
Inner and outer characterization of the
projection of polynomial equations using
symmetries, quotients and intervals

Luc Jaulin

Lab-Sticc, ENSTA-Bretagne

Abstract

In this paper, we propose a new approach to compute the projection of a set defined
by polynomial equations. It assumes that the polynomial equations have some nice
symmetries and that a solution of the projection problem is already available in the
case where the variables along which we project are all positive. A new interval-
based algorithm which combines symmetry operators and set quotient is proposed.
Symmetries are used to move from one part of the space to another. The set quotient
is needed to avoid redundant symmetries. The projection procedure yields an inner
and an outer approximations of the projected set. Two applications are considered.
The first one corresponds to the characterization of the space occupied by a rotating
polygon, and the second one deals with the estimation of the speed of a moving object
observed by several robots with uncertain orientations.

1 Introduction

In this paper, we propose an original method which combines symmetries, set
quotient and interval analysis [20] to compute an inner and an outer approxi-
mation of the set P which corresponds to the projection of another set X defined
by polynomial equations. We will assume a solution of the projection problem
is already available in the case where the variables along which we project are
all positive. Here symmetries have to be understood as transformations from
Rn to Rn such as axial symmetries or rotations.

The set to be projected has the form

X = {x ∈ Rn|f(x) = 0} (1)

where f : Rn 7→ Rℓ is a vector of polynomials. We want to characterize the
projected set defined by

P[q] = {p ∈ Rm|∃q ∈ [q], f(p,q) = 0} (2)

where x = (p,q) and [q] is a box of Rℓ.

1

1 Introduction 2

This problem has already been considered and solved using interval analysis
in different fields such as in control theory [24], geodesy [26], state estimation
[22] or robotics [10][25]. The idea is to benefit from a projection formalization
so that we can focus on the variables of interest p1, p2, . . . without spending
time to estimate variables q1, q2, . . . that we do not care of.

Due to the Tarski–Seidenberg theorem [19], we know that the set P[q] is semi-
algebraic, i.e., it can be defined by polynomial inequalities. The elimination can
be performed symbolically [3]. For instance, if

P =
{
p ∈ R2|∃q ∈ [q], q2 + p1q + p2 = 0

}
, (3)

then the quantifier elimination yields

P =
{
p ∈ R2|p21 − 4p2 ≥ 0

}
. (4)

Although the original proof of the Tarski–Seidenberg theorem was construc-
tive, the resulting algorithm has a computational complexity that is too high
for using the method on a computer in a reasonable time. An effective symbolic
algorithm, called cylindrical algebraic decomposition (CAD) has been proposed
by Collins in 1975 [4][7] for the quantifier elimination. The principle is to decom-
pose Rn into connected semi-algebraic sets called cells, on which each polyno-
mial has constant sign. Unfortunately, Collins’ algorithm has a computational
complexity that is double exponential in n.

Searching to improve Collins’ algorithm, or to provide algorithms that have
a better complexity for subproblems of general interest, is an active field of
research [3]. Interval methods have been combined with CAD to reduce the
complexity of CAD [23]. In the specific case, where the quantifier to be elimi-
nated is ∃, it is possible to build dedicated interval algorithms [11] [14] [27].

In this paper, we will consider the set of transformations φ of Rn that leave
the set X invariant, i.e., φ(X) = φ−1(X) = X. Such a transformation will be
called a symmetry of X. It can be shown that this set of symmetries is a group
which is called the symmetry group of X [18]. We propose to take advantage of
the symmetries to perform the quantifier elimination.

Our approach requires some specific properties on f . The principle of the
approach is to solve the projection problem assuming that the constraints are
monotonic. Then using symmetries, we show that, for some specific cases we
might be able to relax step by step all assumptions on the monotonicity to solve
the problem for all conditions.

The paper is organized as follows. Section 2 recalls the mathematical no-
tion that will be used in the paper and introduces the notion of the quotient
of a symmetry group with respect to an equivalence relation in the context of
polynomial projection. Section 3 provides the main theorem from which a pro-
jection algorithm is derived. Section 4 provides two applications: the first one
is related to the computation of the workspace occupied by a rotating object
and the second one is concerned with the estimation of the speed of an object
observed by several robots with an uncertain orientation. Section 5 concludes
the paper.

2 Theory 3

2 Theory

In this section, we will present the mathematical tools that are needed to present
the projection algorithm. The principle is to decompose the q-space into 2m

quadrants. If we assume that the projection problem is solved in one of the
quadrant [a], then we will use symmetries as operators to move from the quad-
rant of interest to [a].

2.1 Introductory example

We propose a small example we call the two circles example, that will be refer-
enced later in the paper to illustrate some notations and concepts.

Consider the set X defined by the equation:

f(x1, x2) = 0 (5)

where
f(x1, x2) = x41 + x42 + 2x21x

2
2 − 48x1x2 − 12x22 + 8x21 + 144 (6)

We set
x = (x1, x2) = (p, q). (7)

Given the interval [q] ⊆ R, the projected set, as defined by (2), is here

P[q] = {p ∈ R|∃q ∈ [q], f(p, q) = 0} , (8)

as illustrated by Figure 1.

