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Abstract—This paper describes a high level strategy to guar-
antee the revisit of a target in underwater environment by an
Autonomous Underwater Vehicle (AUV) subject to high drift in
position and equipped with specific exteroceptive sensors such
as sonars or cameras. It assumes the availability of a certain a
priori map of the environment. Firstly, based on the Field Of
View (FOV) of the exteroceptive sensor and the characteristics
of the different landmarks in the map, a registration map is
computed. This indicates the sets of the robot configurations
able to detect the different landmark considered. All these sets
called relocation areas enable to relocate the robot position and
reduce its uncertainty by detecting the geolocalized landmarks.
These relocation areas are the nodes of a hyper-graph. Between
two nodes, the vehicle navigates by dead-reckoning. Based on the
backward reach set of a registration map, the links between the
different registration maps can be created according to a motion
model taking into account uncertainties. Finally, a backward
graph search minimizes a cost function to propose a strategy of
revisit of intermediate landmarks to connect the starting position
and the relocation area(s) of the target you would like to revisit.

Index Terms—motion planning, uncertainties, guarantee, set-
membership, interval analysis, graph search, AUV, sonar

I. INTRODUCTION

Revisiting previously located targets in underwater environ-

ment may be of great interest in many and various domains.

Indeed, some Features Of Interest (FOI) may be revealed

during a survey mission conducted usually by a surface vessel

or an Autonomous Underwater Vehicle (AUV) equipped with

ranging and imaging sonar to map the seabed. The FOI could

be an old wreck in archaeological scientific missions [1] that

would be interesting to investigate more with cameras [2] to

determine the origin and the age of the vessel for example.

In Mine CounterMeasure (MCM) missions [3], it is vital to

identify and neutralize some potential dangerous objects called

mines to secure a naval transit or to invade an enemy harbour.

This task, usually performed by human divers, is intended to

be replaced by autonomous robot to avoid any human loss.

Due to the self detonation of the robot for mine clearance, the

design of the robot is aimed to be low cost.

Revisiting a previously mapped object, called a target, in

underwater environment with a low cost AUV is a challenging

task due to the lack of absolute positioning system (GPS).

Acoustic beacons navigation [4] may provide accurate local-

ization but requires setting up some beacons in the search area

and has limited range. Navigation based on Inertial Navigation

System (INS) generally coupled with a Doppler Velocity Log

(DVL) has been widely used in subsea operations but are too

expensive for the low cost design. If an a priori map of the

environment is available, an alternative navigation solution is

possible even for long range mission. This map may contain

some reference points called landmarks such as man-made

objects, rocks or sand-ripples regions for example and a FOI

such as a mine called the target. The landmarks and the target

may have been detected by an automatic algorithm or manually

by an operator in the sonar images of a previously survey

mission. Based only on an exteroceptive sensor such as a

Forward Looking Sonar (FLS) and a compass for the heading

measurement, renavigating directly this environment with this

low cost AUV does not guarantee the revisit of the desired

target. Indeed, it requires heavy data association algorithms

[5] to match the relative map to the reference map to self

locating relatively to the desired target. Moreover, it requires

a diving position near a landmark field to perform the multi-

hypotheses data association. In [6] a navigation based on a

video mosaic previously computed with a sequence of camera

images is proposed. The position of the robot is estimated by

registering the current image to the mosaic and then it is able

to correct the displacement from the defined path. However,

the use of an optical camera requires a minimum of visibility

and to navigate close to the seabed.

A path finding strategy is then proposed in this article to

provide a strategy for the revisit of the FOI based on these

geolocalized landmarks.

Path planning [7] [8] has been the topic of many researches

in any kind of environment. Nevertheless when a robot op-

erates in a real world and Global Positioning System (GPS)

denied environment such as the underwater environment, it

is subject to drift since it relies on odometric techniques

to estimate its configuration, making mission objectives very

difficult to complete. When the robot has a reliable navigation,

a simple path planning algorithm, providing a nominal path,

can be proposed [9]. However, due to the low cost design,
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a such planned path cannot be followed correctly since the

error in position increases rapidly. To overcome this issue, the

uncertainties have to be taken into account at the planning

phase.

