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Abstract

Interval constraint propagation methods have been shown tobe efficient, robust and reliable to solve difficult

nonlinear bounded-error state estimation problems. However they are considered as unsuitable in a probabilistic

context, where the approximation of a probability density function by a set cannot be accepted as reliable. This

paper proposes to new probabilistic approach which makes possible to use classical set-membership observer which

are robust with respect to outliers. The approach will be illustrated on a localization of robot in situations where

there exist a large number of outliers.
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I. I NTRODUCTION

Consider the discrete-time dynamic system described by thefollowing nonlinear state equations




x(k + 1) = fk(x(k),n (k))

y(k) = gk(x(k)),
(1)

wherex is the state vector,n is the state noise andk is the time. Since the evolution functionf depends

on k, this formulation encloses situations where the state equations are time dependent or when the system

depends on some known inputs. In a bounded-error context, wegenerally assume thatn (k) and y (k)
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belong to some prior feasible sets denoted byN (k) andY (k), respectively. The setsN (k) are known

a priori and the setsY (k) are obtained from the measurement vectorỹ(k) of the output vectory(k)

and take into account some bounded-error noises that could corrupt the measurements. The feasible set

X(k) corresponding to the set of all state vectorsx(k) that are consistent with the past can be computed

recursively [2] as follows

X(k + 1) = fk
(
X(k) ∩ g−1k (Y(k)) , N (k)

)
. (2)

In this formula, the operations have to be understood in a set-theoretical sense,i.e., g−1k (Y) = {x | gk(x) ∈ Y}

and fk (X,N) = {z | ∃x ∈ X,∃n ∈ N, z = fk (X,N)}.

In practice, it may happen that some of they(k), the actual value of the output vector at timek, do

not belong to their corresponding setsY(k). The vectory(k), is said to be aninlier if y (k) ∈ Y (k)

and anoutlier otherwise. Set-membership methods have been shown to be adapted to deal with problems

involving with outliers (see,e.g., [15], [11], [16], [9]). Moreover, when the model is nonlinear, interval

constraint propagation methods [14], [18] have been shown to be very efficient and reliable for several state

estimation problems (see,e.g., [7], [10], [17], [1] or [5]). The main contribution of this paper is to give

a probabilistic interpretation of set-membership observers which makes possible to use set-membership

approaches to solve state estimation problems that are expressed in a probabilistic form.

Section II presents a set membership observer which is robust with respect to outliers. Section III

provides some probabilistic properties of the observer. Anillustrative application is given in Section IV.

Section V concludes the paper.

II. ROBUST STATE ESTIMATOR

In a set-membership context, estimators that are robust with respect to outliers can be obtained by

using the notion ofrelaxed intersection. The q-relaxed intersection ofm setsX1, . . . ,Xm of Rn denoted

by
{q}⋂
Xi is the set of allx ∈ Rn which belong to allXi’s, exceptq at most. Figure 1 illustrates this

notion form = 6 andq = 2, 3, 4. For this example, we have

{0}⋂
Xi =

{1}⋂
Xi = ∅,

{5}⋂
Xi =

⋃
Xi and

{6}⋂
Xi = R

2. (3)
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Fig. 1. Illustration (in grey) of theq-relaxed intersection of the6 setsX1, . . . ,X6 whereq ∈ {2, 3, 4}

Define by induction the following notations




fk:k (X)

def
= X

fk1:k2+1 (X)
def
= fk2(fk1:k2 (X) ,N (k2)), k1 ≤ k2.

The setfk1:k2 (X) represents the set of allx (k2), that are consistent with the fact thatx (k1) ∈ X. Consider

the following set state estimator





X(k) = f0:k (X(0)) if k < m, (initialization step)

X(k) = fk−m:k (X(k −m)) ∩
{q}⋂

i∈{1,...,m}

fk−i:k◦g
−1
k−i (Y(k − i)) if k ≥ m

(4)

If we assume that (i) within any time window of lengthm we never have more thanq outliers and that

(ii) X(0) contains the true value forx (0), thenX(k), as defined by (4), corresponds to the set of all

feasiblex (k) (see [6]). The principle of the observer (4) is illustrated by Figure 2 form = 3 andq = 1.