Fig. 1: The union of the two circles composes the set X

We observe that for this example, the set X has a central symmetry with
respect to 0. Now, since [q] is not symmetric, the projection P[q] has no reason
to inherit the symmetry of X.

2 Theory 4

2.2 Action of a symmetry on a set

Consider a symmetry σ of Rn. We define the action [8] of σ on the set X =
{x ∈ Rn|f(x) = 0} as

σX = {y | ∃x,y = σ(x)|f(x) = 0}
=

{
y | ∃x,x = σ−1(y)|f(x) = 0

}
=

{
y | f(σ−1(y)) = 0

}
.

(9)

The set X is symmetric with respect to σ if σX = X. As we will see later in the
paper, the symmetries will be used as an operator to build complex sets from
simple ones.

2.3 Hyperoctahedral group

The symmetries that will be used in this paper are limited to the hyperoctahedral
group Bn [8] which is the group of symmetries of the hypercube [−1, 1]n of Rn.
We could also include other symmetries in our approach such as translations,
or scaling, as long as it transforms a box into a box. Other types of symmetries
could be included for other abstract domains such as octagons [21]. The group
Bn corresponds to the group of n × n orthogonal matrices whose entries are
integers. The group Bn contains 2n · n! elements. For instance, for n = 2, we
have 22 ·2! = 8 elements. Each line and each column of a matrix should contain
one and only one non zero entry which should be either 1 or −1. Figure 2 shows
different notations usually considered to represent a symmetry σ of B5. We will
prefer the Cauchy one line notation [28] which is shorter. We should understand
the symmetry σ of the figure as the function:

σ(x1, x2, x3, x4, x5) = (−x2, x1, x5,−x4, x3). (10)

Fig. 2: Different representations of an element σ of B5. Left: graph; Top right:
Matrix notation; Bottom right: Cauchy one line notation

The subset of all symmetries preserving the set X is denoted by Bn(X).

2 Theory 5

For our two-disks example, we have

B2(X) = {(1, 2), (−1,−2)}. (11)

Even if the matrix representation looks more intuitive, for efficiency reasons,
we use the Cauchy one line representation to compose the symmetries. For
instance, the multiplication of two vectors u,v of Bn is given by

u · v = (sign(v1) · u|v1|, . . . , sign(vn) · u|vn|). (12)

2.4 Separability

Consider the set Rn = Rm × Rℓ containing elements x = (p,q) ∈ Rn. A
symmetry σ ∈ Bn is separable if σ = (σp, σq), where σp, σq are symmetries
in the p-space and the q-space respectively. Equivalently, the corresponding
matrix is block diagonal. The set of separable symmetries of Bn is denoted by
sep(Bn). Is is easy to check that sep(Bn) is a subgroup of Bn. The notion of
separability is needed in this paper since we want to project the set X ⊆ Rn
onto the p-space along the q-space. This notion is illustrated by Figure 3.

Fig. 3: The symmetry is separable since σp (red) do not interact with σq (green)

2.5 Quadrants

The q-space can be decomposed into 2ℓ quadrants that may be seen as the cell
decomposition needed by our projection algorithm.

Define the set of signs: E = {−,+} equipped with the relation order ≤
with − ≤ +. A sign vector is a vector of signs. The set of all sign vectors of
dimension ℓ is Eℓ = {−,+}ℓ. By convention, the sign of 0 will be taken as +.
For each vector q, we define the vector sign sgn(q) componentwise. For each
element ε of Eℓ, we can associate a quadrant

Rε = sgn−1(ε). (13)

2 Theory 6

For instance the positive quadrant of R2 is [a] = [0,∞)2. We can define an
order relation for Eℓ componentwise. For instance in E4 we have

(−+−+) ≤ (+ +−+).

We can also define the order relation for the set of quadrants induced by sgn:

Rε1 ≤ Rε2 ⇔ ε1 ≤ ε2.

The two partially ordered sets (the set of quadrants and Eℓ) are order isomorphic
and sgn is an order isomorphism [2]. Thus, we will make no distinction between
the sign vector and the quadrant. For instance, we will write [a] = [0,∞)2 =
(++). Since (Eℓ,≤) has a lattice structure, we can define intervals of Eℓ. The
notion of a quadrant is illustrated by Figure 4. The interval sign vector in
magenta is [−,+] × [+,+]. It corresponds to the union of the two quadrants
yellow + green.

Fig. 4: Equivalence between the quadrants of R2 and the set of sign vectors E2

Consider a box [q]. We define the interval extension of the sign vector as

sgn([q]) =
{
ε ∈ Eℓ|∃q ∈ [q], ε = sgn(q)

}
. (14)

Note that sgn([q]) is an interval of Eℓ. For instance, if [q] = [−1, 2] × [1, 2] ×
[−2, 2], we have

sgn([q]) = [−,+]× [+,+]× [−,+]
= {(−+−), (−++), (+ +−), (+ + +])}

=

 (−∞, 0]

[0,∞)
(−∞, 0]

 ,

 (−∞, 0]
[0,∞)
[0,∞)

 ,

 [0,∞)
[0,∞)
(−∞, 0]

 ,

 [0,∞)
[0,∞)
[0,∞)

(15)

2.6 Quotient

The group sep(Bn) allows us to move from one quadrant to another. Now, many
elements of sep(Bn) are equivalent. They transport the projection problem from

2 Theory 7

one quadrant to the same quadrant. The goal of the quotient operator to be
defined now is to select a minimal number of representatives to avoid redundant
symmetries.