Path planning with uncertainty was mainly interested in

extending the methods that do not consider uncertainty. Some

are focused only on the feasibility of the path with the

uncertainty propagation to avoid obstacles, but in this article

the focus is on the concept of landmark relocation to reduce

the uncertainty accumulated during the navigation since an

a priori map is available. The notion of registration maps

based on an exteroceptive sensor has been introduced by the

Sensory Uncertainty Fields (SUF) in [10]. It indicates in the

state space represented by a grid the relocation ability of

an exterceptive measurement at each pose in the grid but

the path planner didn’t take into account the propagation of

the uncertainty along the path. It only provides a path that

uses the exterceptive sensor at the best. This notion has been

proposed in [11] as ”coastal navigation” to make the analogy

to ships navigation when GPS is not available. The concept

of relocation areas has already been studied in [12] where

”disk” relocation areas are considered. If the robot enters one

of these zones, its uncertainty is reset to zero or a small

value and remains constant in this zone. The planner is then

based on the notion of preimages backchaining [13] to find a

motion strategy despite the uncertain heading in the case of

a holonomic system. In [14], they propose a motion strategy

composed of sensor-based motion commands in a polygonal

obstacles environment that guarantee the reachability of the

walls and the relocation areas defined with a potential field

method. The notion of relocation region has been defined

as ”detection region” in [15] where a discrete environment

space in the form of a grid is considered. The uncertainty

of the robot along the path is propagated in the augmented

pose-uncertainty space [16]. However, even if the step size

is strongly reduced, the planner will spend most of time

outside the relocation areas. In [17] [18] [19], a sampling

motion planner called roadmaps is proposed [20] where the

propagation of the uncertainty along Dubins paths [21] is used

to take into account non-holonomic constraint. The relocation

process is only active when the uncertainty accumulated can

be reduced. To overcome the non-holonomic issue, a sampling

based algorithm called Rapidly-exploring Random Tree (RRT)

is effecient. It has even been extended to set-membership

approach to propose a robust path in [22]. However the

concept of relocation is only based on the more likely position

(mean position) [23] by making sensor simulation [24] around

this position. It provides a ”nominal path” as in [19] and

assumes the mean of the system is fully controllable, that

means the controller is always able to drive the state estimate

on the desired path as in the other sampling algorithm with

uncertainty propagation called Belief Road Map (BRM) [25].

The solution adopted in the paper is the use of a registration

map computed according to the visibility area of the exterocep-

tive sensor and then a motion planner inspired by the work in

[12] on the preimages backchaining of some relocation areas.

This paper is organised as follows. Firstly the problem

statement is proposed. Next the concept of registration maps

is proposed based on a set membership method via interval

analysis. In Section IV the motion planner under uncertainty

is presented based on the backprojection of the registration

maps to create the edges in the graph construction. Finally

Section V develops an experiment of the motion planner to

guarantee the revisit of a target in underwater context based

on simulation.

II. PROBLEM STATEMENT

The problem of the motion planning proposed in this article

consists in finding a sequence of open-loop strategies μi to join

a goal region despite the uncertainties on the motion. This goal

region corresponds to the robot poses that are able to detect the

target (FOI) and is defined by the registration map associated

to this target. The high-level open-loop plan π can then be

expressed as follows:

π = (μ1, μ2, ..., μk) (1)

which is a sequence of k motion commands. These motion

commands may refer to high-level strategies such as ”Go to

the North”, ”Follow the contour of a sand ripples region” or

”Visually guide the robot to a defined position”. These motion

commands depend on exteroceptive measurements such as

sonars or compass.

It is assumed that the robot is equipped by a compass that

provides the heading information. However, this latter is not

accurate and it will be assumed that it lays in a bounded

interval to propose a set-membership approach of the motion

planning contrary to probabilistic approaches [26]. It will then

be assumed that the vehicle is able to follow an uncertain

heading as in [12]. Moreover, the commands ”Visually guide

the robot to a defined position” or ”Follow the contour of a

sand ripples region” correspond to visually guided navigation

[27] based on the images collected by a camera or a sonar

and a detection algorithm. It is then assumed that a low-

level controller exists and is able to perform these tasks. The

open-loop plan is actually composed of closed-loop motion

commands.

In this article, the focus will be on the directions (headings)

to follow to navigate between the registration maps despite

the presence of uncertainty in the direction to follow. The

global plan π is then composed of alternated phases of

reachability of a landmark and relocation process to join the

departure area to reach the next landmark. This second phase

corresponds to visually guided motion and is not treated here.

The directions to follow are based on the backprojection of

a registration map associated to a landmark. It will then be

defined the omnidirectional and directional backprojections of

a set according to the uncertainty on the direction coming from

the compass measurements.

For simplicity reasons, only a 2D environment is considered.

