
1

Reachability analysis of an underwater robot
with ballast

Luc Jaulin

Abstract—When we run a mission with autonomous
robots, for security reasons, it is fundamental to
guarantee that the state of robot will not enter in
a forbidden zone and that it will reach the target
area. This problem corresponds to a reachability
problem that will be addressed with set-membership
uncertainties. In this paper, we show how a serial
decomposition can be done to facilitate the resolution.
An application related to an underwater robot with a
ballast is provided.

I. INTRODUCTION

In this paper, we introduce an efficient method to
simulate an underwater robot with interval uncertain-
ties. For simplicity, we consider a situation where the
robot has no any sensors, neither exteroceptive nor
proprioceptive. The simulation is thus open-loop. The
uncertainties, can be either on the initial state vector,
on the time-dependent inputs, or on the evolution
function.

This problem can be cast into the framework of
reachability analysis [6][12][14][4] which is classi-
cally used to get a prior prediction of the evolution
of a mobile robot. From a mathematical point of
view, the problem amounts to integrate a differential
inclusion. Compared to other techniques used for the
guaranteed integration of differential inclusion [8],
the presented approach is simple, fast and accurate.
An illustration related to the depth reachability of
an underwater robot with a ballast will validate the
efficiency of the approach.

II. BALLAST ROBOT

We consider an underwater robot equipped with
a ballast. The robot can only move upward to the

surface and downward to the seafloor. We assume
that the state equations [10][7] are given by

ṡ = u
v̇ = s

1+s −
1

1+s v· | v |
ḋ = v

(1)

where d is the depth, v is the vertical speed and s is
the sinking coefficient (or buoyancy). As illustrated
by Figure 1 the buoyancy can be tuned thanks to a
piston that can move left or right. The input u cor-
responds to rate of fluid which enters in the ballast.
We assume that we know membership intervals for
the initial state variables and a tube (i.e., an interval
of trajectories) for the input u(t). Our goal is to find
a tube [13][3] for the three state variables.

Fig. 1. The buoyancy of the robot may change depending of the
position of the piston

III. DIFFERENTIAL INCLUSION

This section recalls some classical results related to
differential inclusions [2]. These results will be
used further in order to build a reliable procedure to
predict the evolution of our robot with interval
uncertainties.

We consider the scalar system
v̇(t) = f(v(t),u(t))

v(0) = v0 ∈ [v0], u(t) ∈ [u] ⊂ Rm (2)

2

The signal u(t) is inside the tube of Rm. Note that
u(t) is chosen as a vector and this is why is it
written bold. It varies with time contrary to the box
[u] which is assumed to be constant with time. We
have here a differential inclusion [2] with many
solutions, as many as we have different signals u(t)
in the box [u]. Finding an envelope for the set of
all solutions v(t) is a difficult problem which can
be solved using optimal control theory [9] for some
cases.

A. Comparison theorem

We recall here a theorem which can be used
directly to find an envelope for a differential inclusion
with one state variable [5].

Proposition 1. Assume that the initial condition
satisfies v0 ∈ [v−0 , v

+
0]. An envelope for any solution

v(t) is given by the interval [v−(t), v+(t)], where
v−(t), v+(t) satisfy:

v̇− = f(v−, argmin
u∈[u]

f(v−,u)) , v(0) = v−0

v̇+ = f(v+, argmax
u∈[u]

f(v+,u)) , v(0) = v+0

(3)

Proof: The proposition is a consequence of the
Hamilton Jacobi Bellman theorem in the scalar case
[9].

If we define the interval state z(t) =
[v−(t), v+(t)], then we have

ż = g(z) (4)

where

g(z) =

 f(z1, argmin
u∈[u]

f(z1,u))

f(z2, argmax
u∈[u]

f(z2,u))

 (5)

The function g(z) will be called the envelope evolu-
tion.

As a consequence, we can find a good approxima-
tion for the two bounds v−(t) and v+(t) using any
Runge-Kutta method. For instance, we can take the
following integration scheme:

zt+δ = zt + δ · g
(
zt +

δ·g(zt)
2

)
(6)

B. Example: the integrator

Consider the integrator

v̇(t) = u(t)
v(0) = v0 ∈ [v0], u(t) ∈ [u] ⊂ R (7)

Assume that the initial condition satisfies v0 ∈
[v−0 , v

+
0]. Any solution v(t) satisfies v(t) ∈

[v−(t), v+(t)], where v−(t), v+(t) are defined by

v̇− = u− , v(0) = v−0
v̇+ = u+ , v(0) = v+0

(8)

The envelope evolution is given by

g(z) = g

((
v−

v+

)
,

(
u−

u+

))
=

(
u−

u+

)

C. Example: the sinking body

We consider a body totally immersed in the ocean
as represented by Figure 2. As it will be seen
later this example is chosen since it is an important
component of our underwater robot.

