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Abstract

Interval methods have been shown to be efficient, robust eleble to solve difficult set-membership local-
ization problems. However they are unsuitable in a proksigilcontext, where the approximation of an unbounded
probability density function by a set cannot be accepteds phper proposes a new probabilistic approach which
makes possible to use classical set-membership localivaiethods which are robust with respect to outliers. The

approach is illustrated on two simutated examples.

Index Terms

Gaussian noise, interval analysis, probabilistic esimnatrobust estimation, set-membership estimation, out-

liers.

. INTRODUCTION

The dynamic localization problem of a mobile robot is geltgrdescribed by the following discrete-
time nonlinear state equations
x(k+1) = fi(x(k),n(k))
y (k) = gr(x(k)),
where x corresponds the pose of the robat,is the state noisey the measured output vector aid
is the time. Since is time-dependent, this formalism can deal robots for wkadknown inputu. Two

approaches are generally considered to solve this nonlinealization problem: theorobabilistic and
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the set membership approaches, even if there exists some atypical and prognatimer approaches such
as that proposed in [20] which proposes a method combinitegvial analysis with belief functions for

localization.

Probabilistic approach. It is assumed that some prior probability density funciorix(0)), 7 (n (k)),
7 (y (k)) are available for the initial pose(0) and for the signals (k) andy (k). The functionr (y (k))
is built from the measurement vectgfk) of the output vectow (k) in order to take into account some
noises that could corrupt the measurements. Then pros@biéistimation techniques (Kalman filtering,
Bayesian estimation, particle filters) [23], [24] blend sbeprobability density functions with the state
equations of the robot in order to provide an approximatibthe posterior probability density functions
7 (x(k)) for the poses(k). These methods are very efficient in linear Gaussian coifté}t but have

difficulties to deal with strongly nonlinear problems.

Set-member ship approach. It is assumed that the initial posg€0) belongs to a known séf, and that
signalsn (k) andy (k) are bounded, or more precisely, that they belong toSétg andY (k). The sets
N (k) are known a priori and the ses(k) are obtained from a measugék) of y(k). Set-membership
methods have often been considered for robot localizager,é.9., [18], in the case where the problem
is linear). The feasible séf(k) corresponding to the set of all pose vectg(#) that are consistent with
the past can be computed recursively [2] [12] by the relalidh + 1) = £, (X(k) Ng; " (Y(k)),N(k)).
Moreover, when strong nonlinearities are involved, indéanalysis [19] has been shown to be particularly
adapted [4] [8] [15], [1] [5]. In practice, it may happen tteime of they(k), the actual value of the
output vector at time:, do not belong to their corresponding sé&t&k). The vectory(k), is said to be
aninlier if y (k) € Y (k) and anoutlier otherwise. Set-membership methods can still be used, wat ha

to relax some data [21] [16] [22] [14] [10], as few as possible

Probabilistic set-membership approach. The main contribution of this paper (also presented at the
workshop WPMSIIP [6]) is to give a probabilistic interpreta of set-membership observers which make
possible to use set-membership approaches to solve stateatsn problems that are expressed in a
probabilistic form. More precisely, the resulting methaimputes an lower bound for the probability that
x(k) belongs to the computed set. Let us stress that with thisoappr we do not assume that the noise

in certainly bounded, as it is the case for all existing setnbership method. We only assume that the



noise is bounded with known bounds with a known probability.

Section Il recalls a set-membership observer which is ol respect to outliers. Section IlI
provides some probabilistic properties of the observen Tustrative testcases based on simulated data

are provided in Section IV. Section V concludes the paper.

II. ROBUST STATE ESTIMATOR
A. Relaxed intersection

In a set-membership context, estimators that are robubtresipect to outliers can be obtained by using
{da}

the notion ofrelaxed intersection. The ¢-relaxed intersectioﬂXi of m setsXj,...,X,, is the set of all

x which belong to allX;’s, exceptg at most.

Example. Consider for instance the 8 intervals = [1,4], Xo = [2,4], X3 = [2,7], Xy = [6,9], X5 =
3,4],X¢ = [3,7]. We have

{0} {1 {2} {3}
(Vi =0, ()% = 3.4, ()% = [3.4], (X0 = [2,4] U [6.7),
(4} {5} 16}

X =127, (X =[19, [ X =R

In the case where th¥;’s are intervals, the relaxed intersection can be computideatly with a

complexity ofnlogn. Let us now describe a possible method for this purpose.

