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Abstract: Bounded-error estimation is the estimation of the parameter or state vector of a

model from experimental data, under the assumption that some suitably defined errors should

belong to some prior feasible sets. When the model outputs are linear in the vector to be

estimated, a number of methods are available to contain all estimates that are consistent with

the data within simple sets such as ellipsoids, orthotopes or parallelotopes, thereby providing

guaranteed set estimates. In the nonlinear case, the situation is much less developed and there

are very few methods that produce such guaranteed estimates. In this paper, the problem

of characterizing the set of all state vectors that are consistent with all data in the case of

nonlinear discrete-time systems is cast into the more general framework of constraint satisfaction

problems. The state vector at time k should be estimated either on-line from past measurement

only or off-line from a series of measurements that may include measurements posterior to k.

Even in the causal case, prior information on the future value of the state and output vectors,

due for instance to physical constraints, is readily taken into account. Algorithms taken from

the literature of interval constraint propagation are extended by replacing intervals by more

general subsets of real vector spaces. This makes it possible to propose a new algorithm that

contracts the feasible domains for each uncertain variable optimally (i.e., no smaller domain

could be obtained) and efficiently.

Keywords: bounded-error estimation, constraint propagation, CSP, identification, interval

analysis, nonlinear estimation, observation, set estimation.

1 Introduction

In a linear context, many tools are available to estimate the parameter or state vector of a model

from experimental data. They can be classified according to how they deal with uncertainty.

Some of them do not take explicitly into account the fact that the model is an approximation

of reality and that the measurements are corrupted by noise. This is the case, for instance, of
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Luenberger state observers [Lue66] and of many adaptive schemes [Lan79]. Other estimators,

such as maximum-likelihood estimators [KS67] or the ubiquitous Kalman filter [Kal60] [Sor83],

are based on a statistical description of uncertainty, and assume that the measurement noise

and state perturbations are realizations of random variables, with known statistical properties.

A last group of methods, known under the generic names of set-membership estimation or guar-

anteed estimation or bounded-error estimation, see, e.g., [Wal90], [Nor94], [Nor95], [MNPLW96]

and the references therein, is based on the assumption that the uncertain variables (such as noise

and perturbations) all belong to known compact sets, and attempts to build simple sets, such

as ellipsoids, orthotopes or parallelotopes, guaranteed to contain the vectors to be estimated.

In a nonlinear context, the methodology is far less developed, and still the subject of active

research even in the deterministic case [KK98]. When uncertainty is explicitly taken into ac-

count, this is usually by resorting to linearization. For parameter estimation, one may exploit

the asymptotic properties of maximum-likelihood estimators, but the validity of the results ob-

tained from a small data base is then questionable. For state estimation, an extended Kalman

filter [Gel74], based on a linearization of the model around its trajectory, is usually employed.

This linearization is inherently local and may fail to produce reliable estimates. It makes any

statistical interpretation of the covariance matrices computed by the algorithm questionable,

because the propagation of the statistical properties of the perturbations through the nonlinear

system is largely unknown. As far as set-membership estimation is concerned, very few guaran-

teed methods are available, most of them developed for parameter estimation. They are based

on branch-and-bound techniques (see, e.g., [MV91] for a signomial programming approach and

[JW93] for an interval computation approach). A method based on interval analysis to compute

guaranteed state estimates was proposed in [KJW98] and [KJWM99].

The purpose of this paper is to present a new approach for the guaranteed estimation of the

parameter and/or state vector of a nonlinear discrete-time model in a bounded-error context.

The approach uses the ideas of interval constraint propagation (ICP) (see, e.g., [Dav87], [Cle87],

[Hyv92], [AFL00]), which combines interval analysis and constraint satisfaction problems (CSP)

(see [MR91]). ICP has already been used for solving bounded-error estimation problems in

[Jau00] and [Jau01]. Consider a nonlinear discrete-time system described by

{
xk = fk(xk−1,p,wk−1,uk−1)

yk = gk(xk,p,wk,uk)
k = 1, . . . , k̄, (1)

where k is the time index, xk is the state vector, yk is the output vector, uk is the input vector,

wk is the perturbation vector, p is a constant parameter vector and fk and gk are known

functions.
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Remark 1 Equation (1) allows the usual distinction between a state perturbation wx
k and a

measurement noise wy
k as a special case, since it suffices to define wk as the concatenation of

wx
k and w

y
k. ♦

The set of all variables involved in this problem is

V = {p,x0,w0,u0,x1,w1,u1,y1, . . . ,xk̄,wk̄,uk̄,yk̄}. (2)

We shall assume that there exist some unknown actual values, denoted by x∗k,w
∗

k,u
∗

k,y
∗

k and

p∗, for xk,wk,uk,yk and p, such that (1) is satisfied. This assumption will allow us to interpret

the estimation problem as that of finding reliable estimates for these actual values, but note

that it is not required for the application of the method.

