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Abstract

Contractor programming relies on a catalog on elementary contractors which need to be

as efficient as possible. In this paper, we introduce a new theorem that can be used to

build minimal contractors consistent with equations, and another new theorem to derive

an optimal separator from a minimal contractor. As an application, we focus on the

channeling polar constraint associated to the change between Cartesian coordinates and

Polar coordinates. We illustrate our method on the localization problem of an actual

underwater robot where both range and goniometric measurements of landmarks are

collected.

Keywords: Set theory, Interval Analysis, Constraint programming, Localization,

Robotics

1. Introduction

Contractor programming [7] is an efficient tool to solve rigorously complex problems

involving uncertainties and nonlinear equations [6, 22]. A contractor CX is an operator

able to contract a box of Rn without removing a single point of the subset X of Rn to

which it is associated. As a result, using a paving of Rn generated by a paver [25], the

contractor will allow us to build an outer approximation of S. Basic notions on interval

analysis, contractors and applications can be found in [19].

Contractor programming relies on a catalog of elementary contractors. Most of the

time, these elementary contractors are built using interval arithmetic [24]. Then, by
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combining all these elementary contractors, we can construct a more sophisticated con-

tractor consistent with the solution set of the problem we want to solve. The principle

can be extended to separator programming [18] in order to compute an inner and an

outer approximation of the solution set.

Now, combining contractors introduces a pessimism which has to be balanced by

additional bisections performed by the paver. For more efficiency, it is important to

extend the catalog by adding some new specific contractors.

In this paper, we propose some new theorems in order to build more easily optimal

contractors/separators consistent with equations often used, for instance, in the field of

robotics [21, 10, 23]. As an application, we will consider the polar constraint associated to

the change of coordinates between Cartesian and polar form [4]. This polar constraint is

essential for localization of robots when both goniometric and/or distance measurements

are available [9, 14]. Some test cases will show that our approach makes it possible to

obtain an inner and an outer approximation of the solution set in a much more efficient

manner than simply composing elementary interval contractors.

This paper is organized as follows. Section 2 presents the notion of contractor and

separator algebra. Section 3 shows how a minimal contractor for some specific constraints

can be built. Section 4 will then derive an optimal separator for the polar transformation.

Section 5 provides an application on the localization of an actual underwater robot and

Section 6 concludes the paper.

2. Contractors and Separators

This section recalls the basic notions on intervals, contractors and separators that

are needed to understand the contribution of this paper. An interval of R is a closed

connected set of R. A box [x] of Rn is the Cartesian product of n intervals. The set of

all boxes of Rn is denoted by IRn. Notation used in this paper are given in Table 1.

2



Subsets of Rn: X,Y

Intervals of R: [a]

Boxes of Rn: [a]

Set of boxes of Rn: IRn

Box hull of a set A: JAK
Union hull of two boxes: [x] t [y] = J[x] ∪ [y]K

Composition of functions: f ◦ f = f2

Table 1: Notations

Figure 1: Contractor consistent with to the set X

2.1. Contractors and Separators

In this section, we recall the basic notions on contractors and separators that will be

used later. A contractor C is an operator IRn 7→ IRn (see e.g., [13]) such that

C([x]) ⊂ [x] (contractance)

[x] ⊂ [y] ⇒ C([x]) ⊂ C([y]). (monotonicity)
(1)

We define the inclusion between two contractors C1 and C2 as follows:

C1 ⊂ C2 ⇔ ∀ [x] ∈ IRn, C1([x]) ⊂ C2([x]). (2)

A set X is consistent (See Figure 1) with the contractor C (we will write X ∼ C) if for all

[x], we have

C([x]) ∩ X = [x] ∩ X. (3)

Two contractors C and C1 are equivalent (we will write C ∼ C1) if we have:

X ∼ C ⇔ X ∼ C1. (4)
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A contractor C is minimal if for any other contractor C1, we have the following implication

C ∼ C1 ⇒ C ⊂ C1. (5)

If C is a minimal contractor consistent with X, then for all [x], we have C([x]) ∩ X =

J[x] ∩ XK where JAK is the hull operator, i.e., the smallest box which encloses A. This

means that C([x]) corresponds exactly to the smallest box that can be obtained by a

contraction of [x] without removing a single point of X. As a consequence, there exists

a unique minimal contractor.

