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Abstract : A sailboat can be described by a system of nonlinear differential equations.

A polar speed diagram shows the set of all feasible speed that can be reached for different

values of the orientation angle of the boat, in a permanent regime. This paper shows how

interval analysis can be used to characterize the polar speed diagram in a reliable way.

1 Introduction

Many problem from control theory have a solution set that can be written into the form

S , {p ∈ P | ∃q ∈ Q, f(p,q) = 0} , (1)

where P is a box of Rnp , Q is a box of Rnq and f is a continuous function from Rnp+nq

to Rnf . A challenging problem is to find an algorithm which is able to find an inner
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and an outer approximation of S with arbitrary accuracy. When the dimension nf of

f(p,q) is greater or equal than 2, to our knowledge, no general algorithm is available to

provide an inner approximation of S. When nf = 1, this problem can be solved using

existence theorems (e.g. Miranda theorem [4]) or by taking advantage of the theory of

Modal Interval Analysis [3]. The aim of this paper is to provide an algorithm to compute

an inner and an outer approximation for S when nf = 1 and to illustrate the efficiency of

the algorithm on an application related to the control of a sailboat.

Section 2 shows that the polar speed diagram of a sailboat can be expressed into the form

given by (1). Then, using some formal transformations in Section 3, we shall eliminate all

but one of the variables q1, . . . , qnq in order to be able to find an inner approximation for

S in Section 4. On Section 5, the approach will be used to characterize the polar speed

diagram of the sailboat.

2 Sailboat problem

The sailboat represented on Figure 1 is described by the following state equations [6]




ẋ = v cos θ, (i)

ẏ = v sin θ − βV, (ii)

θ̇ = ω, (iii)

δ̇s = u1, (iv)

δ̇r = u2, (v)

v̇ =
fs sin δs−fr sin δr−αf v

m
, (vi)

ω̇ = (`−rs cos δs)fs−rr cos δrfr−αθω
J

, (vii)

fs = αs (V cos (θ + δs)− v sin δs) , (viii)

fr = αrv sin δr. (ix)

(2)

where ẋ, ẏ, . . . represents the derivatives of x, y, . . . with respect to the time t. The state

vector x = (x, y, θ, δs, δr, v, ω)T ∈ R7 is composed with

• the coordinates x, y of the inertial center G of the boat

• the orientation θ,

• the sail angle δs

• the rudder angle δr
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• the tangential speed of G

• the angular velocity ω of the boat around G.

The intermediate variables are

• the thrust force fs of the wind on the sail,

• the force fr of the water on the rudder.

The parameters (that are assumed to be known) are

• the speed V of the wind,

• the distance rr between the rudder and G,

• the distance rs between the mast and G,

• the rudder lift αr,

• the sail lift αs,

• the tangential friction αf of the boat with respect to the water,

• the angular friction αθ of the boat with respect to the water,

• the angular inertia J of the boat,

• the distance ` between the mast and the thrust center of the sail,

• and the drift coefficient β.

These parameters will be chosen as

β = 0.05, rs = 1, rr = 2, ` = 1, V = 10,

m = 1000, J = 2000, αf = 60,

αθ ∈ 500, αs = 500, αr = 300.

The inputs u1 and u2 of the system are the derivatives of the angles δs and δr.
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Wind

Figure 1: Sailing boat

The Polar Diagram of the sailboat is the set S of all pairs (θ, v) that can be reached by

the boat, in a cruising behavior. During a cruising behavior of the boat, the speed of the

boat, its course, its angular velocity, . . . are constant, i.e.,

θ̇ = 0, δ̇s = 0, δ̇r = 0, v̇ = 0, ω̇ = 0. (3)

From Equation (2), we get





0 =
fs sin δs−fr sin δr−αf v

m
,

0 = (`−rs cos δs)fs−rr cos δrfr

J
,

fs = αs (V cos (θ + δs)− v sin δs) ,

fr = αrv sin δr.

(4)

which is equivalent to

{
αs (V cos (θ + δs)− v sin δs) sin δs − αrv sin2 δr − αfv = 0

(`− rs cos δs) αs (V cos (θ + δs)− v sin δs)− rrαrv sin δr cos δr = 0
(5)

The polar speed diagram is the set S of all feasible vectors (v, θ) in a cruising regime, i.e.,

S = {(v, θ) | ∃δr, ∃δs, f (v, θ, δr, δs) = 0} , (6)
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where

f (v, θ, δr, δs) =

(
αs (V cos (θ + δs)− v sin δs) sin δs − αrv sin2 δr − αfv

(`− rs cos δs) αs (V cos (θ + δs)− v sin δs)− rrαrv sin δr cos δr

)
(7)

3 Transformation of the problem

Characterizing an inner approximation for the set S given by equation (6) cannot be done

using existing interval algorithm. The raison for that is that the dimension nf of f is

equal to 2. In this section, we shall eliminate the variable δr using symbolic calculus in

order to cast into the case where nf = 1.