Define the function φ(σp, σq) = sgn(σq). For instance, for m = 2, we have

φ(2, 1,−4, 3, 6,−5) = sgn(−4, 3, 6,−5) = (−++−). (16)

We define the equivalence relation ∼ as

σ1 ∼ σ2 ⇔ φ(σ1) = φ(σ2) (17)

and the quotient set a

Q =
sep(Bn(X))

∼
. (18)

In practice, the quotient set Q gives us the symmetries which allows us
to move from one quadrant of the q space to the positive quadrant. Most of
the time, for a given ε ∈ Eℓ, φ−1(ε) is not unique, as illustrated by Figure
5. Therefore, we take one of them, called the representative, and denoted by
ψ(ε). The function ψ is a choice function as defined [29]. Note that Q is a
quotient set and not a quotient group. This is due to the fact that φ is not a
group isomorphism (neither the set Eℓ is a group). Now, this stronger algebraic
structure will not be needed further and only the quotient set will be used.

Fig. 5: Construction of the choice function ψ. The elements ψ(ε), ε ∈
{(++), (+−), (−−)} are represented by the stars

For our two-disks example, we have

B2 = {(−1,−2), (−1, 2), (1,−2), (1, 2), (−2,−1), (−2, 1), (2,−1), (2, 1)}
sep(B2) = {(−1,−2), (−1, 2), (1,−2), (1, 2)}

sep(B2(X)) = {(−1,−2), (1, 2)}
Q = {(−1,−2), (1, 2)}

ψ(−) = (−1,−2)
ψ(+) = (1, 2)

3 Method 8

We are in an simple situation where Q = sep(B2(X)), i.e., φ is injective.

3 Method

This section proposes a theorem and an algorithm that will be used for com-
puting the projection of set defined by (1), i.e.,

X = {x ∈ Rn|f(x) = 0} (19)

where f : Rn 7→ Rℓ. More precisely, we want to characterize the projected set
(2) :

P[q] = {p ∈ Rm|∃q ∈ [q], f(p,q) = 0} (20)

where x = (p,q) and [q] is a box of Rℓ.

3.1 Decomposition theorem

The decomposition theorem will allow us to build the projected set using simpler
sets transported by symmetries. It it based on the following proposition.

Proposition 1. If σ = σp × σq ∈ sep(Bn(X)), we have

P[q] = σpPσq[q]. (21)

Proof. We have

σpPσq[q] = σp {p |∃q ∈ σq[q], f(p,q) = 0}
= σp

{
p |∃q ∈ σq[q], f(σ

−1
p p, σ−1

q q) = 0
}

= σp
{
p |∃q′ ∈ [q], f(σ−1

p p,q′) = 0
}

=
{
σpp|∃q′ ∈ [q], f(σ−1

p p,q′) = 0
}

= {p′|∃q′ ∈ [q], f(p′,q′) = 0}
= P[q]

An illustration related to our Example 1 is provided by Figure 6. We have
σ = (−1,−2) which corresponds to the central symmetry with respect to the

origin. We have [q] = [−3 +
√
3
2 , 3] and σq[q] = [−3, 3−

√
3
2].

3 Method 9

Fig. 6: Illustration of Proposition 1

Theorem 2. (decomposition Theorem) Assume that the choice function ψ for

the quotient set Q = sep(Bn(X))
∼ satisfies dom(ψ) = Eℓ. Define the positive

quadrant [a] = (R+)ℓ. The projected set is given by

P[q] =
⋃

σ∈ψ(sgn([q]))

σpP[a]∩σq[q]. (22)

Proof. The assumption dom(ψ) = Eℓ means that there is no ε such that ψ(ε)
is undefined. Equivalently, it means that we got enough symmetries to move
from any quadrant to the positive quadrant [a]. Since Eℓ has 2ℓ elements, we
can write: Eℓ = {ε1, ε2, ε3, . . . , ε2ℓ}. The element σi = ψ(εi), i ∈ {1, . . . , 2n}
corresponds to the symmetry which moves the ith quadrant Rεi to the positive
quadrant. Since σi ∈ sep(Bn), it can be decomposed as σi = (σip, σ

i
q). Define

the box
[qi] = (σiq)

−1([a] ∩ σiq([q]))) (23)

which corresponds to the part of [q] which is in the quadrant Rεi . The set
Q = {[q1], [q2], . . . } is thus a partition of [q] among all quadrants. For each
[qi], the vector sign εi = sgn([qi]) is such that [qi] ⊆ Rεi . We have

P[q] =
⋃

i∈{1,2,... }

P[qi]

(21)
=

⋃
i∈{1,2,... }

σipPσ
i
q[qi]

(23)
=

⋃
i∈{1,2,... }

σipP[a]∩σi
q[q]

(24)

Now, [a] ∩ σiq[q] is empty if εi /∈ sgn([q]), i.e., if σi /∈ ψ(sgn([q])), we conclude
that

P[q] =
⋃

(σp,σq)∈ψ(sgn([q]))

σpP[a]∩σq[q]. (25)

3 Method 10

3.2 Computing sep(Bn(X))

To build the quotient Q = sep(Bn(X))
∼ , we need the symmetries of sep(Bn(X)).