This assumption may be envisaged when the robot navigate at

a constant altitude above the seabed. The landmarks are then

only subsets of R
2. It will be assumed that the landmarks in
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b2f(p1,A) ∩ B �= ∅
p2

f(p2,A) ∩ B �= ∅

Fig. 1: Registration map concept. P is the set of parameter

p of the function f such that after the transformation of the

set A by f, it intersects B. A parameter vector p2 outside the

solution set does not enable the intersection between B and

the set A after transformation.

the map are detectable by the sonar or the camera embedded in

the robot. Moreover the map is static and it assumes no change

in the map. Moreovoer, it will be assumed indistinguishable

landmarks meaning that the robot cannot make the difference

between the different landmarks. The idea is to provide a

strategy only based on the a priori landmarks present in the

map. Now the concept of registration maps has to be firstly

defined since it provides the set of robot poses able to relocate

the robot position with respect to the geolocalized landmarks.

III. REGISTRATION MAPS

The registration map problem aims at finding the set P that

corresponds to the robot configurations able to detect a part

or entirely a landmark B based on the visibility area A of

the sensor. It consists then in finding the parameters vector

p ∈ P of a possibly non linear transformation f such that

f(p,A) ∩ B �= ∅ as depicted in Figure 1. p1 belongs to the

set P meaning that after transformation by f, the visibility

area A intersects B represented by the blue area. On the

contrary, p2 does not belong to P which leads to an empty

intersection between B and the transformed set f(p2,A).
This is defined as the map registration constraint. The

function f may correspond to a translation, a rotation or the

composition of both for example. This constraint is justified

by the fact that detecting an element of a landmark enables to

relocate the robot with respect to this landmark. The set B may

be reduced to a singleton which is called a punctual landmark.

A. Visibility area of the sensor

The embedded exteroceptive sensor has a limited FOV such

as sonars or cameras. It is assumed a patch exploration [28]

meaning that the visibility area is not reduced to a singleton

or a line sweep. This can be represented as a constraint. The

visibility area is defined as the sensor field of view in [29].

Due to the assumption of a 2D environment, the visibility area

is then also a subset of R2. The visibility area V at a defined

robot position x can be defined as follows:

V(x) = {z ∈ R
2|ϕ(z, x) � 0} (2)

where ϕ : R2 × R
3 → R is the visibility function which is

assumed to be continuous.
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Fig. 2: Visibility area of a FLS at the pose defined by the

yellow AUV. The light gray boxes are inside the set, the white

boxes outside and the dark gray ones no conlusion can be

made. Red pie is the enclosure of the solution set.

In this article, under the assumption of a forward looking

sensor such as FLS (Forward Looking Sonar), the visibility

area can be defined as follows:

V(x) = {z ∈ R
2|
√
(z1 − x1)2 + (z2 − x2)2 ∈ [Rmin, Rmax]

and atan2(z2 − x2, z1 − x1)− x3 ∈ [−θ3, θ3]} (3)

where x = (x1, x2, x3) = (x, y, θ) is the pose of the robot,

θ3 is the half aperture angle and Rmin (Rmax) is the minimal

(maximal) range of the sensor. The whole aperture angle is

then 2θ3.

A separator [30] can be built to provide an inner and an

outer approximation of the set V(x) at a defined pose x using

a paver, called SIVIA (Set Inversion Via Interval Analysis)

[31], based on interval analysis [32]. This set is represented

at the particular pose x = (0, 0, 0◦) in Figure 2 using a polar

separator [33] for a range of detection between 4 and 20m,

and an half aperture angle θ3 = 20◦.

B. Registration map computation

Registration usually refers to image registration [34] or

points cloud registration [35]. It has been applied to the

underwater environment in [36] but here the registration map

indicates the robot poses that are able to detect a considered

landmark. It provides the robot poses that enable to relocate

the robot position with respect to the geolocalized landmark.

The registration map problem is formulated as a set projec-

tion. Consider a function:

f :

{
R

2 × R
p → R

2

(a, p) → f(a, p) (4)
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With p ∈ R
P , A ⊂ R

2, B ⊂ R
2 and Z ⊂ R

2 × R
p, the

following notations are used:

f(A, p) = {b|∃a ∈ A, b = f(a, p)} (5)

f−1(B) = {z = (a, p)|∃b ∈ B, b = f(a, p)} (6)

projp(Z) = {p|∃a, (a, p) ∈ Z} (7)

where the operator proj() has been introduced in [37].

By considering the set:

P = {p ∈ R
p|f(A, p) ∩ B �= ∅} (8)

where A is the visibility area of the sensor at the particular

pose x = (0, 0, 0◦) and B ⊂ R
2 is the landmark.

