coefficients of the original and the reduced data do not deviate significantly, 
the reduction is admissible. This reduction stage eliminates points before the singular 
value decomposition that aims at the optimal input selection. The neural network 
training, however, is fully independent of this reduction stage and may contain its own 
data aggregation. Especially after the reduction of network input data by this computa-
tion of correlation coefficients, one obtains so-called tall skinny matrices for which 
a principal component analysis can effectively be evaluated on standard CPUs (for 
a number of training samples around l¼105 with m< l=100 input vector components, 
where this latter value turns into the number L of hidden neurons in the following 
subsection). For larger values of both l and m, this principal component analysis can be 
carried out on modern GPU architectures. Then, approximate solutions of singular value 
decompositions by truncation techniques seem to be one of the promising solutions [54– 
57]. However, GPU implementations were not investigated in this paper, because 
a standard CPU implementation was sufficiently efficient for the application scenario 
in this paper.

Remark 5. Input variables in the set of training data that have a negligibly small 
correlation to all system outputs in the same data set are natural candidates to be omitted 
when training the networks in Figures 4–6. The detection of such candidates can be 
performed by a classical correlation analysis. Strictly speaking, this technique is only 
applicable if besides the second-order moments of the combined input–output distribu-
tion also all further higher-order moments of these input–output pairs are practically 
zero. In those rare scenarios, where the correlation-based input exclusion leads to poor 
system approximations, this input variable reduction should be reverted.

3.7. Optimal number of hidden layer neurons

The selection of an optimal number of hidden neurons basically follows the same stages 
as in the previous subsection. The major difference is that the matrix T from the previous 
subsection is now replaced by a matrix H 2 R l�L, where L is the number of neurons in 
the hidden layer under investigation. This matrix is determined from a simulation of an 
over-parameterized neural network that has been trained up to the point of reasonable 
convergence. Then, the respective matrix H is used to determine the singular value 
decomposition UH, ΣH, VH, from which the 1 � ηH < L most important singular values 
are extracted after specifying the threshold �H according to the same procedure as before. 
This singular value decomposition approach reveals that ηH neurons represent the main 
system information in the hidden network layer. This means that the outputs of the 
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remaining L � ηH neurons can be described (despite the nonlinear sigmoid activation 
functions whose outputs are included in the data H) by a linear combination of the most 
important ηH neurons. Deleting those non-relevant neurons is reasonable because the 
outputs of the hidden layers in all networks in Figures 4–6 are combined linearly within 
the subsequent layer(s).

After deleting the non-relevant neurons and retaining the pre-trained weights and bias 
values, training is continued with two further options. If the approximation quality 
(measured as the sum of squared output errors over the complete training data set) 
deteriorates significantly for the reduced network size (typically due to an inappropriate 
threshold �H), ηH is increased to a larger value (in the limit case, all neurons may be kept, 
i.e., leading to ηH;L). If the quality of the reduced network is still acceptable, a further 
reduction is possible as shown by the break conditions in Figure 7. 

Remark 6. For networks with multiple hidden layers, this procedure can be employed 
individually for each of the sigmoid layer outputs.

Remark 7. Individual network links with sufficiently small weights (corresponding to 
sufficiently small correlation coefficients between the hidden layer inputs and outputs) 
may be deleted fully in order to limit the computational effort. This option, however, is 
not further considered in this paper.

4. Training and experimental results

In Figure 7, the overall training and optimization procedure for all neural networks 
presented in this paper is summarized. The basis for the training and numerical evalua-
tion of all networks has been the acquisition of measured data from an SOFC test rig 
available at the University of Rostock for a time span of slightly more than eight hours 
from which the high-temperature reaction phase takes place in the last 1:5 hours. The use 
of these training data – with relatively many points during the electrochemically idle 
phase – has the advantage that the influence of the cathode gas enthalpy flows can be 
described accurately. This allows for developing accurate temperature control strategies 
following the aims mentioned in Sec. 3.1.