For this, we will use the following rules

x ∈ X, σ(x) /∈ X ⇒ σ /∈ Bn(X) (i)
σ1 ∈ Bn(X), σ2 ∈ Bn(X) ⇒ σ1σ2 ∈ Bn(X) (ii)

(26)

where the multiplication in Bn(X) corresponds to composition, i.e., σ1σ2 =
σ1 ◦ σ2. When it does not fail, Algorithm 1 (SepBnX) computes sep(Bn(X)).
It requires the knowledge of a list of points X = {x1,x2, . . . } of X, and a list of
symmetries S of X.

Algorithm 1 SepBnX generates the group sep(Bn(X))
Input: f(p,q), X = {x1,x2, . . . }, S = {σ1, σ2, . . . }

1 m = dimp; ℓ = dimq; n = m+ ℓ
2 Generate the list B of all symmetries in Bn
3 Remove from B all σ that are not separable
4 Remove from B all σ such that σ(xi) /∈ X for at least one xi ∈ X
5 Compute the group ⟨S⟩ generated by S
6 If B = ⟨S⟩ then return B
7 Return “Failure: symmetries should be added to S or solutions should be added to X”.

The input of Algorithm 1 (SepBnX) are

• a function defining the set X where x = (p,q),

• a list X = {x1,x2, . . . } of elements of X and

• a list S of symmetries of X.

Algorithm 1 uses X to compute an over-approximation of the set of symmetries
and S to compute an under-approximation, and hence equality of the both
implies a correct result.

Step 2 generates a list of 2n · 2! vectors σ of Zn. The vectors σ correspond
to symmetries of Bn. The components of σ should all have different absolute
values and be inside {−n, . . . ,−1, 1, . . . , n}.

Step 3 removes from B all vectors σ such that the m first components σ are
not inside the set {−m, . . . ,−1, 1, . . . ,m}.

Step 4 eliminates symmetries σ that are not inside Bn(X) from the list of
solutions X . This is done by Rule (i) of (26). The entries for the solutions xi
should be rational with radicals so that we can check the membership property
f(xi) = 0 symbolically.

Step 5 computes the group ⟨S⟩ generated by the symmetries given as an input
list S of the algorithm. The group is generated by successive compositions of
the symmetries in S using Rule (ii) of (26).

3 Method 11

Step 6. Since ⟨S⟩ ⊆ sep(Bn(X)) and since sep(Bn(X)) ⊆ B, if B = ⟨S⟩ then
B corresponds to sep(Bn(X)) and the algorithm returns B.

Step 7. The algorithm fails. We can return an interval of symmetries [⟨S⟩,B]
which can be used to propose other symmetries as an input of the algorithm in
S in order to inflate ⟨S⟩. The user may also decide to add other solutions in X
in order to reduce B.

3.3 Build the choice function ψ

Once Q = sep(Bn(X)) has been computed, we need to select a minimal number
of them. This corresponds to the construction of the choice function ψ which is
performed by Algorithm 2, named GenePsi.

Algorithm 2 GenePsi to build the choice function ψ associated to sep(Bn(X))
Input: Q

1 For each pair (σ1, σ2) of S such that φ(σ1) = φ(σ2), remove σ2 from Q.
2 For each ε ∈ Eℓ, define ψ(ε) = φ−1

|Q .

3 Return ψ

We feed the algorithm GenePsi with Q = sep(Bn(X)) computed by Algo-
rithm 1 (SepBnX).

Step 1 selects a representative for each element of the quotient Q. It means
that for each quadrant ε of Rℓ, the set φ−1(ε) will be replaced by a unique rep-
resentative σ = ψ(ε). This correspond to a quotient of a set by the equivalence
relation ∼.

Step 2 generates the choice function ψ(ε) under the form of a dictionary (or
table). Note that the set φ−1

|Q = {σ ∈ Q |φ(σ) = ε} is always a singleton, since

Step 1 made φ injective.

3.4 Separators

This section recalls the basic notions on intervals, contractors and separators
that are needed to understand how the paver will approximate the solution set.
A contractor C for the set X ⊂ Rn is an operator IRn 7→ IRn which satisfies

C([x]) ⊂ [x] (contractance)
[x] ⊂ [y] ⇒ C([x]) ⊂ C([y]). (monotonicity)
C([x]) ∩ X = [x] ∩ X (consistency)

(27)

where IRn is the set of axis-aligned boxes in Rn. Figure 7(a) illustrates the
notion of contractor. A contractor for X can be used inside a paver (an algorithm
which bisects boxes and uses C to eliminate parts of the search space that
are outside the solution set) to provide an outer approximation of X. Figure
7(b) shows the paving generated by the paver. It corresponds to an outer
approximation of X. The blue boxes are outside X.