Example 1. The minimal contractor CX consistent with the set

X =
{
x ∈ R2, (x1 − 2)2 + (x2 − 2.5)2 ∈ [1, 4]

}
(6)

can be built using a forward-backward constraint propagation [2] [15]. The contractor

CX can be used by a paver to obtain an outer approximation for X. This is illustrated by

Figure 2 (left) where CX removes parts of the space outside X (painted light-gray). But

due to the consistency property (see Equation (3)) CX has no effect on boxes included

in X. A box partially included in X can not be eliminated and is bisected, except if

its length is larger than an given value ε. The contractor CX only provides an outer

approximation of X.

If C1 and C2 are two contractors, we define the following operations on contractors [7].

(C1 ∩ C2)([x]) = C1([x]) ∩ C2([x]) (7)

(C1 t C2)([x]) = C1([x]) t C2([x]) (8)

(C1 ◦ C2)([x]) = C1 (C2([x])) (9)

where t is the union hull defined by

[x] t [y] = J[x] ∪ [y]K . (10)

In order to characterize an inner and outer approximation of the solution set, we

introduce the notion of separator.

A separator S is a pair of contractors
{
S in,Sout

}
such that, for all [x] ∈ IRn, we have

S in([x]) ∪ Sout([x]) = [x] (complementarity). (11)
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Figure 2: Paving associated to Example 1, Left: paving obtained using the contractor, Right: paving

obtained using the separator. Dark gray boxes belong X (the ring); light gray boxes are outside X. No

conclusion can be given on the white boxes.

X
[x]

Sout([x])

[x]

S in([x])

Figure 3: Illustration of a separator on two different initial boxes. The outer contractor removes the

blue dashed area and the red dashed area is removed by the inner contractor
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A set X is consistent with the separator S (we will write X ∼ S), if

X ∼ Sout and X ∼ S in, (12)

where X = {x | x /∈ X}. This notion of separator is illustrated by Figure 3.

We define the inclusion between two separators S1 and S2 as follows

S1 ⊂ S2 ⇔ S in
1 ⊂ S in

2 and Sout
1 ⊂ Sout

2 . (13)

A separator S is minimal if

S1 ⊂ S ⇒ S1 = S. (14)

It is trivial to check that S is minimal implies that the two contractors S in and Sout are

both minimal. If we define the following operations

S1 ∩ S2 =
{
S in

1 ∪ S in
2 ,Sout

1 ∩ Sout
2

}
(intersection)

S1 ∪ S2 =
{
S in

1 ∩ S in
2 ,Sout

1 ∪ Sout
2

}
(union)

(15)

then we have [18]  S1 ∼ X1

S2 ∼ X2

⇒

 S1 ∩ S2 ∼ X1 ∩ X2

S1 ∪ S2 ∼ X1 ∪ X2

(16)

Example 2. Consider the set X of Example 1. From the contractor consistent with

X =
{
x ∈ R2, (x1 − 2)2 + (x2 − 2.5)2 /∈ [1, 4]

}
, (17)

we can build a separator SX for X. An inner and outer approximation of X obtained

by a paver based on SX is depicted on Figure 2. The dark gray area is inside X and

light gray is outside. The minimality property of the separators can be observed by the

fact that all contracted boxes of the subpaving touch the boundary of X. Therefore, we

are now able to quantify the pessimism introduced by the set inversion and to prove the

existence of solutions.

2.2. Transformations of Contractors and Separators

We now present some results obtained in [26] and [17] about the symmetries and the

minimality of contractors. These results will be used further to get the minimal contractor

for the polar equation.
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Proposition 1. If C1 and C2 are the two minimal contractors consistent with X1 and

X2 then C1 t C2 is the minimal contractor consistent with X1 ∪ X2.