« Take all bounds of all intervals with their brackets. For example, the bounds are

Bounds | 1|42 (4|2|7|6[9[3|4|3|7
Brackets| [ | T |[ |1 ([ (I (01|01 |[]]

« Sort the columns with respect the bounds. We get

Bounds |1 |2(2(3|3|4(4(4|6|7|7|9
Brackets| [ | [ |[ | [ ([ (I (1] [[|]|]]]




Fig. 1. Set-membership function associated with the 6 vater

« Scan these bounds from the left to the right, countirig when the bound is associated with a left

bracket and-1 otherwise. We get

Bounds |12 (2|3|3|4|4|4|6|7|7]9

Brackets| [ | [ | [ [[|[ |1 {1 |1 |[|1]]]]
Sum 112|3[4|5|4]3|2|3|2|1]|0

« From the sum (third line), we can build the set membershigtfon y () which corresponds to the

number of intervals containing (see Figure 1). From this function, we directly read the xeta

intersections.

Similar algorithms for computing the relaxed intersectanboxes or of subsets d&" can be found

in [9].

B. Robust Set-membership Observer (RO)

Define by induction the following notations

ko1 (X)) = £y (Fyony (X) N (ko)), by < ko
wheref.,. (X) = X. The seffy,.x, (X) represents the set of atl(k,), that are consistent with the fact that
x (k1) € X. Consider the following robust set-membership observer
X(k) = fox (X(0)) if & <m, (initialization step)

{da}
) feomogil; (Y(k —14)) if k>m
m}

RSO:




Fig. 2. The feasible set for the state vecKy), assuming at most = 1 outlier, can be defined recursively frof(k — 3) and from the

data setsY(k — 1), Y(k — 2), Y(k — 3).

If we assume that (i) within any time window of length we never have more thapoutliers and that
(i) X(0) contains the true value fot (0), then it can be proved [7] that RSO computes to theXgét)

of all feasiblex (k). The principle of the observer (1) is illustrated by Figuréo2m = 3 andg = 1. In

this figure, double arrows are used to describe the relabehseen sets. For instance, the rightmost set
corresponds td, ,..og, ", (Y(k — 2)) and represents the set of al(k) that are consistent with thie— 2
data interval. The small grey circles are the true valuehefdstate vectors (k — i) and output vectors

y (k —4). Note thaty (k — 2) is outsideY(k — 2) and is thus an outlier, whereggk — 1) andy (k — 3)

are inliers. The state estimator can efficiently be imple@grusing an interval constraint propagation

approach which recursively computes supersets which sadleX(k)’s.

[11. PROBABILISTIC ANALYSIS

We shall now provide a probabilistic interpretation of tldbust set-membership observer presented in
Section Il. We shall assume that all evenis(k) € Y (k)",k > 0 and the evenk (0) € X (0) are all
independent. This assumption can be interpreted as théhfaicthe occurrence of an outlier at timkes
independent from the past, which is close to the classicak®@an assumption. For simplicity, we also

assume that the prior probability, = Pr (y (k) € Y (k)) does not depend ok. The following theorem



provides a lower bound for the probability that the S¥{#) generated by RSO enclose the pogés).

Theorem. If X(k) are the sets computed by the observer RSO (1), we have

m 1 . 7Ty>mfi

Pr(x (k) € X(k) > Pr(x (k—m) € X(k —m)) + 3 = —

i=m—q

Proof. Consider the following hypothesis, denotedMy(%,:%-), which states that among &l — &, +1
output vectorsy (k1), . .., y(ks), at mosty of them are outlier. Since the prior probability of havingetty

¢ inliers amongm follows a binomial law, we have
m! 7 m—1i
Pr(Hq(k—mZ/{?—l)):‘Z Fﬂy.(l—ﬂ'y) .
Moreover from (1), we have the following implication

x (k—m) € X(k —m)

} = x(k) € X(k). 2)
Hy(k—m:k—1)

Since the two events (k —m) € X(k —m) and’H,(k —m : k — 1) are all independent, we have
Pr(x (k) € X(k)) > Pr (x (k —m) € X(k —m)) *x Pr (H,(k —m : k — 1))

and thus

Pr(x (k) € X(k)) > Pr(x(k—1) € )5 §/Pr(Hy(k—m:k— 1)), 3)

which concludes the proaf |

V. APPLICATION TO LOCALIZATION

In order to illustrate the principle of RSO and its probadbiti interpretation, we shall consider two
testcases related to the localization of mobile robotshBestcases are based on simulated data. The
first testcase will allow a comparison between RSO and thesidal EKF (Extended Kalman filter). The
second testcase will show that RSO can deal in a reliable wiyproblems that cannot be treated using
an EKF, mainly because the initial state is unknown and thieiitag problem between the distances and

the obstacles is unsolved.
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Fig. 3. A robot (unicycle type) which measures its anglewith respect to the markn

A. Testcase 1

Consider a robot described by the following unicycle model

.
T1 = X4CO0ST3
Ty = T4sSinxs
T3 = U1
Ty = U2,

\

where(xl,xz)T corresponds to the position of the robot’'s cenigris its heading and, is its speed (see
Figure 3). The robot measures the angldetween its heading and a punctual landmark= (mx,my)T.