3 Method 12

Fig. 7: (a) The box [x] is contracted by the contractor C; (b) A paver uses the
contractor C to get an outer approximation of X; (c) A paver uses the
separator S to get an outer and an inner approximations of X

The contractor C is minimal if C([x]) corresponds exactly to the smallest box
that can be obtained by a contraction of [x] without removing a single point of
X.
If C1 and C2 are two contractors, we define the following operations on contrac-
tors [5]:

(C1 ∩ C2)([x]) = C1([x]) ∩ C2([x]) (28)

(C1 ∪ C2)([x]) = C1([x]) ⊔ C2([x]) (29)

(C1 ◦ C2)([x]) = C1 (C2([x])) (30)

where ⊔ is the interval union hull, i.e., [a]⊔ [b] corresponds to the smallest box
which encloses the two boxes [a] and [b]. If σ : Rn → Rn is a symmetry, we
define the action by σ of a contractor C for X as [9]:

σC = σ ◦ C ◦ σ−1. (31)

It can be shown that σC is a contractor for σX.
In order to characterize both an inner and outer approximation of the set

X, we need the notion of separator, as illustrated by Figure 7(c). A separator S
for X is a pair of contractors {S in,Sout} such that, for all [x] ∈ IRn, we have

S in([x]) ∪ Sout([x]) = [x] (complementarity)
Sout([x]) ∩ X = [x] ∩ X (outer consistency)
S in([x]) ∩ XC = [x] ∩ XC (inner consistency)

(32)

where XC = {x | x /∈ X}. We write S ∼ X if S is a separator for X.
A separator S is minimal if its two contractors S in and Sout are both mini-

mal. We define the following operations

S1 ∩ S2 =
{
S in
1 ∪ S in

2 ,Sout
1 ∩ Sout

2

}
(intersection)

S1 ∪ S2 =
{
S in
1 ∩ S in

2 ,Sout
1 ∪ Sout

2

}
(union)

SC = {Sout,S in} (complement)
σS =

{
σ ◦ S in

X ◦ σ−1, σ ◦ Sout
X ◦ σ−1

}
(action)

(33)

3 Method 13

We have [15]:

 S1 ∼ X1

S2 ∼ X2

S ∼ X
⇒

S1 ∩ S2 ∼ X1 ∩ X2

S1 ∪ S2 ∼ X1 ∪ X2

SC ∼ XC
σS ∼ σX

(34)

As an illustration, consider the set

X =
{
x ∈ R2, (x1 − 2)2 + (3x2 + x1 − 1)2 ∈ [0, 4]

}
(35)

using a paver with a separator S for X, we get Figure 8(a). The blue part has
been eliminated by the outer contractor Sout of S. Whereas the magenta part
has been eliminated by the inner contractor Sin. Figure 8(b) has been computed
using the separator σS where σ = (2 1) corresponds to the axial symmetry with
respect the axis x1−x2 = 0. We therefore get an approximation for σX. Figure
8(c) is obtained using the separator σS∪S and corresponds to an approximation
for σX ∪ X.

Fig. 8: A paver is used to compute an inner and an outer approximations of 3
sets: (a) an ellipse X, (b) its symmetric σX by σ, (c) the union of the
two sets σX ∪ X. The frame box is [−3, 7]× [−3, 7]

3.5 Symmetries and monotonicity to build contractors

Before considering projections with separators, let us spend some times to under-
stand how symmetries and monotonicity can be combined to build contractors
for sets defined by non-monotonic constraints. For this purpose, let us consider
the set

X = {(x1, x2) ∈ R2 |x2 = sinx1}. (36)

In order to build a contractor for X, we first take the box [a] = [a1] × [a2] =
[−π

2 ,
π
2]× [−1, 1] and we define the seed set:

Xa = X ∩ [a]. (37)

3 Method 14

Since inside [a], the sine function is monotonic, a contractor for Xa is

Ca
(

[x1]
[x2]

)
=

(
[x1] ∩ arcsin([x2] ∩ [a2])
[x2] ∩ sin([x1] ∩ [a1])

)
. (38)

The seed contractor that will be used as a brick to build the contractor for X.
A paver with the seed contractor Ca yields the approximation of Xa depicted in
Figure 9(a). If we consider the axial symmetry σD of X with respect to the line
x1 = π

2 , we can get that a contractor for

Xb = X ∩ [b] = Xa ∪ σDXa (39)

where [b] = [b1]× [b2] = [−π
2 ,

3π
2]× [−1, 1]. It is given by

Cb = Ca ∪ σDCa (40)

as illustrated by Figure 9(b). If we take into account the symmetry σv with
respect to a translation of v = (2π, 0), we are able to build a contractor for the
whole set X. Now, in this example, the sine is not a polynomial, so we cannot
use the Algorithm 1 to find the symmetries. It is thus our responsibility to
provide all symmetries that are needed to reconstruct X from the set Xa. If we
miss one symmetry, we may loose solutions. In two dimensions, we rarely miss
symmetries, but in larger dimension, it is different. Algorithm 1 protects us
from any omission in the polynomial case. If it fails, we need to provide more
inputs to the algorithm.