Proof. The minimal contractor consistent with X1 ∪ X2 is

J(X1 ∪ X2) ∩ [x]K = J(X1 ∩ [x]) ∪ (X2 ∩ [x])K ( (A ∪ B) ∩ C = (A ∩ C)∪ (B ∩ C) )

= JJX1 ∩ [x]K ∪ JX2 ∩ [x]KK (JA ∪ BK = JJAK∪ JBKK )

= JX1 ∩ [x]K t JX2 ∩ [x]K ( J[x] ∪ [y]K = [x] t [y] )

= C1 ([x]) t C2 ([x]) (minimality of C1 and C2)

which terminates the proof. �

Definition 1. A bijective function f : Rn → Rn is box-conservative if for all A ⊂ Rn,

f (JAK) = Jf (A)K . (18)

Proposition 2. If f is box conservative so is f−1.

Proof.

f−1 (JAK) = f−1
(q

f ◦ f−1 (A)
y)

(f is bijective)

= f−1 ◦ f
(q

f−1 (A)
y)

(f is box conservative)

=
q
f−1 (A)

y
. �

(19)

Example 3. A rotation from R2 → R2 of angle α is box-conservative iff α = k· π2 , k ∈ Z.

Definition 2. If f : Rn → Rn is a bijective function, we define the image by f of a

contractor as follows:

f (CX) = f ◦ CX ◦ f−1. (20)
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This new definition, will make it possible to extend the contractor algebra to more

complex operations. For instance
(
f0 t f1 t f2

)
(CX) defines the following contractor

[x]→ CX ([x]) t
(
f ◦ CX ◦ f−1 ([x])

)
t
(
f2 ◦ CX ◦ f−2 ([x])

)
. (21)

This contractor is consistent with the set X ∪ f (X) ∪ f ◦ f (X), as shown at least partly

by the new following proposition.

Proposition 3. Define a set X for which we have a minimal contractor CX. If f is

box-conservative, then f (CX) is the minimal contractor for f (X).

Proof. The minimal contractor for f (X) is [x] 7→ Jf (X) ∩ [x]K. Now,

Jf (X) ∩ [x]K = f ◦ f−1 (Jf (X) ∩ [x]K) (f is bijective)

= f
(q

f−1 ◦ f (X) ∩ f−1 ([x])
y)

(f−1 is box conservative)

= f
(q
X ∩ f−1 ([x])

y)
(f−1 ◦ f (X) = X)

= f
(
CX
(
f−1 ([x])

))
(minimality of CX)

= (f (CX)) ([x]) (definition of f (CX) )

(22)

Thus f (CX) = f ◦ CX ◦ f−1 is the minimal contractor for f (X). �

Corrolary 1. If f is box conservative and if I is the identity function, from Proposition

3, the minimal contractor for the set X∪ f (X) is (I t f) (CX)

Proof. The minimal contractor consistent with X∪ f (X) is

J(X ∪ f (X)) ∩ [x]K = J(X ∩ [x])∪ (f (X) ∩ [x])K ( (A ∪ B)∩C = (A ∩ C)∪ (B ∩ C) )

= JX ∩ [x]Kt Jf (X) ∩ [x]K ( JA ∪ BK = JAKt JBK )

= CX ([x]) t f (CX) ([x])

= (CXtf (CX)) ([x])

= ((I t f) (CX)) ([x]) . �

Corrolary 2. If f is box-conservative and if SX =
{
SinX ,SoutX

}
is the minimal separator

for X, then the minimal separator for f (X) is

f (SX) =
{
f ◦ SinX ◦ f−1, f ◦ SoutX ◦ f−1

}
. (23)
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(a) X ∪ f (X) (b) X ∪ f (X) ∪ f2 (X)

Figure 4: The transformation of a minimal separator by a box-conservative function is minimal.