It also measures its heading and its speed. As a consequenobgervation equations are

y1 = atanqm, — xq,m,; — 1) + 3 £ 2kw, k€Z
Y2 = T3
Ys = T4.

For the simulation, the landmark is takenmas= (5,5)" and the initial state is (0) = (0,0, -1, 1)T.
Moreover, for allt, the input isu(t) = (0.1,0)". The sampling time is fixed at = 0.1sec and: belongs
to the interval|0, 50] sec. The system has been discretized to get the fapm = f;. (x,) using an Euler
method. The resulting trajectory is a circle enclosing thedmark. Three different scenarios will be
considered. All of them correspond to the same trajectoryife robot, but to different ways to generate
the noises on the exteroceptive output). For each of these scenarios, we shall estimate the state of

the robot using both an EKF and RSO. For EKF, we shall reptabenprojections on the-y space of



the 0.99-confidence ellipsoids. For RSO the subpaving that is swggposith a decreasing probability) to
enclose the state will be depicted. RSO will assume thatinvetny time window of lengttb0 we never
have more thari0 outliers, i.e., the parameters of RSO ame= 50 and ¢ = 10. For all scenarios, RSO
assumes that the probability fgf1) to be inside the intervdly; — 0.02, g; + 0.02] is m, = 0.9, wherey,

is the angle measurement.

Scenario 1. The measurement noises as well as the state noises araialli@aand centered with a vari-
ance of0.01. The results obtained by RSO and EKF are represented oneMgihe top left subfigure cor-
responds to the EKF ellipsoids and RSO subpavings at tinee$§100, 150, 200, 250, 300, 350, 400, 450} .

To avoid any overlapping, the sets for< 100 have not been represented. The corresponding zooms
are represented of the 8 small subfigures at the bottom. Thiggste at the top right represents the
estimates provided by EKF (gray) and by RSO (black). Thetiemates correspond either to the center
of the ellipsoids for EKF or the Tchebychev center of the sviopg (i.e., the center of the smallest cube
enclosing it). All robots represented correspond to the pases. EKF generates ellipsoids that are not
centered on the true value for the pose. This bias is due téathiéhat any error on the measurement
moves the ellipsoid toward the landmark. The linearizaperformed by EKF is the main responsible of
this bias. The interval method which does not linearize amyaéon does not yield any visible bias. For

t = tg, the lower bound for the probability for the subpaving tolese the true state i8.97, whereas

the (unreliable) probability provided by EKF to be inside ttonfidence ellipsoid i8.99.

Scenario 2. The way of generating the data is similar to Scenario 1, @xtteat at each step, with a
probability of 5%, an outlier fory, is generated, by adding tg a centered normalized Gaussian noise.
This data corruption is not known by both observers (EKF ai®DR Figure 5 represents the results
obtained by EKF and by RSO. EKF provides ellipsoids aroumdlamdmark. When no outlier occur for
several steps, the ellipsoid slowly moves toward the trusepbut it suffices to have a single outlier to
bring back the ellipsoid toward the landmark as shows by tingpg (paint gray) of the subfigure at the
top right. This illustrates the well known default of EKF whibecomes inconsistent as soon as outliers
occur, because it gives much mordlugnce to outliers than it gives to any other inliers. Of ceufsr
this testcase, these jumps can be detected and methodstd detliers could be implemented in order

to remove the outliers. But in the general case the detediooutliers is based on heuristics that are
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Fig. 4. Scenario 1: All noises are Gaussian

strongly related to the application. As shown by the figur8(CORprovides good and consistent estimates
for the pose of the robot. This is due to the fact that the aptiom of RSO which states that within any

time window of length50 we never have more tharb outliers is still satisfied.

Scenario 3. This scenario is similar to Scenario 1, except that fortalh bias of0.5 is added toy; .
After 10 seconds RSO yields an empty set This inconsistendye to the fact that the main assumption
of RSO (which states that within any time window of lengthwe never have more thalt outliers) is
not valid anymore (indeed0% of the data are outliers). This bias does not disturb EKF Wwiintinues
to provide small (but inconsistent) ellipsoids. The jumipattwere observed for Scenario 2 do not appear
anymore and EKF has no way to detect that there exists a pndhléhe data. In practice, this phenomenon
can be dangerous: the robot believes that it is inside thédmarce ellipsoid and may take a decision that

could lead to collisions.
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Fig. 5. Scenario 21% of the data are outliers
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Fig. 6. Scenario 3. An unknown bias has been added to the amegsurement. EKF provides inconsistent estimates wh&8@&squickly

detects an inconsistency.
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B. Testcase 2