On this example, we can understand that the monotonicity of the sine func-
tion was useful to build the seed contractor Ca, but the monotonicity is not
mandatory. What is required is a seed contractor (not necessarily based on the
monotonicity) which is efficient and reliable in one box [a] of the search space
and the symmetries that can be used to build the solution set.

3 Method 15

Fig. 9: A paver is used to compute an outer approximations of 3 sets: (a) the
seed set Xa, (b) The set Xb built using the symmetry σD, (c) The set X
using the two symmetries σD and σv

3.6 Compute the projection set

There is no general method to compute inner and outer approximations of the
projection of a set defined by constraints, as for the set P[q]. In the polynomial
case this can be done, using symbolic methods [7], but this is far from trivial for
arbitrary polynomial functions, and is quite difficult to do in practice. Interval
algorithms have been proposed [23] to compute such projections. The principle
is to build contractors (or separators [15]) for projected sets, but this operation
requires bisections in the q-space (see [14], Section 4.2 or [5] Section 3.2) which
make them slow. The problem is much easier when the sign of q is known and
we can even hope to get the minimal separator analytically or using a simple
dichotomy. This has been shown in [1] and [6] is the case where constraints are
monotonic.

To compute an inner and outer approximation of P[q], we first propose to

build a separator S [q]
0 for P[q] which works for [q] ⊆ [a] = [0,∞)ℓ. Then, we

build the separator

S [q] =
⋃

(σp,σq)∈ψ(sgn([q]))

σpS
[a]∩σq[q]
0 (41)

which will be valid for an arbitrary [q] and not only when [q] ⊆ [a], as shown by
Theorem 2. We can now use a paver to generate an inner and an outer approx-
imation of the solution set P[q]. This paver performs the following operations.
(i) It uses the separator S [q] to contract and classify zones of the search space
that are inside or outside the solution set; (ii) It bisects boxes that it cannot

3 Method 16

contract and (iii) It returns as unclassified boxes that are deemed to small to
be bisected.

3.7 Example: The rotate constraint

Consider the rotate constraint: q1p1 − q2p2 = q3
q2p1 + q1p2 = q4
q21 + q22 − 1 = 0

(42)

As illustrated by Figure 10, the red vector corresponds to the angle θ on the
trigonometric circle, with cos θ = q1 and sin θ = q2. If we rotate the vector
(p1, p2) by the angle θ, we get the vector (q3, q4).

Fig. 10: Illustration of the rotate constraint

We get 46080 elements for B6. To find B6(X), we have provided the following
symmetries

S = {(2,−1,−4, 3, 5, 6), (1,−2, 3,−4, 5,−6), (−1,−2,−4, 3, 6,−5)} . (43)

Here, all elements of S are separable, but it is not needed for the generation
of the group B6(X). We also provided an element of X given by

x1 =

(
2, 4,

1

2
,

√
3

2
, 1− 2

√
3,
√
3 + 2

)
. (44)

The value for x1 has been chosen to be non trivial in order to eliminate as
many unfeasible symmetries as possible. Finally, we got a list of 32 elements for
the group sep(B6(X)). The quotient Q is obtained by removing symmetries with
the same value for φ. We obtained a set Q of 16 elements, which is consistent

3 Method 17

with the number of quadrants of Rℓ, ℓ = 4. The resulting choice function ψ is

ψ :

(+ + ++) 7→ (1, 2, 3, 4, 5, 6)
(+ + +−) 7→ (2,−1, 3, 4, 6,−5)
(+ +−+) 7→ (−2, 1, 3, 4,−6, 5)
(+ +−−) 7→ (−1,−2, 3, 4,−5,−6)
(+−++) 7→ (2, 1, 3,−4, 6, 5)
(+−+−) 7→ (1,−2, 3,−4, 5,−6)
(+−−+) 7→ (−1, 2, 3,−4,−5, 6)
(+−−−) 7→ (−2,−1, 3,−4,−6,−5)
(−+++) 7→ (−2,−1,−3, 4, 6, 5)
(−++−) 7→ (−1, 2,−3, 4, 5,−6)
(−+−+) 7→ (1,−2,−3, 4,−5, 6)
(−+−−) 7→ (2, 1,−3, 4,−6,−5)
(−−++) 7→ (−1,−2,−3,−4, 5, 6)
(−−+−) 7→ (−2, 1,−3,−4, 6,−5)
(−−−+) 7→ 2,−1,−3,−4,−6, 5
(−−−−) 7→ (1, 2,−3,−4,−5,−6)

Recall that the fact that σ = ψ (+−−+) = (−1, 2, 3,−4,−5, 6), (7th line
in the previous formula) corresponds to the following equivalence q1p1 − q2p2 − q4

q2p1 + q1p2 − q5
q21 + q22 − 1

 = 0 ⇔

 q1(−p1)− (−q2)p2 − (−q4)
(−q2)(−p1) + q1p2 − q5

q21 + (−q2)2 − 1

 = 0

This symmetry σ can be interpreted as a way to transport the quadrant (+−−+)
in the q-space to the quadrant (+ + ++).

