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In this paper, we present a new method for bracketing ( i.e. , characterizing from inside and 

from outside) all solutions of an ordinary differential equation in the case where the initial 

time is inside an interval and the initial state is inside a box. The principle of the approach 

is to cast the problem into bracketing the largest positive invariant set which is included 

inside a given set X . Although there exists an efficient algorithm to solve this problem 

when X is bounded, we need to adapt it to deal with cases where X is unbounded. 
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1. Introduction 

In this paper, we deal with a dynamical system S defined by the following state equation: 

˙ x (t) = f (x (t)) (1)

where x (t) ∈ R 

n is the state vector and f : R 

n �→ R 

n is the evolution function of S . Denote by ϕf the flow map of the system.

This means that if at time t 0 , the initial state vector is x 0 , then the solution of the state equation is 

x (t) = ϕ f (t − t 0 , x 0 ) . (2)

In this paper, we consider that the initial state x 0 is not known exactly. More precisely, x 0 belongs to a box [ x 0 ] of R 

n .

Two problems will be treated. 

Problem 1 (Forward reachable set) . We define the forward reachable set [2,16,21] as 

F 

+ 
[ x 0 ] 

= { x a | ∃ x 0 ∈ [ x 0 ] , ∃ t ≥ 0 , x a = ϕ f (t, x 0 ) } . (3)

The problem that we will consider is to bracket the set F 

+ 
[ x 0 ] 

which means that we want to characterize this set from

inside and from outside. This set can be interpreted as an approximation of all solutions of (1) , except that we loose the

dependency with respect to t . 

Problem 2 (Positive graph) . For a fixed, t 0 and x 0 , the positive graph of the solution of (1) corresponds to the set [3] 

G 

+ 
t , x = { (t, x a ) | t ≥ t 0 , x a = ϕ f (t − t 0 , x 0 ) } . (4)
0 0 
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Fig. 1. Illustration of the set F + 
[ x 0 ] 

. The orange backward trajectory is outside F + 
[ x 0 ] 

since it never reaches [ x 0 ]. The black trajectory is included in F + 
[ x 0 ] 

. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We still assume that x 0 ∈ [ x 0 ] but also, we consider that the initial time t 0 is uncertain and is only known to belong to the

interval [ t 0 ]. In this context, we define the positive graph as the set 

G 

+ 
[ t 0 ] , [ x 0 ] 

= { (t, x a ) |∃ t 0 ∈ [ t 0 ] , ∃ x 0 ∈ [ x 0 ] | 
t ≥ t 0 , x a = ϕ f (t − t 0 , x 0 ) } , (5) 

which can be interpreted as the solution of the state equation with uncertain initial state and time. Similarly to Problem 1,

we want to bracket the set G 

+ 
[ t 0 ] , [ x 0 ] 

from inside and outside. 

Our objective is to find a unique algorithm able to find a guaranteed inner and outer approximation of the sets F 

+ 
[ x 0 ] 

and

G 

+ 
[ t 0 ] , [ x 0 ] 

[9] . Some existing approaches use guaranteed integration [6,20,23] to bracket those sets [7] . For efficiency reasons

we will propose in this paper, a guaranteed approach based on interval computation [9,13] and constraint networking [14] that

do not use guaranteed integration. The main difference with existing approaches is that bisections will take place both in the

time space and the state space, which makes the method both Eulerian and Lagrangian [15] . This increases the complexity

of the method but allows us to have a better control on the accuracy of the results. 

2. Main results 

This section shows that both problems proposed in Section 1 can be expressed as the computation of the largest positive

invariant set [10] which is included inside a given set X . 

A set A is positive invariant for the system (1) if for any trajectory x ( ·), we have 

x (0) ∈ A , t ≥ 0 �⇒ x (t) ∈ A . (6)

Given a set X , we denote by In v + (f , X ) , the largest subset of X (with respect to the inclusion) which is positive invariant.