Since

sin2 δr =
1− cos (2δr)

2
and sin δr cos δr =

sin(2δr)

2
, (8)

Equation (7) transforms into

{
αs (V cos (θ + δs)− v sin δs) sin δs − αrv

1−cos(2δr)
2

− αfv = 0

(`− rs cos δs) αs (V cos (θ + δs)− v sin δs)− rrαrv
sin(2δr)

2
= 0

(9)

i.e., {
αrv

1−cos(2δr)
2

= αs (V cos (θ + δs)− v sin δs) sin δs − αfv

rrαrv
sin(2δr)

2
= (`− rs cos δs) αs (V cos (θ + δs)− v sin δs)

(10)

or equivalently
{

1− cos(2δr) = 2
αrv

(αs (V cos (θ + δs)− v sin δs) sin δs − αfv)

sin(2δr) = 2
rrαrv

(`− rs cos δs) αs (V cos (θ + δs)− v sin δs)

i.e. {
− cos(2δr) = −1 + 2

αrv
(αs (V cos (θ + δs)− v sin δs) sin δs − αfv)

sin(2δr) = 2αs

rrαrv
(`− rs cos δs) (V cos (θ + δs)− v sin δs)

(11)

Since sin2(2δr) + cos2(2δr)− 1 = 0, we get that

(
−1 + 2

αrv
(αs (V cos (θ + δs)− v sin δs) sin δs − αfv)

)2

+
(

2αs

rrαrv
(`− rs cos δs) (V cos (θ + δs)− v sin δs)

)2

− 1 = 0
(12)

i.e., (
(αr + 2αf ) v − 2αsV cos (θ + δs) sin δs + 2αsv sin2 δs

)2

+
(

2αs

rr
(`− rs cos δs) (V cos (θ + δs)− v sin δs)

)2

− α2
rv

2 = 0
(13)
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The polar speed diagram can thus be written as

S =
{

(θ, v)|∃δs ∈ [−π

2
,
π

2
] | f1(θ, v, δs) = 0

}
. (14)

where f1(θ, v, δs) is given by

f1(θ, v, δs) =
(
(αr + 2αf ) v − 2αsV cos (θ + δs) sin δs + 2αsv sin2 δs

)2

+
(

2αs

rr
(`− rs cos δs) (V cos (θ + δs)− v sin δs)

)2

− α2
rv

2

4 Algorithm

This section provides an algorithm to compute an inner and an outer approximation of

the set

S , {p ∈ P | ∃q ∈ Q, f(p,q) = 0} , (15)

which is a particular case of the problem expressed by Equation 1, where nf = 1. Then,

this algorithm will be used to characterize the set described by (14).

Let us first recall some definitions needed to understand our algorithm. An interval is a

closed and connected subset of R. For instance, [1, 3], {1}, ]−∞, 6], R and ∅ are considered

as intervals. A box, or interval vector, X of Rn is a vector with interval components. The

width w (X) of a box X is the length of its largest side. If X and Y are two boxes of Rn,

X tY denotes the smallest box which contains X ∪Y and X\Y denotes the set of all

x ∈ X such that x /∈ Y. The set of all boxes of Rn will be denoted by IRn. Consider a

closed subset X of Rn. The operator CX : IRn → IRn is a contractor [2] for the set X of

Rn if it satisfies

∀X ∈ IRn,

{
CX(X) ⊂ X (contractance),

CX(X) ∩ X = X ∩ X (completeness).
(16)

CX is idempotent if for all X, CX (CX(X)) = CX(X). It is thin if for any singleton {x},
CX({x}) = {x} ∩ X. CX is said to be convergent if for almost any point x, and for all

sequences of nested boxes X (k) ,

X(k) → x ⇒ CX(X (k)) → {x} ∩ X. (17)

It is said to be minimal if

∀X ∈ IRn, CX(X) = [X ∩ X] , (18)
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where [X ∩ X] denotes the smallest box containing X ∩ X. The contractor CX is said to

be binary if ∀X ∈ IRn, either CX(X) = X or CX(X) = ∅.