For [q] = (cos([θ]), sin([θ]), [−10, 10], [5, 12]) with [θ] = [3, 4], we get the
approximation for P given by Figure 11, Left in less than 0.3 sec on a standard
laptop [13]. The frame box corresponds to [p] = [−20, 20]2. Figure 11, Right,
represents the box [q3]× [q4] in blue and a sampling of rotated rectangles with
different θ ∈ [θ].

Fig. 11: Rotating rectangle

4 Applications 18

4 Applications

This section provides two different test-cases to illustrate the efficiency of our
projection algorithm.

4.1 Workspace

We consider an object (blue in Figure 12, Right) which corresponds to a polygon
M with coordinates(

5 5 −4 −4 11 11 10 10
−8 8 8 10 10 8 8 −8

)
(45)

which can be obtained by the union of two boxes:

M = ([5, 10]× [−8, 8])︸ ︷︷ ︸
=[m1]

∪ ([−4, 11]× [8, 10])︸ ︷︷ ︸
=[m2]

. (46)

The object has one degree of freedom: it can rotate around the origin with an
angle θ ∈ [θ] = [0.5, 1.5]. The workspace [17] corresponds to all space that can
be occupied by the object. It is given by

P =
⋃

i∈{1,2}

Pi

where

Pi =
{
p ∈ R2 | ∃q1 ∈ cos([θ]),∃q2 ∈ sin([θ]),∃(q3, q4) ∈ [mi], rotate(p,q)

}
.

Since we have a separator for the Pi, we are able to get in less than 1 sec
an inner and an outer approximations for P. The frame box corresponds to
[p] = [−20, 20]2.

Fig. 12: Workspace of the blue object in rotation around 0

4 Applications 19

4.2 Speed estimation

We have one object moving with an unknown speed v. The speed is measured
by 6 robots. In their own frame, they are able to give a box enclosing the speed
they measure. Now, the orientation of the ith robot θi is known with a large
uncertainty (±1rad), as shown in the following table:

i 1 2 3 4 5 6
θi [1, 2] [2, 3] [3, 4] [−0, 1] [−2,−1] [−3,−2]
yi1 [12, 14] [−2, 0] [−10,−8] [10, 12] [−8,−6] [−14,−12]
yi2 [−6,−4] [−16,−14] [−12,−10] [8, 10] [12, 14] [2, 4]

Fig. 13: The ith robot has a position (xi1, x
2
1), an orientation θi and a speed

(yi1, y
i
2)

The set of all feasible speed vectors is

V =
⋂

i∈{1,...,6}

Vi (47)

where

Vi =
{
v ∈ R2 | ∃q1 ∈ cos([θi]),∃q2 ∈ sin([θi]),∃q3 ∈ [yi1],∃q4 ∈ [yi2], rotate(v,q)

}
.

We get the first Subfigure of Figure 14. Since we have separators for the sets Vi,
we can compute more complex combinations such as the relaxed intersection,
which allow us to be robust with respect to some outliers. As defined in [16],
the relaxed intersection

V{k} =

{k}⋂
i∈{1,...,6}

Vi , (48)

is the set of all points that belong to all Vi except k of them. For k = 1, 2, 3, in
less than 1 sec, we get the approximations provided by Figure 14.

5 Conclusion 20

Fig. 14: Speed estimation for different degrees of relaxed intersection

5 Conclusion

In this paper, a new method for computing an inner and an outer approximations
for a set defined as a projection of polynomial equations has been proposed. To
avoid bisections with respect to variables q along which the projection is defined,
we propose to solve the problem in one quadrant of the q-space and then to use
symmetries to extend the zone over which the projection works.

To develop the algorithm, we had to use different concepts that are not
common in the domain of interval analysis such as the symmetries of the unit
cube, the quotient by an equivalence relation, and the choice function ψ. Note
that following the results presented in [12], the separators we obtain are minimal.

As a result, we were able to treat two important applications efficiently. The
first one is the approximation of the workspace of one object with one degree
of freedom. The second application is the estimation of the speed of one object
with several observers the orientation of which is uncertain.

Our approach is limited by the fact that we need to be able to find seed
separator on the positive quadrant, which is not a trivial task, even if the mono-
tonicity can be very helpful as shown in the applications. An other limitation
is that we need enough symmetries so that the visibility of the set X on the
positive quadrant can be sufficient to reconstruct the set X globally.

Note. The Python programs associated with all examples are given in [13].