Proof. This is a direct consequence of Proposition 3. �

Example 4. Let us consider the set X defined in Example 1, and the following box-

conservative function:

f (x) =

 √3− x2

x1

 . (24)

From a minimal separator for the set X as defined in Example 2, Corollary 2 allows us

to obtain minimal separators consistent with the sets X ∪ f (X) and X ∪ f (X) ∪ f2 (X).

The corresponding subpavings are depicted on Figure 4.

3. Building Minimal Contractors

Building minimal contractors for set defined by inequalities can sometimes be ob-

tained using interval based methods [1]. In the special case where each variable occurs

only once in the expression and when all involved operators are continuous, for instance

with the constraints a + sin (b+ c · d) = 0, a simple interval evaluation followed by a

backward propagation in the syntactic tree of the constraint provides a minimal con-

traction [3]. When the constraint is monotonic with respect to all variables, then again,
9



it is possible to reach the minimality [8]. In this section, we propose some new results

that will allow us to extend the class of constraints for which we can provide a minimal

contractor.

3.1. Minimal contractors

We consider here an equation of the form y = f(x). The following new theorem

defines a new way to build minimal contractors for this equation.

Theorem 1. The minimal contractor consistent with S = {(x,y) | y = f (x)}, where

f : Rn → Rp, is

CS

 [x]

[y]

 =

 q
[x] ∩ f−1 ([y])

y
J[y] ∩ f ([x])K

 . (25)

Proof. Denote x 6=i = (x1, . . . , xi−1, xi+1, . . . , xn) and [x 6=i] = [x1] × · · · × [xi−1] ×
[xi+1] × · · · × [xn] where the [xi]’s are the interval components of the box [x]. The

optimal contraction for xi is

J{xi ∈ [xi] | ∃x 6=i ∈ [x 6=i] ,∃y ∈ [y] ,y = f (x)}K (26)

=
q{
xi ∈ [xi] ,∃x 6=i ∈ [x 6=i] ,x ∈ f−1 ([y])

}y
(27)

=
q
projxi

(
[x] ∩ f−1 ([y])

)y
. (28)

Now, since for any subset of Rn:

JAK =
q
projx1

(A)
y
× · · · ×

q
projxn

(A)
y
, (29)

we get

q
[x] ∩ f−1 ([y])

y
=

q
projx1

(
[x] ∩ f−1 ([y])

)y
× · · · ×

q
projxn

(
[x] ∩ f−1 ([y])

)y
. (30)

Let us apply the same reasoning with yi. The optimal contraction for yi is

J{yi ∈ [yi] | ∃y 6=i ∈ [y 6=i] ,∃x ∈ [x] ,y = f (x)}K (31)

= J{yi ∈ [yi] | ∃y 6=i ∈ [y 6=i] ,y ∈ f ([x])}K (32)

=
q
projyi ([y] ∩ f ([x]))

y
. (33)
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Thus

J[y] ∩ f ([x])K =
q
projy1 ([y] ∩ f ([x]))

y
× · · · ×

q
projym ([y] ∩ f ([x]))

y
. (34)

As a consequence, CS corresponds to the minimal contractor consistent with S.�

3.2. Polar contractor

The results given in the previous section are applied here to build a minimal contractor

for the polar set defined by:

Π =
{
p = (x, y, ρ, θ) ∈ R4, (x, y) = π(ρ, θ)

}
(35)

where

π

 ρ

θ

 =

 ρ cos θ

ρ sin θ

 (36)

is the polar function. Define

Π0 = [p0] ∩Π (37)

with

[p0] = R+ × R+ × R+ ×
[
0,
π

4

]
. (38)

On [p0], we have  x

y

 = π

 ρ

θ

⇔
 ρ =

√
x2 + y2

θ = atan( yx )
(39)

i.e.,  ρ

θ

=π−1

 x

y

 =

 √
x2 + y2

atan( yx )

 . (40)

From Theorem 1, the minimal contractor for Π0 is

CΠ0

 [x]× [y]

[ρ]× [θ]

 =

 J[x]× [y] ∩ π ([ρ]× [θ])Kq
[ρ]× [θ] ∩ π−1 ([x]× [y])

y
 (41)

Figure 5 illustrates the contraction of five different boxes [x] × [y] × [ρ] × [θ]. The light

gray pies is the initial domain for [ρ] and [θ] while the dark gray pies are the resulting

domains obtained after contraction. For instance, the box [x1] × [y1] × [ρ] × [θ] on the

left in contracted into the box [x1]× [y1]× [ρ1]× [θ1] on the right.
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Figure 5: Left: before contraction, Right: after contraction.