The largest set exists and is unique, due to the fact that the set of positive invariant sets is a complete lattice with respect

to the inclusion ( e.g. , the union or the intersection between two positive invariant sets is positive invariant). From [3] , we

know that 

x a ∈ In v + (f , X ) ⇔ ϕ f ([0 , ∞ ] , x a ) ⊂ X . (7)

As a consequence, In v + (f , X ) can be defined in two different manners 

In v + (f , X ) = 

⋃ { A ∈ P(X ) | A is positive invariant } 
= { x a ∈ R 

n | ϕ f ([0 , ∞ ] , x a ) ⊂ X } (8) 

where P(X ) is the power set of X . 

The two following theorems show that our two sets F 

+ 
[ x 0 ] 

and G 

+ 
[ t 0 ] , [ x 0 ] 

can be defined in terms of positive invariant sets.

Theorem 1. We have 

F 

+ 
[ x 0 ] 

= R 

n \ In v + (−f , R 

n \ [ x 0 ] ) (9) 

where \ is the set theoretic difference operator (i.e., A \ B = { x ∈ A | x / ∈ B } ) and −f is the opposite of f (i.e., ∀ x , −f (x ) + f (x ) = 0 ) .

Proof. Take an element x a of In v + (−f , R 

n \ [ x 0 ] ) , as illustrated by Fig. 1 , we have 

x a ∈ In v + (−f , R 

n \ [ x 0 ] ) 

⇔ ϕ −f ([0 , ∞ ] , x a ) ⊂ R 

n \ [ x 0 ] 
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Fig. 2. Illustration of the set G + 
[ t 0 ] , [ x 0 ] 

. The orange trajectory is outside G + 
[ t 0 ] , [ x 0 ] 

since it never reaches [ t 0 ] × [ x 0 ]. The black trajectory is included in G + 
[ t 0 ] , [ x 0 ] 

. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 

 

⇔ ∀ t ≥ 0 , ϕ −f (t, x a ) ∈ R 

n \ [ x 0 ] 

⇔ ∀ t ≥ 0 , ϕ −f (t, x a ) / ∈ [ x 0 ] 

⇔ ¬ (∃ t ≥ 0 , ϕ −f (t, x a ) ∈ [ x 0 ] ) 

⇔ ¬ (∃ x 0 ∈ [ x 0 ] , ∃ t ≥ 0 , ϕ −f (t, x a ) = x 0 ) 

⇔ ¬ (∃ x 0 ∈ [ x 0 ] , ∃ t ≥ 0 , ϕ f (t, x 0 ) = x a ) 

⇔ ¬ (x a ∈ F 

+ 
[ x 0 ] 

) . 

As a consequence, the two sets F 

+ 
[ x 0 ] 

and In v + (−f , R 

n \ [ x 0 ] ) are complementary. �

Theorem 2. We have 

G 

+ 
[ t 0 ] , [ x 0 ] 

= R 

n \ In v + (g , Z ) (10)

where 

g (t, x ) = 

(
−1 

−f (t, x ) 

)
, Z = R 

n +1 \ [ t 0 ] × [ x 0 ] . 

Proof. Take an element ( t a , x a ) of In v + (g , Z ) , as illustrated by Fig. 2 , we have 

(t a , x a ) ∈ In v + (g , Z ) 

⇔ ϕ g ([0 , ∞ ] , (t a , x a )) ⊂ Z 

⇔ ∀ t 1 ≥ 0 , ϕ g (t 1 , (t a , x a )) ∈ Z 

⇔ ∀ t 1 ≥ 0 , ϕ g (t 1 , (t a , x a )) / ∈ [ t 0 ] × [ x 0 ] 

⇔ ∀ t 1 ≥ 0 , 

(
−t 1 + t a 

ϕ −f (t 1 , x a ) 

)
/ ∈ [ t 0 ] × [ x 0 ] 

⇔ ∀ t 1 ≥ 0 , −t 1 + t a / ∈ [ t 0 ] ∨ ϕ −f (t 1 , x a ) / ∈ [ x 0 ] . 