In this figure, double arrows are used to describe the correspondences between sets. For instance, the

rightmost set corresponds tofk−2:k◦g
−1
k−2 (Y(k − 2)) and represents the set of allx (k) that are consistent

with thek−2 data set. The small grey circles are the true values of the state vectorsx (k − i) and output

vectorsy (k − i). Note thaty (k − 2) is outsideY(k − 2) and is thus is an outlier, whereasy (k − 1)

andy (k − 3) are inliers. The state estimator can efficiently be implemented using an interval constraint

propagation approach which recursively computes supersets which enclose theX(k)’s.
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Fig. 2. The feasible set for the state vectorX(k), assuming at mostq = 1 outlier, can be defined recursively fromX(k− 3) and from the

data setsY(k − 1),Y(k − 2),Y(k − 3).

III. PROBABILISTIC ANALYSIS

This section provides a probabilistic interpretation of the set-membership observer presented in the

previous section. We shall assume that all events "y (k) ∈ Y (k)", k > 0 and the eventx (0) ∈ X (0) are

all independent, a priori. This assumption can be interpreted as the fact that the occurrence of an outlier at

time k is independent from the past, which is close to the classicalMarkovian assumption. For simplicity,

we shall also assume that the known prior probabilityπy = Pr (y (k) ∈ Y (k)) does not depend onk.

Proposition. Consider the following hypothesis, denoted byHq(k1:k2), which states that among all

k2 − k1 + 1 output vectors,y(k1), . . . ,y(k2), at mostq of them are outlier. We have

Pr (Hq(k −m : k − 1)) =
m∑

i=m−q

m!

i! (m− i)!
πiy. (1− πy)

m−i . (5)

Proof. The prior probability of having exactlyi inliers amongm follows a binomial distribution given

by

β(i,m, πy) =
m!

i! (m− i)!
πiy. (1− πy)

m−i .

Thus, the probability of having at leastm − q inliers (or equivalently having at mostq outliers) among

m data is
∑m

i=m−q β(i,m, πy). �
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Theorem. Consider the sequence of setsX(0),X(1), . . . built by the observer (4). We have

Pr (x (k) ∈ X(k)) ≥ Pr (x (k −m) ∈ X(k −m)) ∗
m∑

i=m−q

m! πiy. (1− πy)
m−i

i! (m− i)!
.

Moreover, in the special case whereN(k) are all singletons (which amounts to saying that we have no

state noise) and the functionsfk are all injective, then the inequality becomes an equality.

Proof. Since them+ 1 following events:

x (k −m) ∈ X(k −m) and






y (k −m) ∈ Y(k −m)

...

y (k − 1) ∈ Y(k − 1)

are all independent and since

X(k)
def
= fk−m:k (X(k −m)) ∩

{q}⋂

i∈{1,...,m}

fk−i:k◦g
−1
k−i (Y(k − i)) if k ≥ m

we have the following implication

x (k −m) ∈ X(k −m)

Hq(k −m : k − 1)





⇒ x (k) ∈ X(k). (6)

Since the two eventsx (k −m) ∈ X(k −m) andHq(k −m : k − 1), are independent, we have

Pr (x (k) ∈ X(k)) ≥ Pr (x (k −m) ∈ X(k −m)) ∗ Pr (Hq(k −m : k − 1))

and thus

Pr (x (k) ∈ X(k)) ≥ Pr (x (k − 1) ∈ X(k − 1)) ∗ m

√
Pr (Hq(k −m : k − 1)). (7)

Assume that we have no state noise and that thefk are all injective. The implication (6) becomes an

equivalence and thus (7) becomes an equality. �

IV. A PPLICATION TO LOCALIZATION

As an illustration, we shall now consider the problem of the localization and control of an underwater

robot. The problem is similar to that presented in [6], but here, we shall add the probabilistic information.
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Set-membership methods have often been considered for robot localization (see,e.g., [13], in the case

where the problem is linear and also [3] when the robot is underwater). In situations where strong

nonlinearities are involved, interval analysis has been shown to be particularly useful (see,e.g., [12], [4]).

Here, the approach is made more efficient by the addition of constraint propagation techniques. Assume

the robot evolution is described by





ẋ1 = x4 cos x3

ẋ2 = x4 sin x3

ẋ3 = u2 − u1

ẋ4 = u1 + u2 − x4,

(8)

wherex1, x2 are the coordinates of the robot center,x3 is its orientation (see Fig. 3) andx4 is its speed.

