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Abstract

Interval constraint propagation methods have been shovire tefficient, robust and reliable to solve difficult
nonlinear bounded-error state estimation problems. Hew#wy are considered as unsuitable in a probabilistic
context, where the approximation of a probability densitgdtion by a set cannot be accepted as reliable. This
paper proposes to hew probabilistic approach which makssile to use classical set-membership observer which
are robust with respect to outliers. The approach will hesthated on a localization of robot in situations where

there exist a large number of outliers.

Index Terms
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. INTRODUCTION

Consider the discrete-time dynamic system described byoll@ving nonlinear state equations
x(k+1) = fi(x(k),n(k))
y (k) = gr(x(k)),

wherex is the state vectom is the state noise ankis the time. Since the evolution functidndepends

(1)

on k, this formulation encloses situations where the statetemnsare time dependent or when the system

depends on some known inputs. In a bounded-error contexgemerally assume that (k) andy (k)
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belong to some prior feasible sets denotedM{k) and Y (%), respectively. The set¥ (k) are known
a priori and the set¥ (k) are obtained from the measurement veciok) of the output vectory (k)
and take into account some bounded-error noises that coufdpt the measurements. The feasible set
X(k) corresponding to the set of all state vectef#) that are consistent with the past can be computed

recursively [2] as follows
X(k+1) =i (X(k) ng ' (Y(R), N(k)). )

In this formula, the operations have to be understood in-theetretical senseg., g, ' (Y) = {x | gi(x) € Y}

andf, (X,N) ={z | Ix € X,3n e N,z =} (X,N)}.

In practice, it may happen that some of thé:), the actual value of the output vector at tirhedo
not belong to their corresponding séf$k). The vectory(k), is said to be annlier if y (k) € Y (k)
and anoutlier otherwise. Set-membership methods have been shown to peedda deal with problems
involving with outliers (seeeg., [15], [11], [16], [9]). Moreover, when the model is nonlexg interval
constraint propagation methods [14], [18] have been shoviae tvery efficient and reliable for several state
estimation problems (seeg., [7], [10], [17], [1] or [5]). The main contribution of thisgper is to give
a probabilistic interpretation of set-membership obserwehich makes possible to use set-membership

approaches to solve state estimation problems that aressqu in a probabilistic form.

Section Il presents a set membership observer which is rohitis respect to outliers. Section Il
provides some probabilistic properties of the observer.ilistrative application is given in Section IV.

Section V concludes the paper.

II. ROBUST STATE ESTIMATOR

In a set-membership context, estimators that are robust re@gpect to outliers can be obtained by

using the notion ofelaxed intersection. The g-relaxed intersection ofz setsXj,...,X,, of R” denoted
{q}

by ﬂXi is the set of allx € R™ which belong to allX;’s, exceptq at most. Figure 1 illustrates this
notion form = 6 andq = 2, 3, 4. For this example, we have
{0} {1} {5} {6}

AX=Xi=0, (X =JX;and [X; =R (3)



lllustration (in grey) of the-relaxed intersection of the setsXy,...,Xs whereq € {2, 3,4}

Define by induction the following notations

£ (X) e x

fkllkz-l—l (X) d:ef sz (fkltkz (X) aN (kZ))a kl < k2'

The seffy, ., (X) represents the set of all(k,), that are consistent with the fact thatk;) € X. Consider

the following set state estimator

X(k) = fox(X(0)) if & <m, (initialization step)

X(k) — fk_{ﬂ;;}k (X(k —m)) N @
M feowogili (Y(k—1) if k>m
ie{l,...,m}

If we assume that (i) within any time window of length we never have more thapoutliers and that

(i) X(0) contains the true value fat (0), thenX(k), as defined by (4), corresponds to the set of all

feasiblex (k) (see [6]). The principle of the observer (4) is illustratgdfigure 2 form = 3 andq = 1.

In this figure, double arrows are used to describe the cavrelgnces between sets. For instance, the

rightmost set corresponds fp ».,0g, ', (Y(k — 2)) and represents the set of al(k) that are consistent

with the k£ — 2 data set. The small grey circles are the true values of the gé&torsx (k — ) and output

vectorsy (k — 7). Note thaty (k — 2) is outsideY(k — 2) and is thus is an outlier, wheregsk — 1)

andy (k — 3) are inliers. The state estimator can efficiently be impleieémsing an interval constraint

propagation approach which recursively computes supergich enclose th&(k)’s.