Taking the contraposite, we get 

(t a , x a ) / ∈ In v + (g , Z ) 

⇔ 

{∃ t 1 ≥ 0 , −t 1 + t a ∈ [ t 0 ] 
∧ ϕ −f (t 1 , x a ) ∈ [ x 0 ] 

⇔ 

{∃ t 1 , t 1 ≥ 0 , −t 1 + t a ∈ [ t 0 ] 
∧∃ x 0 ∈ [ x 0 ] , ϕ −f (t 1 , x a ) = x 0 . 

If define t 0 = t a − t 1 , we get 

(t a , x a ) / ∈ In v + (g , Z ) 

⇔ 

{∃ t 0 , t a − t 0 ≥ 0 , t 0 ∈ [ t 0 ] 
∧∃ x 0 ∈ [ x 0 ] , ϕ −f (t a − t 0 , x a ) = x 0 

⇔ 

{∃ t 0 ∈ [ t 0 ] , t a − t 0 ≥ 0 , ∃ x 0 ∈ [ x 0 ] 
ϕ −f (t a − t 0 , x a ) = x 0 
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Fig. 3. Illustration of a part of a maze where a possible trajectory is shown in orange. The { [ x i ] } i ∈{ 1 , ... , 6 } form a paving of X . (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

⇔ 

{∃ t 0 ∈ [ t 0 ] , t a − t 0 ≥ 0 , ∃ x 0 ∈ [ x 0 ] , 
ϕ f (t a − t 0 , x 0 ) = x a 

⇔ (t a , x a ) ∈ G 

+ 
[ t 0 ] , [ x 0 ] 

. 

We have thus proved that In v + (g , Z ) and G 

+ 
[ t 0 ] , [ x 0 ] 

are two complementary sets. �

3. Bracketing the largest invariant set 

Given a set X ⊂ R 

n , the search set , which is bounded, we will show in this part that the set In v + (f , X ) can be bracketed

from inside and outside using the algebra of mazes . By combining the inner [19] and the outer [18] approach, which were

used separately before and used mazes algebra, we provide an efficient method to bracket the set In v + (f , X ) . Indeed, less

bisections of the state space will be required because of the simultaneous characterization from inside and outside. 

Maze. We will now recall briefly the main ideas behind mazes . The difficulty to work with trajectories is that the di-

mension of the trajectory space is infinite. Therefore we need a mathematical object to grasp and work with trajectories:

the maze s. Mazes was introduced using the framework of Constraint Network theory to address this problem. A constraint

network [14] is composed of a set of variables, constraints and domains. Here, the variables are the paths of R 

n that are

consistent with (1) and the unique constraint is “the path should start from the initial condition [ x 0 ]”. Mazes are a type of

domains that allow to enclose paths, they are composed of: 

• A paving P which covers X , 

• A polygon in each box [ p ] of P that encloses all the possible trajectories inside the box, 

• Doors on the boundary of each box [ p ] that allow trajectories to leave or enter inside polygons. In our implementation,

doors are union polygons (one per face of [ p ]). We have two types of doors: output doors from which the trajectories are

allowed to leave the box [ p ], and the input doors from which they are allowed to enter inside [ p ]. 

Fig. 3 shows a representation of a part of a maze where leaving doors are painted blue and entering doors are painted

red for box [ x 4 ]. 

From the unique constraint, we can deduce two contractors that will be applied on doors and polygons [1,4,5] : 

• A flow contractor that contracts the polygons and doors consistently with f , 

• A continuity contractor that contracts the polygons and doors of a box p according to its neighbors. 

Fig. 4 illustrates the principle of the continuity and the flow contractors. The blue output door of [ a ] is contracted accord-

ing to the red input door of [ b ] using the continuity contractor s. The polygons associated to [ a ] and [ b ] are then contracted

using the flow contractor . This last contraction could have then contract the doors of each boxes but this is not the case in

the example of Fig. 4 . 

