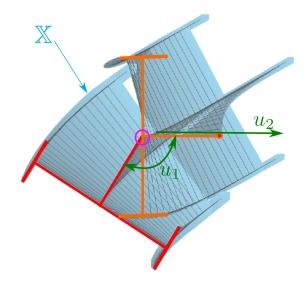
## Outer approximation of the occupancy set left by a mobile robot

Luc Jaulin

Lab-STICC, ENSTA-Bretagne 2, rue F. Verny, Brest lucjaulin@@gmail.com

Keywords: Occupancy set, Mobile robotics, Interval Methods

## Introduction


We consider a multi-body mobile robot described by a state equation  $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$ , where the input  $\mathbf{u} \in [\mathbf{u}]$  is uncertain. The robot has a given shape. For a given trajectory  $\mathbf{x}(t)$ , we define the *occupancy set*  $\mathbb{X}$  as the set of all points  $\mathbf{a}$  of a world that has been occupied by the robot at least once during the mission. It is defined by

 $\mathbb{X} = \left\{ \mathbf{a} \in \mathbb{R}^2 \,|\, \exists t \in [0, \dots, t_{\max}], \exists i \text{ s.t. } h_i(\mathbf{x}(t), \mathbf{a}) \le 0 \right\}$ 

where  $h_i$  is the shape function of the *i*th body.

## Main results

We propose a new interval-based method to enclose X. This is illustrated by the figure for a car-trailer. Here, the robot has two bodies (red and orange) with two inputs  $u_1$  (rotation rate) and  $u_2$  (the acceleration).



It is described by the following state equation

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \\ \dot{x}_5 \end{pmatrix} = \begin{pmatrix} x_5 \cos x_3 \\ x_5 \sin x_3 \\ u_1 + x_5 \sin (x_3 - x_4) \\ x_5 \sin (x_3 - x_4) \\ u_2 \end{pmatrix}$$

where  $x_1, x_2$  are the coordinates of the center,  $x_3$  is the heading of the first body,  $x_4$  is the internal angle and  $x_5$  is the speed.

The main contribution of this work is to show how to find a diffeomorphism on the state space to rewrite the system into a causal chain. The interval integration of the causal chain can then easily be done even in case of uncertainty in  $\mathbf{u}$ . In a second step, we show how to characterize X using an interval-based projection algorithm.