Fig. 2. Sinking body

The speed v of the body satisfies the following
differential equation

v̇ = a− bv|v| (9)

where b > 0 corresponds to a dumping coefficient.
If the body has a negative buoyancy, the coefficient
a is positive and the body sinks toward the bottom.
If it has a positive buoyancy, a is negative and the
body goes up toward the surface. We assume that
both are known to belong to the intervals [a−, a+],
and [b−, b+], respectively.

3

Taking into account Proposition 1, we get that the
trajectory v(t) is bounded by the two functions v−

and v+ defined by

v̇− = a− − b+ · v−|v−|︸ ︷︷ ︸
f−
[a],[b](v

−)

, v−(0) = v−0

v̇+ = a+ − b−v+|v+|︸ ︷︷ ︸
f+
[a],[b](v

+)

, v+(0) = v+0

(10)
The envelope evolution is given by

g(z) = g

(v−

v+

)
,

a−

a+

b−

b+

=

(
a− − b+ · v−|v−|
a+ − b−v+|v+|

)
We consider four cases.
Case a. We have (v0, a, b) ∈ [0.9, 1.1]×[0.9, 1.1]×

[1.9, 2.1]. This means that for t = 0, the body
goes to the bottom. Since a > 0, it sinks (as
represented by stones in the cube). The two trajecto-
ries v−(t),v+(t) in red are obtained by the Runge-
Kutta integration (6). We observe that the velocity
interval [v−(t), v+(t)] converges to the interval [v̄] =
sign([a])

√
|[a]|
[b] .

Case b. We have (v0, a, b) ∈ [−1.1,−0.9] ×
[−1.1,−0.9] × [1.9, 2.1]. This means that for t = 0,
the body goes to the surface. Since a < 0, it floats
(as represented by the bubbles in the cube). Again,
the two trajectories v−(t),v+(t) in red are obtained
by the Runge-Kutta integration (6). And again, we
observe that v(t) converges to a value v̄.

Case c. We have (v0, a, b) ∈ [0.9, 1.1] ×
[−1.1,−0.9] × [1.9, 2.1]. For t = 0, the body is
thrown toward the bottom. Since a < 0, the body
floats. We observe that after approximately 1 sec, the
body stops sinking and then starts its course to the
surface. For the simulation, we need to compute the
time at which v(t) changes its sign.

Case d. We have (v0, a, b) ∈ [−1.1,−0.9] ×
[0.9, 1.1] × [1.9, 2.1]. For t = 0, the body is thrown
toward the surface. Since a > 0, the body sinks. We
observe that after approximately 1 sec, the body stops
surfacing and then starts its course to the bottom.

Fig. 3. Sinking body (with stones inside) or floating body (with
bubbles inside) for different initializations. The tubes contains
the trajectory v(t)

IV. INTERVAL SIMULATION OF THE BALLAST

ROBOT

We will take advantage of the fact that our system
is composed of three SISO (Single-Input Single-

4

Output) systems in series, as illustrated by Figure
4. We have

ṡ− = u−

ṡ+ = u+

v̇− = lb
(

[s]
1+[s] −

1
1+[s] · v

−· | v− |
)

v̇+ = ub
(

[s]
1+[s] −

1
1+[s] · v

+ · v+ |
)

ḋ− = v−

ḋ+ = v+

where lb and ub are the lower bound and the upper
bound of the corresponding intervals. In this formu-
lation, we have used interval operations [11] inside
the expression of the envelope evolution. We can
rewrite the system, without using interval arithmetic,
as follows:

ṡ−

ṡ+

v̇−

v̇+

ḋ−

ḋ+

︸ ︷︷ ︸

ż

=

u−

u+

s−

1+s− −max

(
v−·|v−|
1+s−
v−·|v−|
1+s+

)
s+

1+s+ −min

(
v+·|v+|
1+s−
v+·|v+|
1+s+

)
v−

v+

︸ ︷︷ ︸

g(z)

This expression can be obtained easily in our partic-
ular case, where the monotonicity analysis is simple.
In the general case, interval arithmetic is needed to
get the envelope evolution. An integration can now
be obtained using a Runge-Kutta method.