Fig. 2. The feasible set for the state veckyk), assuming at most = 1 outlier, can be defined recursively frof(k — 3) and from the

data setsY(k — 1), Y(k — 2), Y(k — 3).

[11. PROBABILISTIC ANALYSIS

This section provides a probabilistic interpretation o thet-membership observer presented in the
previous section. We shall assume that all evepté:) € Y (k)", & > 0 and the evenk (0) € X (0) are
all independent, a priori. This assumption can be integgress the fact that the occurrence of an outlier at
time k is independent from the past, which is close to the clasdi@akovian assumption. For simplicity,

we shall also assume that the known prior probabitity= Pr (y (k) € Y (k)) does not depend okh.

Proposition. Consider the following hypothesis, denoted Hy(k1:k2), which states that among all

ks — k1 + 1 output vectorsy (k1), ...,y (k2), at mostg of them are outlier. We have
< ’I’I’L' i m—i
PI' (Hq(/{? —m: ]{Z — 1)) = i;qmﬂ'y. (1 — 7Ty> . (5)

Proof. The prior probability of having exactlyinliers amongm follows a binomial distribution given

by
. m! ;
B(i,m,m,) = mﬁy' (1—-m,

)m—i

Thus, the probability of having at least — ¢ inliers (or equivalently having at mosgtoutliers) among

m data isd ;" B(i,m,m,). [

i=m—q



Theorem. Consider the sequence of s&f)), X(1),... built by the observer (4). We have

Pr(x (k) € X(k)) > Pr(x(k-— m) e X(k — m)) *
Ioml . (1—my,)"
5 il

i=m—q

Moreover, in the special case whei¥k) are all singletons (which amounts to saying that we have no

state noise) and the functiofis are all injective, then the inequality becomes an equality.

Proof. Since them + 1 following events:

y(k—m)eY(k—m)
x(k—m) € X(k—m) and
y(k—1)eY(k—1)

are all independent and since

M feoawogrl; (Y(k—i) if k>m

we have the following implication
x (k—m) € X(k —m)

} = x(k) € X(k). (6)
Hyk—m:k—1)

Since the two events (k —m) € X(k —m) and’H,(k —m : k — 1), are independent, we have
Pr(x (k) € X(k)) > Pr (x (k —m) € X(k —m)) * Pr (H,(k —m : k — 1))

and thus

Pr(x (k) € X(k)) > Pr(x(k—1) € ) §/Pr(My(k —m  k — 1)), )

Assume that we have no state noise and thatfthare all injective. The implication (6) becomes an

equivalence and thus (7) becomes an equality. |

V. APPLICATION TO LOCALIZATION

As an illustration, we shall now consider the problem of thealization and control of an underwater

robot. The problem is similar to that presented in [6], bueheve shall add the probabilistic information.



Set-membership methods have often been considered fot lodadization (seegeg., [13], in the case
where the problem is linear and also [3] when the robot is omder). In situations where strong
nonlinearities are involved, interval analysis has beawshto be particularly useful (seeg., [12], [4]).
Here, the approach is made more efficient by the addition n$tcaint propagation techniques. Assume

the robot evolution is described by

.
T, = T4 COS T3
Tog = T4 81N T3 ®)
Zi’)3 = U2 — U1

| Ty = Uy + U — Xy,

wherez, 5 are the coordinates of the robot centey,is its orientation (see Fig. 3) and is its speed.
The inputsu; anduy, are the accelerations provided by the left and right prepgllrespectively. This
model corresponds to an underwater robot with a constarthdéipe depth regulation of the robot is
assumed to be already solved and will not be considered hadkevith no roll and pitch. Thus, our robot
can be seen as a two-dimensional robot. The localizatioblgmo for this type of robot in the presence
of outliers is similar to that treated in [12] or [8], but, ihdse two papers, the outliers was treated with
a static mannei.e., at eachk a lot of measurements were collected (24 sensors were laleaiiar the
application treated). The robot pose had to be consistaht alli measurements made at tirheexceptq

of them. In [6], the outliers was treated in a dynamic way, moitprobability was given on the resulting

set. The system can be discretizedshy; = ;. (x) where,

1 x1 + 0.74. cos (3)