A transformation vector p is consistent if after the transfor-

mation of A, it intersects the set B. This leads to:

f(A, p) ∩ B �= ∅ (9)

⇔ ∃a ∈ A, f(a, p) ∈ B (10)

⇔ ∃a ∈ A, (a, p) ∈ f−1(B) (11)

⇔ ∃a, (a, p) ∈ R
2 × R

p ∧ (a, p) ∈ f−1(B) (12)

According to the notation in Equation 7, it results then:

P = projp((A× R
p) ∩ f−1(B)) (13)

Considering the general case where the function f corre-

sponds to the composition of a rotation and a translation, the

parameter vector p is then p = (p1, p2, p3) ∈ R
3 with (p1, p2)

the parameters of the 2D translation and p3 the angle of the

rotation in the 2D plane. The final function can be written as

follows:

f :

⎧⎨
⎩

R
2 × R

3 → R
2

(x, p) → R(p3)

(
x1

x2

)
+

(
p1
p2

)
(14)

where R corresponds to the 2D rotation of angle p3:

R(p3) =

(
cos(p3) − sin(p3)

sin(p3) cos(p3)

)
(15)

This general case enables to take into account the heading

of the vehicle and then the visibility area with respect to the

vehicle. P is therefore a subset of R
3 where an inner and an

outer approximation can be computed.

Consider for example a random shaped landmark B as

depicted in Figure 3(a) where an image separator [38] [39] has

been built from a binary image. Since the set P is a subset

of R
3, some 2D slices at fixed values are provided. At the

defined heading θ = p3 = 0◦, the registration map in the

(x − y) plane associated to the shape landmark B and the

visibility area (given in Figure 2) is provided in Figure 3(b)

according to the constraint in Equation 8. Some AUV poses

with their associated visibility area are drawn to understand

the solution set. At the fixed value y = p2 = 75m, the solution

is provided in the (x− θ) plane. The corresponding poses of

the red dots are represented in Figure 3(d) where it can be

noticed that all the selected poses enable to detect a part of

the landmark.
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(a) Shape landmark B.
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(b) Registration map for a heading
defined at 0◦.
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(c) Registration map with y = 75m
fixed represented in the (x − θ)
plane.
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(d) Representation in the (x − y)
plane of the AUV poses defined by
the red dots in the figure (c).

Fig. 3: Representation of the registration map for the FLS and

the shape landmark shown by the red contour. The visibility

area is shown by blue pies.

This formalization enables to compute the registration map

for any landmark including punctual landmark.

IV. MOTION PLANNER

The design of the robot is low cost and therefore it is subject

to high drift in position. Going straight forward from one

relocation area to another is not always possible. The planning

approach developed here is inspired by the open-loop strategy

called preimage backchaining, originally proposed in [13], but

solved here with a set-membership approach. This planning

approach has been successfully used in [12] to propose a

landmark based navigation where the relocation areas were

only 2D disks.

A. Motion model

A robot can be described by an evolution function. Since

it is assumed a 2D environment, the Dubins dynamics model

is preferred for simplicity reasons. This model is defined as

follows: ⎧⎪⎨
⎪⎩

ẋ = v cos θ

ẏ = v sin θ

θ̇ = w

(16)

where u = (v, w) is the command of the system with v the

linear speed and w the angular rate. It leads to the so-called

Dubins curves [21].

Since it is assumed that the vehicle is able to follow an

heading command μi, an holonomic motion model is proposed

4



through the integration of this Dubins model with w = 0. The

trajectory of the robot is then given as follows:

fH :

⎧⎪⎪⎨
⎪⎪⎩

R
3 × R × R

2 → R
3

(x0, t, p) →
⎛
⎝x0

y0
θ0

⎞
⎠+

⎛
⎝ v cos(θ0 + δθ)t

v sin(θ0 + δθ)t

δθ

⎞
⎠
(17)

with p = (v, δθ) and v is the speed along the straight motion.

δθ corresponds to the error on the direction θ0.

As some relocation areas will be proposed in R
2, the 2D

version is defined as follows:

fH2 :

⎧⎨
⎩

R
3 × R × R

2 → R
2

(x0, t, p) →
(
x0

y0

)
+

(
v cos(θ0 + δθ)t

v sin(θ0 + δθ)t

)
(18)

where the angle of arrival has been removed. Only the (x, y)
coordinates are important.

According to the model in Equation 17, the pose of the

robot at any time is given as follows:

x(t) = fH(x0, t, p) (19)

where the vector p corresponds to the uncertain parameters.

As mentioned in Section II, the robot is able to follow

uncertain heading. This uncertainty comes from the error on

the compass that can be inflated to increase the guarantee.