The experimental data used in this section (comprising information on all segment 
temperatures, gas mass flows, stack inlet temperatures, as well as the electric terminal 
current and voltage) are sampled with a temporal resolution of 100ms. Before the 
optimal input selection for the networks has been carried out, these data have been low- 
pass filtered with a first-order linear transfer function with an edge frequency of 1Hz. 
This frequency is also used for a low-pass filtered derivative estimation after its automatic 
numerical discretization using the FixedStepAuto option in SIMULINK R2019b.

To perform the optimal input selection, the total number of approx. 300;000 data 
points has been reduced to approx. l ¼ 10;000 points by a random choice, where the latter 
corresponds to the statements of Remark 4 with a change of the correlation coefficients 
that is smaller than 0:1%. After that, the singular value decomposition has been evaluated 
with the results presented in Table 1 (containing also the optimized numbers of hidden 
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layer neurons). The ✓ symbols in Table 1 represent those inputs that are – according to 
the singular value decomposition – relevant for describing the corresponding system 
dynamics, while ✘ denotes the irrelevant inputs. For example, the heat transfer subnet-
work according to Figure 5 should not use the electric current, voltage, and ambient 
temperature as inputs, while only the ambient temperature (which was practically constant 
for the whole experiment) could be eliminated from the reaction enthalpy subnetwork.

The training of the neural networks has been preceded by a data aggregation stage. For 
the thermal system models, 1-minute averages of all measurements have been formed 
(which are still shorter time spans than the typical thermal time constants), while the 
electrochemical behaviour has been identified for 1-second averages. The network 

Figure 7. Structure diagram of the proposed neural network training and optimization algorithm.

Table 1. Optimal network input selection with �T ¼ 10� 4.
Network type network inputs

#ð1;1;1Þ #ð1;2;1Þ #ð1;3;1Þ I U _mCG #CG;in _mN2
_mH2 #AG;in #A

Figure 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✘
Figure 5 (heat transfer) ✓ ✓ ✓ ✘ ✘ ✓ ✓ ✓ ✓ ✓ ✘
Figure 5 (reaction enthalpies) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✘
Figure 6 (heat transfer) ✓ ✓ ✓ ✘ ✘ ✓ ✓ ✓ ✓ ✓ ✘
Figure 6 (reaction enthalpies) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✘
voltage prediction (static) ✓ ✘ ✓ ✓ ✘ ✘ ✓ ✓ ✓ ✓ ✘
voltage prediction (dynamical) ✓ ✘ ✓ ✓ ✓ ✘ ✓ ✓ ✓ ✓ ✘
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Table 2. Overview of training and simulation results (�H ¼ 5 � 10� 4).

No. Network type optimized? training data
hidden 

neurons RMS

_#ð1;1;1Þ _#ð1;2;1Þ _#ð1;3;1Þ _U U

R0 analytic model N/A N/A N/A N/A N/A N/A N/A 8:36 K
T1 Figure 4 ✘ ✓ ✓ ✓ ✘ ✘ 30 3:13 K
T2 Figure 4 ✓ ✓ ✓ ✓ ✘ ✘ 16 2:70 K
T3 Figure 4 ✓ ✓ ✓ ✓ ✘ ✘ 14 3:77 K
T4 Figure 4 ✓ ✓ ✓ ✓ ✘ ✘ 7 5:33 K
T5 Figure 5 (standard) (✓) ✓ ✓ ✓ ✘ ✘ 7 4:34 K
T6 Figure 5 (robustified) (✓) ✓ ✓ ✓ ✘ ✘ 7 3:91 K
T7 Figure 6 (standard) (✓) ✓ ✓ ✓ ✘ ✘ 7 2:67 K
T8 Figure 6 (robustified) (✓) ✓ ✓ ✓ ✘ ✘ 7 2:41 K
P1 voltage prediction (static) ✘ ✘ ✘ ✘ ✘ ✓ 30 1:45V (3:97 W)
P2 voltage prediction (static) ✓ ✘ ✘ ✘ ✘ ✓ 7 1:33V (3:65 W)
P3 voltage prediction (dynamical) ✘ ✘ ✘ ✘ ✓ ✘ 30 2:82V (6:22 W)
P4 voltage prediction (dynamical) ✓ ✘ ✘ ✘ ✓ ✘ 9 2:87V (8:50 W)