The minimal contractor CΠ for Π can be deduced from CΠ0 using the following proposi-

tion.

Proposition 4. Define the following symmetries

σ1 : (x, y, ρ, θ) →
(
y, x, ρ,

π

2
− θ
)

(42)

σ2 : (x, y, ρ, θ) → (x,−y, ρ,−θ) (43)

σ3 : (x, y, ρ, θ) → (−x, y, ρ, π − θ) (44)

σ4 : (x, y, ρ, θ) → (x, y,−ρ, π + θ) (45)

γ : (x, y, ρ, θ) → (x, y, ρ, θ + 2π) . (46)

A minimal contractor for Π is

CΠ =

(⊔
i

γi ◦ (I t σ4) ◦ (I t σ3) ◦ (I t σ2) ◦ (I t σ1)

)
(CΠ0) . (47)

Proof. By composing transformation functions, the initial domain, restricted to R+×
R+×R+×[0, π4 ] is extended to R4. We have
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CΠ0
∼R+ × R+ × R+ ×

[
0,
π

4

]
∩Π

(I t σ1) CΠ0
∼R+ × R+ × R+ ×

[
0,
π

2

]
∩Π

(I t σ2) ◦ (I t σ1) CΠ0
∼R+ × R× R+ ×

[
−π

2
,
π

2

]
∩Π

©i∈{3,2,1} (I t σi) CΠ0∼R× R× R+ × [−π, π] ∩Π

©i∈{4,3,2,1} (I t σi) CΠ0
∼R× R× R× [−π, π] ∩Π⊔

i

γ ◦©i∈{4,3,2,1} (I t σi) CΠ0∼Π.

The minimality is a consequence of the fact that all transformations are box-conservative. �

4. Building Minimal Separators

The previous section introduced a new way to build a minimal contractor related to

constraints which are built by composition of elementary constraints and box-conservative

transformations. We now extend these results to build minimal separators.

4.1. Minimal separators

Consider the set

X = {x | f (x) ∈ Y} = f−1 (Y) , (48)

where f is a function mapping Rn into Rm. We assume here that Y is a subpaving (a

finite union of boxes) which may overlap, i.e.,

Y =
⋃
i

[y] (i) . (49)

Since Y is a subpaving, its complementary set Y is also a subpaving. For instance, in

Figure 4.1, we have

Y = [1, 2]× [1, 3] ∪ [3, 4]× [1, 3]

Y = (R× [3,∞]) ∪ (R× [−∞, 1])

∪ ([−∞, 1]× [1, 3]) ∪ ([2, 3]× [1, 3])

∪ ([4,∞]× [1, 3]) .

(50)
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Figure 6: Y in gray and Y can be represented by the union of boxes

Definition 3. Consider a contractor C([x], [y]). We define the partial contractor with

respect to x as the projection of the box C([x], [y]) onto x, i.e.,

∂xC([x], [y]) = [a] and ∂yC([x], [y]) = [b] , (51)

where ([a], [b]) = C([x], [y]). (52)

Theorem 2. Denote by C ([x] , [y]), the minimal a contractor consistent with the con-

straint f (x) = y. If Y is a subpaving, then the minimal separator consistent with the set

X = f−1 (Y), is

S ([x]) =
{
Sin,Sout

}
([x]) =

 ⊔
[y]∈Y

∂xC ([x] , [y]) ,
⊔

[y]∈Y

∂xC ([x] , [y])

 . (53)

Proof. To prove that S is minimal, it suffices to prove that the two contractors S in and