If X is a set defined by nonlinear inequalities, there exist different methods to build a

contractor for X and for its complementary set ¬X. Most of them are based on interval

constraint propagation [1, 2]. For the set S defined by (15), these methods can still be

extended to build a contractor for S [9, 7], as illustrated by Figure 2.

Figure 2: A contractor for S.

Let us now show how classical contractors can be extended to build a contractor for ¬S
in the case where f is continuous. We have





p ∈ S ⇔ (∃q ∈ Q, f(p,q) = 0)

⇔
(

max
q∈Q

f(p,q) ≥ 0

)
∧

(
min
q∈Q

f(p,q) ≤ 0

)
(19)

If q̂1 and q̂2 are two points of Q we have

f(p, q̂1) ≥ 0 ⇒ max
q∈Q

f(p,q) ≥ 0, (20)

f(p, q̂2) ≤ 0 ⇒ min
q∈Q

f(p,q) ≤ 0. (21)

Thus, if q̂1∈ Q and q̂2∈ Q, from (19), we have

(f(p, q̂1) ≥ 0) ∧ (f(p, q̂2) ≤ 0) ⇒ p ∈ S. (22)

or its contraposite

p ∈ ¬S⇒ (f(p, q̂1) < 0) ∨ (f(p, q̂2) > 0)
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As a consequence, a contractor for the set

Sout def
= {p ∈ P | (f(p, q̂1) < 0) ∨ (f(p, q̂2) > 0)} (23)

is also a contractor for ¬S. Figure 3 gives an illustration of how the previous development

can be used to build a contractor for ¬S.

Figure 3: A contractor for ¬S.

The following algorithm provides an inner and an outer approximation for S. All points

inside the resulting white area have been proved to belong to S whereas all points inside

the grey area have been proved to be outside S.

Algorithm Enclose(in: P,Q)

1 L := {P} ;

2 while L 6= ∅,
3 pop a box P out of L;

4 Using a local method, choose q̂1 such that f(center(P),q̂1) is maximal;

5 Using a local method, choose q̂2 such that f(center(P),q̂2) is minimal;

6 P1 := C¬S(P) = C{p | f(p,q̂1)<0}(P) ∪ C{p | f(p,q̂2)>0}(P);

7 Paint P/P1 white; P := P1

8 P2 ×Q2 := CS(P×Q) = C{(p,q) | f(p,q)=0}(P×Q);

9 Paint P/P2 grey; P := P2

10 if w (P) < ε, paint P black and go to 2;

11 bisect P and store the two resulting boxes into L;

12 end while.
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Remark: In the case where the available contractors are binary, the algorithm Enclose

can be viewed as a special instance of the Quantified Set Inversion algorithm (QSI) [5],

which implementation is based on Modal Interval Analysis [3] and for which an online

web version exists at [8].

5 Results

By using QSI solver with an epsilon of ε = 0.02, in less than 60 seconds on a Pentium

IV, the result expressed in polar coordinates and showed in Figure 4 is obtained.

Figure 4: Polar diagram obtained by QSI solver.

Where the white area corresponds to the set of points (θ, v) which can be potentially

reached by the sailboat, the grey area corresponds to the set of non feasible points and

the black one is undefined.
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The different points of sail, which refer to the position of the sailboat in relation to the

wind, are also outlined in Figure 4. These points are called: close hauled (A), close

reach (B), beam reach (C), broad reach (D), run (E) and in irons (F). From Figure 4,

some observation can be done which could not be obvious for non-expert sailors. For

instance, it can be observed that a sailboat cannot sails directly into the wind (F). In

order to sailing up wind it is necessary to use the maneuver of tacking, which consists on

sailing switching periodically from the two existing close hauled sail points (A). Another

interesting information which can be obtained from Figure 4 is that contrarily to what

would seem logical, the point of sail run (E), when the wind is blowing from behind the

sailboat, is not the one for which the sailboat runs faster. The faster sail point corresponds

to the broad reach position (D).

6 Conclusion

A reliable methodology, based on formal calculus and interval analysis, for finding inner

and outer approximations of the Polar Diagram of a sailboat has been presented. For its

numerical resolution, the QSI solver, which implementation is based on Modal Interval

Analysis, has been used.

7 Future work

In practice, some parameters (speed of the wind, friction coefficients, . . . ) are not known

exactly, but they are known to belong to some given intervals. The next step of the

presented work consists on finding the Robust Polar Diagram of a sailboat by taking into

account these uncertainties.
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