Figure 8. Experimental identification of the thermal fuel cell behaviour with 
Δ#ð1;j;1Þ :¼ #m;ð1;j;1Þ � #ð1;j;1Þ, j 2 f1; 2; 3g.
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training has been carried out in MATLAB using the standard Bayesian regularization back- 
propagation algorithm, parallelized on two CPU cores with a maximum number of 5000 
epochs in which a worsening of the validation performance was allowed in 50 subsequent 
iterations. From the aggregated data sets, multiple random subdivisions into training 
(70%), test (15%), and validation (15%) data were performed. For all presented results, 
the cost function was chosen as the sum of squared output errors with respect to the 
derivatives of the state variables.

Table 2 summarizes the best possible performance after optimization in terms of the 
root of the mean-square approximation error (RMS). There, ✓ symbols indicate that the 
specific quantity in the columns for training data represented the desired network 
output, while ✘ in the training data columns indicated that the corresponding data are 
not used for the respective network option. In addition, ✘ in the column optimized? 
Denotes that the corresponding number of hidden layer neurons is the outcome of the 
singular value decomposition-based optimization procedure. This optimization was 
continued until the number of 7 hidden layer neurons was reached in the option T4. 
There, the RMS value started to increase (but was still below the analytic, equation-based 
system model’s quality from the authors’ previous work). Therefore, the value of hidden 

Figure 9. Experimental identification of the thermal fuel cell behaviour with 
Δ#ð1;j;1Þ :¼ #m;ð1;j;1Þ � #ð1;j;1Þ, j 2 f1; 2; 3g, cont’d.
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layer neurons was left unchanged in T5–T8, denoted by the sign (✓) in parentheses, while 
the hidden layer optimization was independently repeated for the electric power net-
works, see P1–P4.

Having a closer look at the optimization results, it becomes obvious that the heat transfer 
subnetworks in Figures 5 and 6 do not make use (as stated above) of the electric voltage and 
current. Moreover, one of the stack temperatures and the cathode gas mass flow have been 
identified to be irrelevant for approximating the stack voltage (P1–P4). It can be seen clearly 
from Table 2 and from the graphical visualizations in Figures 8a and 8b that the RMS of the 
thermal model was reduced by using all neural network variants by a factor of at least to 1:6 
in comparison with the analytic system model (R0). Moreover, Figure 8c displays the 
measured electric power. A comparison of the time span of non-zero powers with the 
regions of largest errors of the model R0 shows that the analytic system representation 
becomes less accurate as soon as the exothermal reaction starts to take place.

All neural networks, for which the approximation errors are depicted in Figures 9 and 
10 reduce this error noticeably. Especially, the robustified options help to stabilize the 
approximation errors also during the high-temperature reaction phase. According to the 
structure diagram in Figure 7, this robustification was achieved by adding further 

Figure 10. Experimental identification of the thermal fuel cell behaviour with 
Δ#ð1;j;1Þ :¼ #m;ð1;j;1Þ � #ð1;j;1Þ, j 2 f1; 2; 3g, cont’d.
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training data points with random temperature disturbances of 2K standard deviation to 
the measured quantities. This simple, yet heuristic measure helps obviously to prevent 
overfitting of the measured quantities and preserves the networks’ capabilities for 
robustness and generalization to inputs which deviate from the training data set. This 
property is later discussed in more detail after the presentation of the results for model-
ling the electric fuel cell power.

In addition, Figure 11 and Figure 12 show the accurate modelling of the electric power 
by using both neural network options which outperform the LTI transfer function 
derived in [15] especially in constant power phases in which temperature changes 
occur. It should also be noted that the dynamical voltage (power) model is more accurate 
in most phases except for stack powers close to 90W. The reason for this is most likely 
that the training data for powers close to this value contain mostly constant operating 
points and no significant power variations in transient system operation.