The behavior of the interval simulator is illustrated
by Figure 4. We took [s0] = [v0] = [d0] = [0, 0.1]
for the initial conditions. For the input, we took
[u](t) = sin(t)+[−0.1, 0.1]. Even if the system is un-
stable, we do not observe any exponential explosion
of the pessimism, contrary to other existing interval
methods dealing with differential inclusions.

V. CONCLUSION

In this paper, we have proposed a new approach
to compute an envelop for the set of all feasible
trajectories to a robot under interval uncertainties.
If we define the reach set X(t) as the set of all

Fig. 4. The robot is composed of three SISO systems in series;
The tubes contain the trajectories u(t), s(t), v(t), d(t)

state vectors x(t) that can be reached at time t, then,
we are able to compute a box [x](t) which encloses
X(t), i.e.,

X(t) ⊂ [x](t) = [x−1 (t), x
+
1 (t)]×· · ·×[x−n (t), x

+
n (t)].

The method is based on an extended state z(t) =(
x−1 (t), x

+
1 (t), . . . , x

−
n (t), x

+
n (t)

)
of dimension 2n.

This extended state satisfies an ordinary differential
equation of the form ż = g(z) which we can easily
be integrated using an integration method such as a
Runge-Kutta method.

Note that the Runge-Kutta method can be consid-
ered as reliable in practice, but the approach cannot
guarantee that no feasible trajectory has been lost. To
be completely rigorous, we have to use a guaranteed
interval integration method such as that proposed in
[8] or [1] for the integration of z.

The Python source codes of the example are avail-
able at

5

https://www.ensta-bretagne.fr/jaulin/ocean25.html

REFERENCES

[1] J. Alexandre dit Sandretto and A. Chapoutot.
Dynibex: a differential constraint library for
studying dynamical systems. In Conference
on Hybrid Systems: Computation and Control,
Vienne, Austria, 2016. V

[2] J.P. Aubin and H. Frankowska. Set-Valued
Analysis. Birkhäuser, Boston, Boston, MA,
1990. III, III

[3] Fabrice Le Bars. Analyse par intervalles pour
la localisation et la cartographie simultanées ;
Application à la robotique sous-marine. PhD
dissertation, Université de Bretagne Occiden-
tale, Brest, France, 2011. II

[4] J. Damers, L. Jaulin, and S. Rohou. Lie symme-
tries applied to interval integration. Automatica,
144, 2021. I

[5] D. Efimov and T. Raı̈ssi. Design of interval
observers for uncertain dynamical systems. Au-
tomation and Remote Control, 77(2):191–225,
2016. III-A

[6] G. Frehse. Phaver: Algorithmic verification of
hybrid systems. International Journal on Soft-
ware Tools for Technology Transfer, 10(3):23–
48, 2008. I

[7] L. Jaulin. RobMOOC, un MOOC sur la
commande non-linéaire des robots mobiles ,
www.ensta-bretagne.fr/robmooc/.
ENSTA-Bretagne, 2019. II

[8] T. Kapela, M. Mrozek, D. Wilczak, and
P. Zgliczynski. CAPD: dynsys, A flexible
C++ toolbox for rigorous numerical analysis
of dynamical systems. Communications in
Nonlinear Science and Numerical Simulation,
101:105578, 2021. I, V

[9] S. LaValle. Planning Algorithm. Cambridge
University Press, 2006. III, III-A

[10] T. Le Mézo, G. Le Maillot, T. Ropert, L. Jaulin,
A. Ponte, and B. Zerr. Design and control of a
low-cost autonomous profiling float. Mechanics
and Industry, 21(5), 2020. II

[11] R. Moore. Methods and Applications of Interval
Analysis. Society for Industrial and Applied
Mathematics, jan 1979. IV

[12] A. Rauh, J. Kersten, and H. Aschemann. Tech-
niques for verified reachability analysis of
quasi-linear continuous-time systems. In 2019
24th International Conference on Methods and
Models in Automation and Robotics, pages 18–
23, 2019. I

[13] S. Rohou, L. Jaulin, L. Mihaylova, F. Le Bars,
and S. Veres. Reliable Robot Localization.
Wiley, dec 2019. II

[14] W. Taha and A. Duracz. Acumen: An open-
source testbed for cyber-physical systems re-
search. In Conference on CYber physiCaL
systems, iOt and sensors Networks, 2015. I

https://www.ensta-bretagne.fr/jaulin/ocean25.html