Algorithm. To combine the outer and the inner approach we will use two mazes , one for the inner and one for the outer

approximation. The inner approximation is very similar to the outer method as it works on a complementary approach as

described in [17] . We propose the following algorithm to bracket the largest invariant set: 

1. Initialize the two mazes , one for the inner and one for the outer approximation, with the initial condition which

means that the doors and polygons which correspond to the initial condition are set consistently with it; 
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Fig. 4. Illustration of the flow and the continuity contractors for a maze . The maze at the top is before the contraction and the bottom maze is after 

applying the contractors. The gray cones represent the union of all possible trajectories consistent with f in the box. This cone can be computed using 

interval computation. The orange curve is a possible path enclosed by the maze . (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article). 

Fig. 5. Bracketing F + 
[ x 0 ] 

for the Van der Pol system. The magenta set corresponds to the inner approximation of F + 
[ x 0 ] 

and the union of the yellow and 

magenta set to the outer approximation of F + 
[ x 0 ] 

. The initial box [ x 0 ] is painted in red and the blue area corresponds to the set where there is no solution. 

Gray cones correspond to the union of all directions of the vector field in each boxes. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article). 

 

 

 

 

2. Apply the contractors on each maze until a fix point is reached for the inner and the outer maze ; 

3. Show the result OR bisect all boxes where the inner and the outer polygons are not empty, and go to Step 1. 

Test-cases 

We will now test our algorithm on two test-cases. All computations were conducted on a single processor i5-

3230M@2.60 GHz for all test-cases. 

Test-case 1. Van der Pol system . Consider the system described by the state equation: {
˙ x 1 = x 2 
˙ x 2 = 

(
1 − x 2 1 

)
· x 2 − x 1 

(11)

The initial vector satisfies x 0 ∈ [ x 0 ] = [ −4 , −3] × [3 , 4] . Our algorithm is able to characterize the inner and outer approxima-

tion of the forward reachable set F 

+ 
[ x 0 ] 

as shown in Fig. 5 . The algorithm was stopped after 17 steps which takes 8 s. The

search set, which also corresponds to the frame box of the figure, corresponds to X = [ −6 , 6] × [ −6 , 6] . 
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Fig. 6. Bracketing F + 
[ x 0 ] 

for the Car on the hill system. The color code is the same as Fig. 5 . Now, since the boundary of the approximations intersets the 

boundary of the initial box [ x 0 ], we cannot guarantee anymore that the blue area is outside F + 
[ x 0 ] 

. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have tested this example on the solver CAPD [23] which is the state of the art of interval integration. It works with

a guaranteed Lagrangian approach. We start the simulation at t = 0 , the solver rapidly diverges and stops computing at

t = 0 . 57 with the answer x ∈ [ −722 . 795 , 716 . 825] × [ −3 . 24089e +8 , 3 . 24089e +8 ] . This is due to the fact that the initial box

is large. 

Test-case 2. Car on the hill system [12] . Consider the system described by the state equation ⎧ ⎨ 

⎩ 

˙ x 1 = x 2 

˙ x 2 = −9 . 81 sin 

(
1 . 1 
1 . 2 

sin (x 1 ) − 1 . 2 sin (1 . 1 x 1 ) 

2 

)
− 0 . 7 x 2 + 2 . 0 . 

(12) 

and the initial box [ x 0 ] = [ −1 , 1] × [ −1 , 1] and a search set X = [ −2 , 13] × [ −6 , 6] . As in [18] we are able to characterize the

outer approximation of the set. The main improvement is to be able to characterize an inside and outside approximation in

the same time: the need to bisect boxes is then reduced. Indeed, the bisection effort of the algorithm is now focused on the

boundary between the inner and the outer approximation whereas on large outer approximation zones that were bisected

in previous works [18] . The result is shown on Fig. 6 . The algorithm was stopped after 18 steps which takes 30 s. 

One of the drawback of our algorithm is that when trajectories leave the search set X , we are not able to conclude if that

they will not come back later. This is the case on Fig. 6 where trajectories can leave the search set X on its right top part. 