An error αθ is then introduced. The error δθ on the heading

measurement lies then in an interval [−αθ, αθ]. αθ is defined

at 5◦ in the following of this article. An uncertainty on the

speed αv is also introduced, the speed v belongs then to

the following interval v ∈ vd · [1 − αv, 1 + αv] where αv

corresponds to a rate (10%) and vd to the desired speed

(generally approximately 1m/s). However, the speed will only

influence when the landmark may be reached and not on its

reachability when using directional backprojection.

The vehicle considered is then an highly manoeuvrable

vehicle and is able to turn on itself to orient its head toward

the desired direction. Based on this motion model, the back-

projection are now defined.

B. Back projection

According to the motion model that describes uncertain

linear trajectories due to uncertain directions in Equation 17,

directional backprojections are defined in this article. This was

also defined in [12].

Two definitions of the directional backprojection can be

proposed.

1) Strong backprojection: The strong backprojection (SB)

[7] defines the set of robot configurations that guarantees to

reach a goal area A ⊂ R
3 despite the uncertainties on the

motion. This corresponds to the backward reach set of a set

A under a strategy μ. Since here the strategy is to follow a

particular direction θd, then μ = θd, and the 2D backward

reach set is defined as follows:

BACK(A, θd) = {x ∈ R
3|∀p ∈ [p], ∃t ∈ R

+,

x3 = θd and fH(x, t, p) ∈ A} (20)

where x = (x1, x2, x3) = (x, y, θd). Notice that actually it

corresponds to a subset of R2 since x3 is fixed at θd.

From this definition, the omnidirectional backprojection can

be defined:

BACKod(A) = {x ∈ R
3|∀p ∈ [p], ∃t ∈ R

+, fH(x, t, p) ∈ A}
(21)

where ’od’ means omnidirectional.

This can be reformulated as a set inversion problem:

BACKod(A) =
⋂

p∈[p]

⋃
t∈R+

f−1
H (A) (22)

The projection notation introduced in Section III is now

rewritten. Given two sets X ⊂ R
n and Y ⊂ R

p. Considering

the set Z = X × Y, the projection of a subset Z1 of Z onto

X, with respect to Y, is defined as follows:

projY
X
(Z1) = {x ∈ X|∃y ∈ Y, (x, y) ∈ Z1} (23)

which leads to the following definition of the omnidirectional

backprojection:

BACKod(A) = projP
X
(projT

X×P
(f−1

H (A))) (24)

where T is the domain of t, X is the domain of x and P is

the domain of the uncertain parameters p that is defined as

follows:

P = [p]
= [v]× [δθ] (25)

= (vd · [1− αv, 1 + αv])× [−αθ, αθ] (26)

which corresponds to a box. Since the speed only influences

when the landmark may be reached, the uncertainty on the

speed is removed as it does not influence the reachability of

the landmark. Only δθ is important in the reachability problem.

The set P can then be rewritten as follows:

P = [p]
= {vd} × [δθ] (27)

As it may be noticed, two levels of projection are needed in

Equation 22 which may be time consuming.

Under the assumption that the set A is connected, the

omnidirectional backprojection can be defined as follows:

BACKod(A) =
⋂

δθ∈{−αθ,αθ}
projT

X
(f−1

H (A)) (28)

where X = X1 × X2 × X3 is a subset of R3 and corresponds

to the domain of (x, y, θ) since all the trajectories are inside

the bounds θd −αθ and θd +αθ of the uncertain direction. δθ
is the single uncertain parameter in p.

5
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(a) 2D backward reach set of a disk
at the slice θd = 75◦.
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(b) (x, θd) representation of the
backward reach set for the slice at
y = 0m of the disk.
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(c) 2D backward reach set of a
shape at the slice θd = 0◦.
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(d) (x, θd) representation of the
backward reach set for the slice at
y = 50m of the shape.

Fig. 4: Example of slices of the backward reach set. The blue

line and the red dot in the figures on the right correspond

respectively to the direction of the 2D backward reach set and

the AUV pose in the figures on the left.

Similarly, the 2D backward reach set in the (x − y) plane

at a defined direction θd is defined as follows:

BACK(A, θd) =
⋂

δθ∈{−αθ,αθ}
projT

X
(f−1

H (A)) (29)

where X is now the domain of x and y only (X = X1 ×X2),

and the direction θd is directly imposed in the function fH .

Notice that a level of projection has been removed from

Equation 24 since it assumes a connected relocation area.