The inputsu1 and u2 are the accelerations provided by the left and right propellers, respectively. This

model corresponds to an underwater robot with a constant depth (the depth regulation of the robot is

assumed to be already solved and will not be considered here)and with no roll and pitch. Thus, our robot

can be seen as a two-dimensional robot. The localization problem for this type of robot in the presence

of outliers is similar to that treated in [12] or [8], but, in these two papers, the outliers was treated with

a static manner,i.e., at eachk a lot of measurements were collected (24 sensors were available for the

application treated). The robot pose had to be consistent with all measurements made at timek exceptq

of them. In [6], the outliers was treated in a dynamic way, butno probability was given on the resulting

set. The system can be discretized byxk+1 = fk (xk) where,

fk






x1

x2

x3

x4






=






x1 + δ.x4. cos (x3)

x2 + δ.x4. sin (x3)

x3 + δ. (u2(k)− u1(k))

x4 + δ. (u1(k) + u2(k)− x4)






(9)

andδ = 0.01 sec is the sampling time. The robot moves inside a swimming pool with a known shape (four

vertical planar walls and two vertical cylinders). The robot is equipped with a sonar which measures the

horizontal distance between the robot and the border of the pool following the direction pointed by the

sonar. The sonar turns around itself (see Fig. 3) with an angular speed of5rad/ sec. Denote byα(k) the

angle between the direction of the sonar and the axis of the robot. Since the swimming pool is composed

with vertical walls, the observation equation of the systemhas the formd = gk (x). Even if the functionsfk
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Fig. 3. Underwater robot moving inside a pool

andgk are strongly nonlinear, the feasible setXk can efficiently be characterized using interval propagation

methods. The Tchebychev centerx̂k of Xk (i.e., the center of the smallest cube enclosingXk) is returned

by our observer as an estimation of the actual state vector for the robot. This estimate is then used by

the controller to compute the valuesu to be given to the propellers.

Consider now a mission for the robot where three waypoints have to be reached. Once a waypoint

is thought to be reached with a precision less than0.5m, the planner sends the next waypoint, until

all waypoints have been reached. The length of the sliding time window is chosen asm = 100, which

corresponds almost to one complete turn of the sonar. The number of allowed outliers inside a time window

of lengthm is chosen asq = 60. In our simulation, an outlier is generated with a probability of 0.5. In order

to facilitate the visualization of the results, when an outlier is generated, the measured distance returned

by the simulated robot is fixed at the unknown distance of15m. Moreover, to the measured distance,

we added a white noise with a uniform distribution inside theinterval [−0.03, 0.03], which corresponds

to an error of±3cm. Figure 4 illustrates the mission of the robot fort ∈ {3, 6, 9, 12, 15, 16.2} where

16.2 sec corresponds to the duration of the mission. The black squares represent the current waypoint

where the robot plans to go. The grey segments correspond thesonar distances estimated by our observer.

Note that here these segments also correspond to the true distances. The small black circle represent the

current position of the robot. The associated black tail represents all positions the robot had in the time

interval [t−mδ, t].A typical emission diagram, associated tot = 9 sec, is represented on Figure 5. The

42 outliers correspond to the grey segments. The black segments correspond to filtered distances that have

been returned by our observer.
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Fig. 4. Illustration of the robot mission for different times t

Fig. 5. Emission diagram at timet = 9 sec

The actual trajectory as well as the set-membership envelope returned by the observer are depicted on

Figure 6.

For different timest, the table below provides a lower bound forPr (x (k) ∈ X (k)) and the (unknown)

number of outliers that are stored inside the current data buffer of the observer.
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Fig. 6. Actual trajectory of the robot and the correspondingenvelope

t(sec) Pr (x ∈ X) Outliers

3.0 ≥ 0.965 58

6.0 ≥ 0.932 50

9.0 ≥ 0.899 42

12.0 ≥ 0.869 51

15.0 ≥ 0.838 51

16.2 ≥ 0.827 49

The computation time for all the mission takes less than100 sec on classical personal computer, which

makes the approach consistent with real time applications.The C++ Builder 5 source codes of this test

case are available at the following address

www.ensieta.fr/jaulin/probintk.html
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V. CONCLUSION

In this paper, we have proposed a new approach for state estimation which combines an interval set-

membership approach with probabilities. This approach hasseveral advantages over classical approaches.

By propagating the assumptions on the possible outliers through time, the observer has been made robust

with respect to a large number of outliers. Moreover, thanksto interval analysis, the observer is able to

deal with nonlinear (or non-differentiable and even noncontinuous) state equations, without linearizing or

approximating them. But the remarkable property of our observer is its ability to provide a probability

associated with the current setX (k) for the state vectorx (k). This is new in the context of set-membership

estimation. As a consequence, the observer was able to take into account the fact that there always exists

a nonzero probability that some of the set-membership assumptions are not fulfilled. The principle of the

approach has been illustrated on the localization of an underwater robot where many outliers occurred

during the mission.
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