The next section shows how this problem can be addressed, at least for some specific cases, by considering unbounded

search boxes. 

4. Dealing with infinity 

The previous section explained how to compute inner and outer approximations of In v + (f , X ) where X is a bounded

box. Now, to characterize a positive graph, the set X is not bounded anymore and the abstract interpretation approach will

need to handle unbounded intervals. Solving equations on an infinite intervals can still be performed combining interval

constraint propagation with the generalized interval arithmetic [8] . In this arithmetic an interval is a connected subset of

the extended real numbers, the set of all real numbers augmented with −∞ and + ∞ . For instance, with this arithmetic, 

[ −∞ , ∞ ] 2 ∩ ([ −∞ , 2] 3 − [ −∞ , ∞ ] 2 ) 

= [0 , ∞ ] ∩ ([ −∞ , 8] − [0 , ∞ ]) 

= [0 , ∞ ] ∩ [ −∞ , 8] = [0 , 8] . 

Similar results could have been obtained and probably made more accurate, using the arithmetic of infinity [22] . 

Example . To illustrate the propagation process, consider the three following equations: { 

(C 1 ) : y = x 2 

( C 2 ) : xy = 1 

( C 3 ) : y = −2 x + 1 . 

Using interval propagation, we want to prove that this system has no solution. To each of the variables, we assign the

domain [ −∞ , ∞ ] . Then, we contract the domains with respect to the constraints in the following order: C 1 , C 2 , C 3 , C 1 , C 2 
and we get empty intervals for x and y . A geometric interpretation of the propagation is given on Fig. 7 . 
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Fig. 7. Illustration of the propagation procedure. 

Fig. 8. Illustration of the maze with unbounded boxes. The orange path corresponds to a trajectory that reaches the bottom infinity box but stays inside it 

according to the green doors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 

 

 

 

 

 

 

 

The resulting interval computation is as follows: 

(C 1 ) ⇒ y ∈ [ −∞ , ∞ ] 2 = [0 , ∞ ] 

(C 2 ) ⇒ x ∈ 1 / [0 , ∞ ] = [0 , ∞ ] 

(C 3 ) ⇒ y ∈ [0 , ∞ ] ∩ ( ( −2 ) . [0 , ∞ ] + 1 ) 

= [0 , ∞ ] ∩ ( [ −∞ , 1] ) = [0 , 1] 

x ∈ [0 , ∞ ] ∩ ( −[0 , 1] / 2 + 1 / 2 ) = 

[ 
0 , 

1 

2 

] 
(C 1 ) ⇒ y ∈ [0 , 1] ∩ [0 , 1 / 2] 2 = [0 , 1 / 4] 

(C 2 ) ⇒ x ∈ [0 , 1 / 2] ∩ 1 / [0 , 1 / 4] = ∅ 
y ∈ [0 , 1 / 4] ∩ 1 / ∅ = ∅ . 

until a steady box (also called the fixed point) is reached. 

Bisection . To apply the maze method, we need to bisect intervals that can be unbounded. Now, in the interval literature,

only bounded intervals of R are bisected and the cut point is the center. For instance, the interval [ −1 , 3] is bisected into

[ −1 , 1] and [1, 3]. Here, to bisect unbounded intervals we propose to fix a support interval [ a , b ] and to never allow any

bisections outside this support interval. For instance the interval [ −∞ , ∞ ] is bisected into [ −∞ , a ] and [ a , ∞ ]; the interval

[ a , ∞ ] is bisected into [ a , b ] and [ b , ∞ ]. But the intervals [ −∞ , a ] and [ b , ∞ ] are never bisected. They are considered

as ’too small’. 

5. Bracketing the largest invariant set with unbounded search set 

Method . We are now able to build mazes with infinite boxes. We will use 2 · n extra unbounded boxes around a search set

Y to pave R 

n . Fig. 8 shows an example of an unbounded set X composed of the bounded search set Y and extra unbounded
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Fig. 9. Bracketing the positive graph of the sinusoidal system with an unbounded search set. The color code is the same as Fig. 5 . The surrounding boxes 

of the blue frame are the infinite boxes where their polygon is colored in orange. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article). 