Due to the 3D representation of the omnidirectional

backprojection, some slices are provided in Figure 4 for

two relocation areas A: a disk and a random shape shown

by a red contour. These relocation areas are shapes in the

(x − y) plane then only the motion model fH2 in Equation

18 is sufficient. On the left, the directional backprojection

at a defined direction is depicted. That means if the robot

starts from any position inside the solution set (union of gray

boxes) at the defined direction, it will reach for sure the disk

or the shape despite the uncertainties on the direction. Notice

that the (x, θd) representation for the backward reach set of

the shape is actually cyclic since the fixed value y = 50m
crosses the shape.

2) Weak backprojection: The directional weak backprojec-
tion (WB) [7] is defined as follows:

WBACK(A, θd) = {x ∈ R
3|∃p ∈ [p], ∃t ∈ R

+

x3 = θd and fH(x, t, p) ∈ A} (30)

and the omnidirectional weak backprojection:

WBACKod(A) = {x ∈ R
3|∃p ∈ [p], ∃t ∈ R

+,

fH(x, t, p) ∈ A} (31)

Notice the difference with the strong backprojection that

guarantees all the trajectories will cross A contrary to the weak

backprojection that proves at least one uncertain direction

crosses A due to the uncertain parameter δθ.

According to the definition of the projection, the directional

weak backprojection can be computed as follows:

WBACK(A, θd) = projP×T

X
(f−1

H (A)) (32)

where X = X1 × X2 and the direction θd is directly injected

in the function fH .

Similarly, it can be defined:

WBACKod(A) = projP×T

X
(f−1

H (A)) (33)

where X = X1 × X2 × X3.

Some examples will be provided in the next subsection with

forbidden areas.

C. Back projection with forbidden areas

Due to the assumption of indistinguishable landmarks (or

relocation areas), these landmarks have to be taken into

account in the computation of the backward reach set of the

relocation area associated to a landmark. Define as O (”O”

like Obstacles), the set of connected forbidden areas Oi ⊂ R
3

which is given as follows:

O =
⋃

i∈{0,..,N}
Oi (34)

When the robot has to reach a relocation area A, it does

not have to cross another relocation area Oi due to the

possible wrong data association. These forbidden areas may

be obstacles too, and can be taken into account for obstacles

avoidance.

The omnidirectional backward reachability of a set A ⊂ R
3

considering forbidden areas O is given as follows:

BACKO

od(A) = {x ∈ R
3|∀δθ ∈ [−αθ, αθ], ∃t ∈ R

+,

fH(x, t, p) ∈ A and ∀δθ ∈ [αθ, αθ],

∀t ∈ R
+, fH(x, t, p) /∈ O}

= BACKod(A) ∩WBACKod(O) (35)

Due to the 3D representation of the omnidirectional

backprojection taking into accout another relocation areas,

some slices are provided in Figure 5 where the goal set to

reach is the disk A and the forbidden areas are O1 and O2
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(a) 2D backward reach set of a disk
at the slice θd = 45◦.
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(b) (y, θd) representation of the
backward reach set for the slice at
x = 10m.

Fig. 5: Example of slices of the backward reach set taking into

account forbidden areas. The blue line and the red dot in the

figure (b) correspond respectively to the direction of the 2D

backward reach set and the AUV pose in the figure (a).
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(a) 2D weak backprojection
WBACK(O1 ∪ O2, θd = 45◦).
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(b) 2D weak backprojection
WBACK(O1 ∪ O2 ∪ O3, θd =
45◦).

Fig. 6: Weak backprojection of forbidden areas at the defined

direction θd = 45◦.

(disks too).

However, Equation 35 is not always true especially when a

forbidden area lies behind the goal area as shown in Figure 6.

At the defined direction θd = 45◦, the 2D weak backprojection

considering only O1 and O2 as forbidden areas is shown in

Figure 6(a) which leads to the result in Figure 5(a) according

to Equation 35. If a third relocation area O3 is considered

with O1 and O2, the 2D weak backprojection, depicted in

Figure 6(b), covers the 2D backprojection (strong) of the goal

area leading to an empty result. This third set O3 lies behind

the goal area at the direction θd = 45◦. To generate the

backprojection of a goal area in presence of another relocation

areas that may create ambiguity, it has to be handled carefully

by removing O3 in the example proposed.

D. Path finding

A method to compute omnidirectional backprojection of

relocation areas, even in presence of ambiguous relocation

areas, has been presented. The different relocation areas are

nodes of hyper-graph. Contrary to the 2D example of goal area

presented earlier, the relocation areas are now the registration

maps introduced in Section III which are subsets of R
3. The

motion function is then fH since the angle of arrival has an

influence due the limited FOV of the sensor. The creation of

the links has now to be established to create the edges in the

graph.
1) Connection between registration maps: Consider

respectively two registration maps A and B associated to

two landmarks A and B computed according to Equation

8 in Section III based on the visibility area of the sensor.