Consider the localization of an underwater robot [7], [3}lwa constant depth and with neither roll

nor pitch. Its motion is described by the following state &tipns

(

T, = T4 COS '3
Ty = T4 SiN 23
Zi’)g = U — Uy
Ty = Up+ Uy — Ty,

\

where x1, x5 are the coordinates its center; is its heading andc, is its speed. The inputs; and

uy are the accelerations provided by the left and right prepglirespectively. The localization problem
for this type of robot in the presence of outliers is similarthat treated in [17] or [13], but, in these
two papers, the outliers were treated with a static manmey,at eachk a lot of measurements were
collected (24 sensors were available for the applicatieatéd). The robot pose had to be consistent with
all measurements made at timeexceptq of them. Again, the system has been discretized to get the
discretized formx;.; = fj (xx) using an Euler method with a sampling time= 0.01sec. The robot
moves inside a swimming pool with a known shape (four verptanar walls and three vertical cylinders).
The robot is equipped with a sectorial sonar which meastmesobrizontal distance between the robot
and the border of the pool following the direction pointedtbg sonar. The angular speed of the sonar is
Srad/ sec. Denote bya (k) the angle between the direction of the sonar and the axiseafoihot. Since the
swimming pool is known, the observation equation of theeyshas the formd = g, (x). The Tchebychev
centerx;, of the setX,, returned by RSO is chosen an estimation of the pose. Thima&stiis then used
by the controller to compute the contral Consider now a mission for the robot with three waypoints.
Once a waypoint is thought to be reached with a precision tless 0.5m, the planner sends the next
waypoint, until all waypoints have been reached. The paramm®f RSO are chosen as= 100 (Ilength

of the sliding window) and; = 60 (number of allowed outliers). In our simulation, an outliegenerated
with a probability of0.5. Moreover, to the measured distance, we added a white nateeawuniform
distribution with an error ott3cm. Figure 7 illustrates a reconstruction build by RSO of riission of
the robot fort € {3,6,9,12,15,16.2} where 16.2 sec corresponds to the duration of the missioa. Th
black squares represent the current waypoint where thd pdaos to go. The grey segments correspond

the sonar distances estimated by our observer. The smak blecles represent the current position of
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Fig. 7. lllustration of the robot mission for different tisme

the robot. The associated black tail represents all positibe robot had in the time intervgl— mJd, t].

The emission diagram corresponding to end of the missiorpsesented on Figure 8. The outliers

correspond to the grey segments. The black segments conc$p distances filtered by RSO.

The actual trajectory as well as the set-membership engalefurned by RSO are depicted on Figure

Figure 10 represents the distances measured by the sorsr sfiinfigure). The second subfigure
represents the number of inliers among thdast measurements. As shown by the black circle, during
the mission, the number of outliers (here 61) was greatar ¢gha: 60, or equivalently, the number of
inliers inside the sliding window was lower tham — ¢. Since the set computed by RSO was not empty,

RSO was not able to detect that its main assumption about uh#er of outliers were not satisfied.



Fig. 8. Emmision diagram at time= 16.2 sec
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initial
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Fig. 9. Actual trajectory of the robot and the correspondingelope
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Fig. 10. (above) distances returned by the spftzglow) number of inliers amoung the last measurements

After this date, the sets returned by RSO are not reliablenang, even if can be checked that these sets

always enclose the true state vector, for this particulsticéese.

Applying the Theorem of Section lll, we get that for allve have
Pr(x(t) € X (1)) > e 0011764,

When the robot terminates its missions= 16.2, the setX(¢) encloses the state vector with a probability
higher than0.827. The computation time for all the mission takes less th@hsec on classical personal
computer, which makes the approach consistent with rea applications. The C++ Builder 5 source

codes of this test case are available at the following addres

www. enst a- bret agne. fr/jaul i n/ probintk. htm

V. CONCLUSION

Many researchers or engineers believe that set-membarsftipods cannot be used when the noise is
Gaussian and that they can only deal with bounded noise. pdpsr shows that it is not the case and
that they can even provide results with the same efficienciprathe bounded-error case. An approach
for state estimation which combines an interval set-mestberapproach with probabilities has been

presented. This approach makes possible to build an obsBS® that has several advantages over
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classical approaches. By propagating the assumptions empdhsible outliers through time, the RSO

is made robust with respect to a large number of outliersnk&do interval analysis, RSO is able to

deal with nonlinear (or non-differentiable and even noricmous) state equations, without linearizing

nor approximating them. But the remarkable property of RSGtg ability to provide a lower bound

for the probability associated with the current 3etk). RSO is able to take into account the fact that

there always exists a nonzero probability that some of thensenbership assumptions are not fulfilled,

contrary to other set-membership observers, but RSO isaif®to detect inconsistencies, contrary to

most probabilistic observers.
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