Fig. 10. Bracketing the forward reachable set of the Car on the hill system with an initial condition and an infinite search space. Infinite boxes are orange 

colored and gray circles mean that all directions might be possible inside the box. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

boxes { [ b 1 ] , . . . , [ b k ] } such as X ∈ { Y ∪ [ b 1 ] ∪ , . . . , ∪ [ b k ] } . We can use the same algorithm from Section 3 as we are able to

apply contractors on unbounded domains. Indeed, we are able to compute the cone of all direction vectors inside unbounded

boxes to apply the flow contractor and able to apply the continuity contractor . 

In this part, we will illustrate the method of infinite extension to compute F 

+ 
[ x 0 ] 

or G 

+ 
[ t 0 ] , [ x 0 ] 

when the search box X is

unbounded. 

Test-case 3. Sinusoidal system . Consider the system described by the state equation 

˙ x = − sin x + e (13) 

with the initial condition t 0 ∈ [0.3, 0.5] and x 0 ∈ [ −0 . 5 , 0 . 5] and where e ∈ [ −0 . 1 , 0 . 1] . We choose X = [0 , 5] × [ −2 , 2] . As

illustrated by Fig. 9 trajectories leaves the search set on the right part of the figure only and that they cannot come back

on the left part of the figure. This result is consistent with the state equation where time always increases and forces

trajectories to not come back on the right of the figure. If we want to study more globally this system, we now know that

it is only necessary to extend the search set on the right part of the figure. The algorithm was stopped after 10 steps which

takes 0.7 s. 

Test-case 4. Car on the hill system. We now take back test-case 2 with the example of the Car on the hill system where

the bounded search set was X = [ −2 , 13] × [ −6 , 6] . Fig. 10 shows the result of the algorithm with infinite boxes. Unlike the

result of test-case 2 , it was not possible here to contract the outer approximation (no blue zones). In fact, we have seen that

trajectories were able to leave the bounded search set on the right part of Fig. 6 in Section 3 . According to the cones of all

possible trajectories of the unbounded boxes, theses trajectories can re-enter inside the search-set (see the right cone). This

is why we cannot have a better result of the outer approximation. A larger zone should be studied: an extend of the search

space on the right part of the figure is required to improve the result. The algorithm was stopped after 18 steps which takes

190 s. 
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Fig. 11. Bracketing the forward reachable set of the Car on the hill system with an initial condition and an infinite search space. The search space was set 

larger than Fig. 10 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test-case 4-bis. Fig. 11 shows the result of our algorithm on the Car on the hill system with a larger bounded search set

X ∈ [ −2 , 17] × [ −6 , 6] . We can see that no trajectories leave the bounded search set: this is why there is an empty polygon

in all of the infinite boxes and why we were able to contract the outer approximation. All the trajectories stay inside X . The

algorithm was stopped after 16 steps which takes 14 s. 

6. Conclusion 

In this paper, we have proposed a new approach to bracket the solutions of an ordinary differential equation with un-

certain initial conditions. We have shown that this problem can be seen as an enclosure of the positive invariant set of the

system. By using mazes to work with trajectories and by using tools from constraint programming and abstract interpretation

theory, we have been able to propose an algorithm to compute some inner and the outer approximations of the solution of

our problem. Finally we have extended the use of mazes to unbounded set which increases the number of problems that

our method can deal with. The method was also tested on several test-cases. 

Our method needs to bisect the state space, contrary to most interval integration methods making our approach Eulerian.

On the one hand, this implies an exponential increases of the computational complexity with respect to the dimension of

the state space. This makes our method impracticable with high dimensional systems. 

In a near future, we plan to extend our approach to dealing with hybrid systems [11] when jumps could occur with

respect to some guard conditions. 
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