Assume that the departure landmark is A and the landmark

to reach is B (goal landmark). Due to the ability of the

robot to turn on itself and orient its head at the desired

direction based on the heading measurement provided by

the compass, two methods of departure area may be envisaged.

The first method consists in starting the robot motion at a

desired direction only if it can detect the departure landmark.

This solution enables to have a reliable position estimation

of the robot at the beginning of the motion to reach the goal

landmark since it can detect this first geolocalized landmark. A

link between A and B despite the uncertainties on the motion

is computed as follows:

XA→B = {x ∈ R
3|BACKod(B) ∩ A �= ∅} (36)

It corresponds to the set of robot configurations able to detect

the landmark A and that are guaranteed to detect the landmark

B at certain time despite the uncertainty on the direction

δθ ∈ [−αθ, αθ] along the motion. In other words, all the

posible trajectories having an initial pose in XA→B cross the

registration map B associated to B enhancing its detection.

The direction of the arrow indicates the registration map to

reach. Based on the SIVIA algorithm, if the set XA→B is not

empty, there is at least one pose that can detect A and can

detect after the uncertain motion the landmark B. At a defined

direction θd, the set of robot positions can be computed as

follows:

PA→B(θd) = {(x1, x2) ∈ R
2|BACK(B, θd) ∩ A(θd) �= ∅}

(37)

where A(θd) corresponds to the slice of the registration map

at the defined heading θd.

Due to the ability to turn on itself, the second method

consists in detecting the departure landmark and then orient

the head at a desired direction to reach the goal landmark.

An uncertainty can be added to the position after the rotation

but it is assumed here that this uncertainty is null. Only the

range of detection of the sensor is important now to compute

the registration map which can be computed by removing the

heading constraint of the vehicle and considering an aperture

angle of 360◦ (range only sensor). The visibility area is then

simply a ring and only the translation parameters have to be

computed to generate the registration map. This registration

map corresponds to:

A2D = projX3

X1×X2
(A) (38)

which is simply the projection on the ground (in the (x− y)
plane) of the registration map A.
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(b) Departure after rotation on it-
self.

Fig. 7: Two methods of departure positions to reach a goal

punctual landmark in red at the defined direction θd = 50◦.

The connection can be reformulated now as follows:

XA→B = {x ∈ R
3|BACKod(B) ∩ (A2D × R) �= ∅} (39)

where R has to be added for the correspondance of dimension.

The angle of departure has no influence.

The set of departure positions can then be simply computed

at a defined direction θd as follows:

PA→B(θd) = {(x1, x2) ∈ R
2|BACK(B, θd) ∩ A2D �= ∅}

(40)

An example is provided in Figure 7 where the departure

landmark is the punctual green landmark and the goal land-

mark is the red punctual landmark. The circles are the minimal

(Rmin) and maximal (Rmax) ranges of detection. At the

defined direction θd = 50◦, the set of departure positions

using the first method is given in Figure 7(a) and using the

second method is given in Figure 7(b). One position (blue

AUV) is selected in the different solution sets from where the

uncertain trajectories are generated due to the uncertainty on

the direction in yellow. The poses and the visibility area are

drawn in blue when it detects the red punctual goal landmark.

All the trajectories can detect the goal landmark and none are

lost.

2) Graph creation and optimization: A backward graph

search is performed starting from the target registration map.

Only the K−nearest neighbours are considered for each regis-

tration map to reduce the complexity of the graph construction.

When the set linking two registration maps in Equation 36

or in Equation 39, depending on the strategy of the planner,

is not empty then an edge may be created. However, as

mentioned in Section IV-C about forbidden areas, ambiguous

local landmarks (if some exists) have to be taken into account

to avoid wrong data association due to the indistinguishable

property of the landmarks. This can be realized by considering

the omnidirectional backprojection taking into account these

ambiguous landmarks as in Equation 35. A link can then be

created. Moreover, a graph optimization based on A* [40]

algorithm is realized to propose an optimal path which is here

simply based on the distance between the centroids of the

shapes. The path found will provide a minimal path length.
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(a) Starting poses using the first
method.
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(b) Starting poses using the second
method.

Fig. 8: Strategy found in red and links in blue between

registration maps. The departure position is at the top (blue

AUV) and the target at the bottom (red punctual target). Circles

are minimal and maximal ranges of detection of the punctual

landmarks. A shape landmark is present in blue with the

visibility at Rmax in green.