Sout are minimal. Let us first prove that Sout is minimal. Define

X = {x | f (x) ∈ Y} = f−1 (Y) . (54)
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For a given box [x], the minimal contractor yields JX∩ [x]K. Now

JX∩ [x]K =
q
f−1 (Y)∩ [x]

y
(definition of X)

=
r
f−1(

⋃
[y]∈Y [y])∩ [x]

z
(definition of Y)

=
r(⋃

[y]∈Y f−1([y])
)
∩ [x]

z
(f−1(A ∪ B) = f−1 (A) ∪ f−1 (B) )

=
r⋃

[y]∈Y
(
f−1([y])∩ [x]

)z
( (A ∪ B) ∩ [x] = (A ∩ [x])∪ (B ∩ [x]) )

=
r⋃

[y]∈Y
q
f−1([y])∩ [x]

yz
( JA ∪ BK = JJAK ∪ JBKK )

=
r⋃

[y]∈Y ∂xC ([x] , [y])
z

(minimality of C[y])

=
⊔

[y]∈Y ∂xC ([x] , [y]) (definition of t )

= Sout ([x]) .

Let us now prove that S in is minimal. Define

X = {x | f (x) /∈ Y} = f−1
(
Y
)
. (55)

A reasoning, similar to the first part of the proof, gives us

q
X∩ [x]

y
=
⊔

[y]∈Y

∂xC ([x] , [y]) = S in ([x]) , (56)

which terminates the proof. �

Remark 1. This theorem shows that getting the optimal set inversion mostly depends

on the function f and not on Y. As a consequence, it is worthwhile to spend some times

to compute optimal contractors for the constraint f (x) = y in order to derive minimal

separator for f (x) ∈ Y.

4.2. Polar Separator

We consider the problem of approximating to the projection of Π (see Equation (35))

along the (ρ, θ) axis defined by:

[ρ]× [θ] ∩ π−1 ([x]× [y]) . (57)

Let CΠ be the minimal polar contractor consistent with Π. From Theorem 2, the minimal

separator consistent with this set is
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Figure 7: Action of the two separators defined as the projection of the polar contractor. The initial

domains for (x, y) and (ρ, θ) are represented by the large rectangle and the large pie. Dark gray boxes

and pies belong to solutions sets while those in light gray do not

S [x],[y]
π ([ρ], [θ]) =

 ⊔
[x1]×[y1]∈[x]×[y]

∂ρθCΠ ([x1], [y1], [ρ], [θ]) , ∂ρθCΠ ([x], [y], [ρ], [θ])

 .

(58)

where [x]× [y] is a subpaving corresponding to the complementary of the box [x] × [y].

Here, [x], [y] are the parameters of the separators and the contractions operate on the

box [ρ]× [θ]. The same reasoning applied on ρ and θ, concludes that minimal separator

consistent with the set:

[x]× [y] ∩ π ([ρ]× [θ]) (59)

is given by

S [ρ],[θ]
π−1 ([x], [y]) =

 ⊔
[ρ1]×[θ1]∈[ρ]×[θ]

∂xyCΠ ([x], [y], [ρ1], [θ1]) , ∂xyCΠ ([x], [y], [ρ], [θ])

 .

(60)

where [ρ]× [θ] is a subpaving corresponding to the complementary of the pie [ρ] × [θ].

The efficiency of these two separators are illustrated on Figure 7 with the initial intervals

taken as [x] = [−1, 4],[y] = [1, 2], [ρ] = [2.1, 4] and [θ] = [ π12 ,
3π
4 ]. The minimality of the

separators can be observed by the fact that each box intersects the border of the pie in

Figure 7 (left) and each pie intersects the boundary of the box in Figure 7 (right).
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5. Application to Localization

Sensors which return range and goniometric measurements of a given landmark, such

as sonar or LIDAR, are commonly used in robotics for localization. When measurements

are related to some landmarks, the problem can be modeled using the polar constraint

[16]. We propose now examples of localization to illustrate the efficiency of the polar

separator.