£, z2 | _ Ty + 0.74.8in (x3) ©)
T3 x3 + 0. (ua(k) — ui(k))
T4 xg+ 6. (ur(k) + ua(k) — x4)

andd = 0.01 sec is the sampling time. The robot moves inside a swimming patil & known shape (four
vertical planar walls and two vertical cylinders). The roi®equipped with a sonar which measures the
horizontal distance between the robot and the border of dut fellowing the direction pointed by the
sonar. The sonar turns around itself (see Fig. 3) with anlangpeed ofirad/ sec. Denote bya(k) the
angle between the direction of the sonar and the axis of thetr&ince the swimming pool is composed

with vertical walls, the observation equation of the systexs the formi = ¢, (x). Even if the functiond,
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Fig. 3. Underwater robot moving inside a pool

andg, are strongly nonlinear, the feasible 3gt can efficiently be characterized using interval propagatio
methods. The Tchebychev cenfgr of X, (i.e., the center of the smallest cube enclosig is returned
by our observer as an estimation of the actual state vectathéorobot. This estimate is then used by

the controller to compute the valuesto be given to the propellers.

Consider now a mission for the robot where three waypointe a be reached. Once a waypoint
is thought to be reached with a precision less tham, the planner sends the next waypoint, until
all waypoints have been reached. The length of the slidimg twindow is chosen as. = 100, which
corresponds almost to one complete turn of the sonar. Théauaf allowed outliers inside a time window
of lengthm is chosen ag = 60. In our simulation, an outlier is generated with a probapif 0.5. In order
to facilitate the visualization of the results, when an ieutls generated, the measured distance returned
by the simulated robot is fixed at the unknown distanceh. Moreover, to the measured distance,
we added a white noise with a uniform distribution inside itmerval [—0.03,0.03], which corresponds
to an error of+3cm. Figure 4 illustrates the mission of the robot foe {3,6,9,12,15,16.2} where
16.2 sec corresponds to the duration of the mission. Thekldgaares represent the current waypoint
where the robot plans to go. The grey segments corresporgbtiag distances estimated by our observer.
Note that here these segments also correspond to the ttaealis. The small black circle represent the
current position of the robot. The associated black taitesgnts all positions the robot had in the time
interval [t — md, t].A typical emission diagram, associatedtte- 9 sec, is represented on Figure 5. The
42 outliers correspond to the grey segments. The black sagrmerrespond to filtered distances that have

been returned by our observer.



Fig. 4. lllustration of the robot mission for different time

Fig. 5. Emission diagram at time= 9sec

The actual trajectory as well as the set-membership engaleprned by the observer are depicted on

Figure 6.

For different timeg, the table below provides a lower bound for (x (k) € X (k)) and the (unknown)

number of outliers that are stored inside the current datbaf the observer.



waypoint 1

initial
state waypoint 2

waypoint 3

Fig. 6. Actual trajectory of the robot and the correspondingelope

t(sec)| Pr (x € X) | Outliers

3.0 > 0.965 58
6.0 > 0.932 50
9.0 > 0.899 42
120 | > 0.869 51
15.0 | >0.838 51
16.2 | > 0.827 49

The computation time for all the mission takes less th@hsec on classical personal computer, which
makes the approach consistent with real time applicatibhs. C++ Builder 5 source codes of this test

case are available at the following address

www. ensi eta. fr/jaulin/probintk. htm
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V. CONCLUSION

In this paper, we have proposed a new approach for stateatgtimwhich combines an interval set-
membership approach with probabilities. This approachsleasral advantages over classical approaches.
By propagating the assumptions on the possible outliemugir time, the observer has been made robust
with respect to a large number of outliers. Moreover, thaioksiterval analysis, the observer is able to
deal with nonlinear (or non-differentiable and even noticmous) state equations, without linearizing or
approximating them. But the remarkable property of our pleseis its ability to provide a probability
associated with the current s&{ k) for the state vectax (k). This is new in the context of set-membership
estimation. As a consequence, the observer was able tortekagcount the fact that there always exists
a nonzero probability that some of the set-membership gstsons are not fulfilled. The principle of the
approach has been illustrated on the localization of an mvater robot where many outliers occurred

during the mission.
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