V. EXPERIMENTS

A simple example based only on simulation is now provided

as experiments. Consider a sensor that can detect between

Rmin = 2m and Rmax = 15m and has an half aperture

angle θ3 = 20◦. The error on the compass is fixed at 5◦. An

environment is proposed in Figure 8 where many punctual

landmarks (green dot) are present and a shape landmark in

blue. A punctual red target lies in the bottom of the figure

and the initial position of the robot, represented by the blue

AUV, is at the top. The visibility at Rmin and Rmax of the

punctual landmarks and the target is shown by circles. The

visibility at Rmax of the shape is drawn by the green contour.

These areas correspond to the projection on the ground (in

the (x − y) plane) of the registration maps associated to the

different landmark. It represents A2D.

The graph construction using the two strategies for the

departure position is depicted in Figure 8 where the blue links

are valid edges and the final strategy found is represented by

the red arrows. As it may be noticed the strategy is not the

same. Indeed, using the first method, the robot can only start

its motion from a position that is able to detect the landmark

contrary to the second method that enables the robot to turn

on itself before leaving the departure registration map.

Some directions are selected in the solution sets for the

two strategies found to propose the set of departure positions

taking into account the different local ambiguous landmarks

in Figure 9(a) and (c). Some departure AUV positions are

then selected in the different departure areas shown by red

AUVs. The path execution is then represented in Figure 9(b)

and (d) for these two strategies. The uncertain trajectories

due to the uncertain directions are represented by yellow

lines starting from the red AUV departure positions. When

it detects the landmark, the visibility area is represented by

a blue pie for the blue AUV corresponding pose. Magenta

lines correspond to the relocation process to join the departure

8



position. This correspond to the visually guided navigation

where it is assumed that a low level controller is able to

perform this task. All the trajectories are able to detect the

considered landmark each times without ambiguity and are

able to reach the target at the bottom.

VI. CONCLUSION AND FUTURE WORKS

In this article we present a motion planner that guarantees

the reachability of a target by a low cost AUV equipped with

an exteroceptive sensor in the underwater context. Due to

the drift in position and a potential far diving position, going

straight forward to the target is rarely the solution for an AUV

with a poor navigation. The alternative solution proposed

is to use an an priori map of the environment composed

of static landmarks that are a priori detectable by the

exteroceptive sensor under the strategy of navigation such as

the altitude. Based on the location of the different landmarks

in the environment, a registration map is firstly computed

depending on the visibility area of the sensor embedded in

the robot. This map indicates the set of robot configurations

able to detect a landmark. This set is called relocation area

and enables to reduce the uncertainty of the robot pose by

detecting the considered landmark. Secondly, the motion

planner inspired by the works [13] [12] [41] based on the

concept of preimage backchaining, proposes a sequence of

action to realize that guarantees the revisit of the target by

revisiting intermediate landmarks. The preimage backchaining

is solved in a set membership manner by taking into account

the drift of the robot modelled by uncertain trajectories.

The preimage backchaining relies on backprojections that

are defined as backward reach set of a registration map

according to the uncertain motion model. By proving links

between the relocation areas despite uncertainties on the

motion, the robot is then able to navigate safely between

the relocation areas, and relocate thanks to the landmark

position by making an exteroceptive measurement. Relocation

areas consitute then the nodes of a hyper graph. Handled

by a graph search algorithm minimizing a cost function, it

starts from the target relocation area(s) and computes the

successive backprojection until the initial position of the robot

is included in a backprojection. It alternates phases of motion

command and relocation process in the different relocation

areas to reduce the uncertainty of the robot. Compared to

other probabilistic approaches [26], the set membership

method based on the notion of separators and projectors

[30] [39] provides the guarantee information if the uncertain

parameters remain in their bounded intervals.

Future works will focus on the fact that a landmark may

not be detected during the path execution. To avoid being

lost, a strategy based on SLAM (Simultaneous Localization

And Mapping) may be envisaged to register the new map to

the a priori map, and then be relocated relatively to the first

landmarks map. Another improvement would be to consider an

uncertainly defined map such as uncertainly located punctual

landmarks. The registration maps concept has then to be
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(a) Departure positions with the first
method.
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(b) Trajectories simulation for the strategy
using the first method. Yellow lines are
uncertain trajectories and magenta reloca-
tion processes. Blue pies are visibility areas
when detecting the landmark.
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(c) Departure positions with the second
method.
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(d) Trajectories simulation for the strategy
using the second method.

Fig. 9: Path execution of the two strategies according to the

two departure methods.
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adapted to consider these uncertain definition of the landmarks.

Moreover some real experiments should be conducted to

validate the principle.
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