Figure 10. Experimental identification of the electric fuel cell behaviour (phases with 
missing data correspond to an operation of the SOFC with vanishing current, leading 
trivially to PEL ¼ 0W).

From an application point of view, it is not only necessary that the trained neural 
networks allow for accurately reproducing the training data. In addition, they must also be 
insensitive against real-life input variations and must be stable in the vicinity of the training 

Figure 11. Experimental identification of the electric fuel cell behaviour (phases with missing data 
correspond to an operation of the SOFC with vanishing current, leading trivially to PEL ¼ 0W), cont’d.
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data set. These properties are checked by randomized simulations (100 simulation runs for 
each of the networks T6 and T8) in Figure 13. For that purpose, the initial stack 
temperatures as well as the cathode and anode gas inlet temperatures were disturbed by 
normally distributed random numbers with a standard deviation of 3K, the hydrogen mass 
flow by a standard deviation of 2% of its actual value, and the stack voltage and current 
independently by 0:5%. From Figure 13, it becomes obvious that the network model T6 
has the drawback that some of the disturbed simulations tend to become unstable during 
the high-temperature reaction phase. This is caused by the lack of a model-free disturbance 
term d x tkð Þ; q tkð Þð Þ that was included additionally in T8, see also Figure 6.

Moreover, the heuristic robustification approach by adding small temperature 
disturbances to the training data set also helped to make this network model less 
sensitive against input variations. Hence, the robustified quasi-linear structure accord-
ing to Figure 6 implemented as the neural network T8 represents the basis for a future 
robust control design for the thermal system behaviour. It also enables possible 
interfaces between the presented physically motivated neural network models and 
interval-based control and state estimation schemes according to [13,43,44]. As far 
as the modelling of the electric fuel cell power is concerned, all of the presented 
models P1–P4 are capable of representing the actual system dynamics and can serve as 

Figure 12. Experimental identi_cation of the electric fuel cell behavior (phases with missing data 
correspond to an operation of the SOFC with vanishing current, leading trivially to PEL¼ 0W), cont’d.
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a basis for deriving power controllers as well as for validating procedures that allow for 
maximum power point tracking or for the optimization of the fuel efficiency according 
to [8,45].

5. Conclusions and outlook on future work

In this paper, various neural network structures were presented and optimized for the 
multi-physics behaviour of SOFC systems. It was shown that physical insight, inspired by 
a first-principle modelling, allows for deriving networks with a specific (in this case 
quasi-linear) structure between system states and identified nonlinear characteristics. In 
such a way, it was not only possible to bridge the gap between purely equation-based and 
data-driven paradigms but modelling errors were also reduced significantly by the 
specific system structure under consideration of robustness constraints.

As already discussed, these structured neural networks will be used in future work as 
the basis for a reliable, guaranteed stabilizing control synthesis. For that purpose, it will 
be investigated how far methods from the field of interval analysis, possibly in combina-
tion with redefining the neural networks’ parameters as interval quantities according to 

Figure 13. Simulation-based robustness analysis of the neural network models T6 and T8.
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[58], can be used to bound the worst-case network outputs and how this information can 
then be employed for a control synthesis with certified stability over a predefined range of 
system inputs and operating conditions.

Notes

1. A quasi-linear continuous-time system model is typically given in the form _x ¼ A xð Þ � xþ
B xð Þ � u for which linear control and state estimation procedures can be applied by intro-
ducing state-dependent gain matrices. This procedure is also often easier to apply than more 
general nonlinear control techniques and is denoted as extended linearization. It is dis-
cussed in further detail in [59–61] and the references therein. Please note that we also use the 
term quasi-linear in the frame of our neural network modelling if the corresponding 
subsystem representation makes use of this specific system structure.

2. The influence of this uncertainty is reduced either by an integral output error feedback, 
sliding mode controllers, or by disturbance estimates on the basis of an internal model 
control approach.
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