5 Conclusion 21

References

[1] I. Araya, G. Trombettoni, and B. Neveu. Exploiting monotonicity in inter-
val constraint propagation. In M. Fox and D. Poole, editors, Proceedings
of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2010, Atlanta, Georgia, USA, July 11-15, 2010. AAAI Press, 2010. 3.6

[2] E. Bloch. Proofs and fundamentals: a first course in abstract mathematics.
Springer, London, 2011. 2.5

[3] J. Bochnak, M. Coste, and M.F. Roy. Real algebraic geometry. Springer
Science and Business Media, London, 2013. 1, 1

[4] B. Caviness and J. Johnson. Quantifier Elimination and Cylindrical Alge-
braic Decomposition. Springer Science & Business Media, December 2012.
1

[5] G. Chabert and L. Jaulin. Contractor Programming. Artificial Intelligence,
173:1079–1100, 2009. 3.4, 3.6

[6] G. Chabert and L. Jaulin. Hull consistency under monotonicity. In Ian P.
Gent, editor, Principles and Practice of Constraint Programming - CP
2009, 15th International Conference, CP 2009, Lisbon, Portugal, Septem-
ber 20-24, 2009, Proceedings, volume 5732 of Lecture Notes in Computer
Science, pages 188–195. Springer, 2009. 3.6

[7] G. Collins. Quantifier elimination for the elementary theory of real closed
fields by cylindrical algebraic decomposition. In Second GI Conf. Automata
Theory and Formal Languages, volume 33. Springer LNCS 33, 1975. 1, 3.6

[8] H. Coxeter. The Beauty of Geometry: Twelve Essays. Dover Books on
Mathematics, 1999. 2.2, 2.3

[9] B. Desrochers and L. Jaulin. A minimal contractor for the polar equation;
application to robot localization. Engineering Applications of Artificial
Intelligence, 55:83–92, 2016. 3.4

[10] A. Ehambram, R. Voges, C. Brenner, and B. Wagner. Interval-based visual-
inertial lidar SLAM with anchoring poses. In 2022 International Conference
on Robotics and Automation, ICRA 2022, Philadelphia, PA, USA, May 23-
27, 2022, pages 7589–7596. IEEE, 2022. 1

[11] A. Goldsztejn and L. Jaulin. Inner and outer approximations of existentially
quantified equality constraints. In Proceedings of the Twelfth International
Conference on Principles and Practice of Constraint Programming, (CP
2006), Nantes (France), 2006. 1

[12] L. Jaulin. Actions of the hyperoctahedral group to compute minimal con-
tractors. Artif. Intell., 313:103790, 2022. 5

5 Conclusion 22

[13] L. Jaulin. Codes associated with the paper entitled: Inner and outer charac-
terization of the projection of polynomial equations using symmetries, quo-
tients and intervals. www.ensta-bretagne.fr/jaulin/quotient.html,
2022. 3.7, 5

[14] L. Jaulin, I. Braems, and E. Walter. Interval methods for nonlinear identi-
fication and robust control. In In Proceedings of the 41st IEEE Conference
on Decision and Control (CDC), 9-13 decembre 2002, Las Vegas, 2002. 1,
3.6

[15] L. Jaulin and B. Desrochers. Introduction to the algebra of separators
with application to path planning. Engineering Applications of Artificial
Intelligence, 33:141–147, 2014. 3.4, 3.6

[16] L. Jaulin and E. Walter. Guaranteed robust nonlinear minimax estimation.
IEEE Transaction on Automatic Control, 47(11):1857–1864, 2002. 4.2

[17] J.P. Merlet and D. Daney. Dimensional synthesis of parallel robots with a
guaranteed given accuracy over a specific workspace. In Proceedings of the
2005 IEEE International Conference on Robotics and Automation, ICRA
2005, April 18-22, 2005, Barcelona, Spain, pages 942–947. IEEE, 2005. 4.1

[18] W. Miller. Symmetry Groups and Their Applications. Academic Press,
New York, 1972. 1

[19] B. Mishra. Algorithmic Algebra. Springer, New York, 1993. 1

[20] R.E. Moore, R.B. Kearfott, and M.J. Cloud. Introduction to Interval Anal-
ysis. SIAM, Philadelphia, PA, 2009. 1

[21] M. Pelleau, C. Truchet, and F. Benhamou. The octagon abstract domain
for continuous constraints. Constraints An Int. J., 19(3):309–337, 2014. 2.3

[22] N. Ramdani, L. Travé-Massuyès, and C. Jauberthie. Mode discernibility
and bounded-error state estimation for nonlinear hybrid systems. Autom.,
91:118–125, 2018. 1

[23] S. Ratschan. Approximate quantified constraint solving by cylindrical box
decomposition. Reliable Computing, 8(1):21–42, 2002. 1, 3.6

[24] A. Rauh. Sensitivity Methods for Analysis and Design of Dynamic Systems
with Applications in Control Engineering. Shaker–Verlag, 2017. 1

[25] S. Rohou, L. Jaulin, L. Mihaylova, F. Le Bars, and S. Veres. Reliable Robot
Localization. Wiley, dec 2019. 1

[26] S. Schön and H. Kutterer. Using zonotopes for overestimation-free interval
least-squares-some geodetic applications. Reliab. Comput., 11(2):137–155,
2005. 1

5 Conclusion 23

[27] P. van Hentenryck, Y. Deville, and L. Michel. Numerica: A Modeling
Language for Global Optimization. MIT Press, Boston, MA, 1997. 1

[28] H. Wussing. The Genesis of the Abstract Group Concept: A Contribution
to the History of the Origin of Abstract Group Theory. Dover Publications,
2007. 2.3

[29] E. Zermelo. Beweis, dass jede Menge wohlgeordnet werden kann. Mathe-
matische Annalen, 59(4), 1904. 2.6