5.1. Localization with one landmark

Consider one landmark at a known position m = (m1,m2). One robot at position

x = (x1, x2) is able to measure the distance y1 to m and the direction y2 of m in the local

reference frame with an interval accuracy. In this example, we take [y] = [4, 6]×
[
− π

12 ,
π
4

]
.

The set X of feasible x is:

X =
{
x ∈ R2 | ∃y ∈ [y] ,m− x = π(y)

}
=

{
x ∈ R2 |m− x ∈ π([y])

}
= gm ◦ π ([y])

(61)

where π is defined in Equation (36) and

gm (x) = m− x (62)

which is box-conservative. From Corollary 2, the minimal separator Sm, associated with

landmark m, consistent with X is

Sm = gm ◦ S [y]
π−1 , (63)

where S [y]
π−1 is the minimal separator defined in Equation (60).

Figure 8 shows the results of the set inversion using our minimal separator (left) and

a forward-backward separator (right). Note that the new Theorem 2 has to be used in

order to be able get an inner approximation, even with the forward/backward contractor.

5.2. Example with several landmarks

Assume now that we have 3 landmarks mi. The measurements [yi] and the position

of the landmarks are given in Table 5.2. The feasible set X is now

X =
⋂
i

gmi ◦ π ([yi]) . (64)
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Figure 8: Approximation of X using the minimal separator (Left) and by using a classical forward-

backward separator (Right). The initial domain is X0 = [−6, 4]2.

landmarks 1 2 3

m1 6 -2 -3

m2 12 -5 10

[y1](m) [11, 12] [8, 10] [5, 7]

[y2](◦) [14, 100] [-147, -75] [63, 150]

Table 2: Range and bearing measurements of the three landmarks

The corresponding separator is

SX =
⋂
i

gmi
◦ S [yi]

π−1 . (65)

The paving obtained using SX is shown in Figure 5.2. The black dashed boxes corresponds

to the result of the first call of the forward/backward separator and is bigger than the

one obtained with S.

Remark 2. Contrary to the union of separators, the intersection of minimal separators

is not minimal, so S is not minimal. Now, the inner contractor of S, which is an union

of minimal contractors, is still minimal. This can be observed on Figure 5.2.
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Figure 9: Paving obtained using the polar separator. The dashed black box is the result of the first call

a a forward/backward separator

5.3. Underwater Localization

We now illustrate the efficiency of the polar separator on a data-set extracted from

a mission performed by the actual AUV (Autonomous Underwater Vehicle) VAMA (see

Figure 10) in the Road-stead of Brest (France, Brittany), July 18, 2015. We focus on

the transit phase of the mission where the AUV follows a set of way points in order to

reach it mission area. During this phase, ranges and bearings yk = (yk1 , y
k
2 ) between

the ship at position m = (m1,m2) and the AUV at time k are periodically measured

using an ultra short baseline (USBL) and then sent to the robot through an acoustic

communication. We assume that no communication delays exists. Moreover, thanks to

the pressure sensor, the robots knows its depth and the localization problem can be easily

be projected on the two-dimensional horizontal plane.

An estimated reconstitution of the part of the mission made by VAMA that will be

used here is depicted on Figure 11. The motion of the robot is assumed to be described

by the discrete-time state equation:

x(k + 1) = ϕk(x(k)) = x(k)+

 cosψ(k) − sinψ(k)

sinψ(k) cosψ(k)

 · v(k), (66)

where x(k) corresponds to the 2D coordinates of the center of the robot at time k
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Figure 10: VAMA (Véhicule Anti Mine Autonome), an AUV owned by DGA Tn.

expressed in an absolute inertial frame, ψ(k) is the heading and v(k) is the horizontal

speed vector of the robot expressed in its own coordinate system. The speed and heading

are measured using a MEMS IMU (Xsens Mti) and are assumed to be known with an

uncertainty of ±0.05m.s−1 and ±1◦. The range is measured with a accuracy of ±1%

and the bearing with an accuracy of ±2◦.

As a state estimator, we propose to compute the set Xk of feasible state x consistent

with the last ī measurements. It is given by

Xk =
{
x ∈ R2 | ∀i ∈ {0, ī},∃y ∈ [yi] ,mk−i −ϕk:k−i (x) = π(yk−i)

}
(67)

where ϕk1:k2 is the flow defined as follows ϕk1:k2 = ϕk2−1:k2 ◦ · · · ◦ϕk1:k1+1 if k2 ≥ k1

ϕk1:k2 = ϕ−1
k2:k1

otherwise.
(68)

We have

Xk =
⋂
i∈{0,̄i}

{
x ∈ R2 | ∃y ∈ [yk−i] ,mk−i −ϕk:k−i (x) = π(yk−i)

}
=

⋂
i∈{0,̄i}

{
x ∈ R2 |mk−i −ϕk:k−i (x) ∈ π([yk−i])

}
=

⋂
i∈{0,̄i}ϕk−i:k ◦ gmk−i

◦ π ([yk−i]) .

(69)

The corresponding separator is
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10m

Figure 11: Part of the trajectory of VAMA. The robot changes its direction when it reached one way-

point.

SXk
=

⋂
i∈{0,̄i}

ϕk−i:k ◦ gmk−i
◦ S [yk−i]

π−1 . (70)

For an implementation of the observer (70), S [yk−i]

π−1 can either be the minimal polar

separator or a separator based on a classical forward/backward propagation. For a

comparison, let us first apply the separator SXk
for all k without bisection and with

ī = 0. As expected, no inner contraction occur. We only get boxes [xk] enclosing Xk
the diameters of which are depicted in Figure 12 (blue). The figure also shows the

diameter of the boxes [xk] that are obtained with a forward/backward separator (green).

We conclude that the forward/backward separator is indeed more pessimistic which is

consistent with the fact that the polar contractor is minimal (see also the video in [11]).

Figure 13 shows an approximation approximation of Xk for ī = 5 and t = 55 sec. Since

there is an acoustic measurement every 5 sec and since the sampling time is δ = 0.1 sec, a

synchronization of all the data (not discussed here) had to be done. The correspondence

between k and t is k = 5 · t.
To be robust with respect to outliers, we may allow the observer to relax on the time

window of length ī at most q outliers [12]. The solution set Xk becomes:

Xk =
{q}⋂

i∈{0,̄i}
ϕk−i:k ◦ gmk−i

◦ π ([yk−i]) (71)
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Figure 12: Diameter of the boxes [xk] obtained by the minimal polar separator (blue) and the for-

ward/backward separator (green).

Figure 13: Localization of the robot for t = 55 sec . Each of the blue pie corresponds to all positions of

the robot associated with one measurement.
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where the q-relaxed intersection [20][5] is used. The associated separator becomes

SXk
=

{q}⋂
i∈{0,̄i}

ϕk−i:k ◦ gmk−i
◦ S [yk−i]

π−1 . (72)

The result obtained using this observer for q ∈ {0, 1, 2} are illustrated on a video given

in [11].

6. Conclusion

Contractor-based techniques are particularly attractive when solving engineering ap-

plications, due to the fact that they can handle and propagate uncertainties in a context

where the equations of the problem are non-linear and non-convex. Now, the perfor-

mances of paving methods are extremely sensitive to the accuracy of the contractors

that are consistent with the equations. One of equation which is often met in practice is

the polar equation which links Cartesian to polar coordinates.

In this paper, we proposed two new theorems that could help to build more easily

minimal contractors and separators consistent with some specific constraints. These

theorems allowed us to build the minimal contractor and a minimal separator for the

important polar constraint, which was not done before, to our knowledge.

The efficiency of these new operators and their ability to get an inner and outer

approximation of the solution set was illustrated on the problem of the localization of a

robot when both goniometric and range measurements are collected.

Note. The Python programs associated with all examples, the navigation data made

by the robot VAMA and some videos illustrating the use of the polar contractor are given

in [11].
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