The set-membership approach to be followed in this paper characterizes the uncertainty about

the actual value v∗ of any given variable v ∈ V by associating with v a domain V that contains

v∗. The set of all such domains is

D = {P, X0, W0, U0, X1, W1, U1, Y1, . . . , Xk̄, Wk̄, Uk̄, Yk̄}. (3)

When the actual value of a variable v is known exactly, V is the singleton {v∗}. When nothing

is known about v∗, V = Rdimv.

A measurement vm of a variable v ∈ V provides an approximation of v∗. Let P
(
Rdimv

)
be

the set of all subsets of Rdimv. We shall call interpretation function associated with v, any

set-valued function φv : R
dimv → P

(
Rdimv

)
that satisfies v∗ ∈ φv (vm). In practice, the effect

of this function is to inflate vm to take the measurement error into account. The set φv (v
m)

is the measurement uncertainty set. As soon as vm is made available, the domain V for v can

be replaced by V ∩ φv (vm). In (1), only the variables uk and yk are assumed to be measured.

Two situations will be distinguished:

• A causal context : at time k, the measurements are available up to time k only, i.e., the

available data are {um
0 ,u

m
1 ,y

m
1 , . . . ,u

m
k ,y

m
k }.

• A noncausal context : all measurements {um
0 ,u

m
1 ,y

m
1 , . . . ,u

m
k ,y

m
k , . . . ,u

m
k̄
,um

k̄
} are avail-

able from the start.

This distinction is similar to that between estimating and smoothing Kalman filters. Even in a

causal context, some prior information may be available on variables before any measurement
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is collected. For instance, physical constraints may provide upper and lower bounds on some

components of vector variables, which can then be taken into account in the definition of

the corresponding domains. The measurements and the constraints associated with the 2k̄

equations given by (1) will be used to reduce the domains and thus the uncertainty on the

variables, which can be formulated as a generalized set estimation problem.

The basic step of this generalized set estimation problem is to find the smallest domains P̂, X̂0,

Ŵ0, Û0, X̂1, Ŵ1, Û1, Ŷ1, . . . , X̂k̄, Ŵk̄, Ûk̄ and Ŷk̄ such that the following implication is satisfied





(1) hold true and

p ∈ P
x0 ∈ X0, . . . ,xk̄ ∈ Xk̄
w0 ∈W0, . . . ,wk̄ ∈Wk̄

u0 ∈ U0, . . . ,uk̄ ∈ Uk̄
y1 ∈ Y1, . . . ,yk̄ ∈ Yk̄

⇒





p ∈ P̂
x0 ∈ X̂0, . . . ,xk̄ ∈ X̂k̄
w0 ∈ Ŵ0, . . . ,wk̄ ∈ Ŵk̄

u0 ∈ Û0, . . . ,uk̄ ∈ Ûk̄
y1 ∈ Ŷ1, . . . ,yk̄ ∈ Ŷk̄

(4)

Since V̂ ⊂ V, V̂ can now replace V as a more accurate domain for v. The operation thus

performed can be written concisely as the instruction

D := E(D); (5)

The generalized set estimator based on (5) can then be sketched as follows:

Initialization set D as specified by available information;

1 reduce all domains by D := E(D);
2 wait for a new measurement vm;

3 in D, replace V by V ∩ φv (vm) ;

4 go to Step 1;

Note that in a noncausal context, all measurements are given at the initialization. Therefore,

the estimation process stops after the first execution of Step 1.

Set parameter estimation, parameter tracking, state estimation and joint state and parameter

estimation can all be seen as special cases of generalized set estimation. Moreover, the problem

to be solved at Step 1 is itself a special case of a Set Constraint Satisfaction Problem (SCSP),

to be presented in Section 2 in a more general context. In Section 3, constraint propagation

techniques will be used to derive new set algorithms able to solve a large class of SCSPs, which

includes the problem of Step 1. This general approach will be applied in Section 4 to causal

and noncausal state estimation, and Section 5 will present an illustrative example.
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2 Set Constraint Satisfaction Problems

This section presents some basic definitions and algorithms that are classical in the area of

constraint propagation [Dav87], [Cle87], [Hyv92], but here these definitions and algorithms are

extended to the case where intervals are replaced by more general subsets of real vector spaces.

Let V = {v1, . . . ,vn} be a finite set of vector variables with dimensions d1 ∈ N, . . . , dn ∈ N
and domains V1 ⊂ Rd1, . . . ,Vn ⊂ Rdn. The global space is the set Rd = Rd1 × · · · ×Rdn, where

d = d1 + · · · + dn. The global domain is the set V = V1 × · · · × Vn. Of course, V ⊂ Rd. The

subscript i of a variable vi and associated domain Vi will be called their index.

Let vi and vj be two elements of V. A binary constraint Ci,j over vi and vj is a subset of

R
di × Rdj . Often this constraint can be put in the form

Ci,j =
{
(ṽi, ṽj) ∈ Rdi ×Rdj | ṽj = fj (ṽi)

}
. (6)

We shall then refer to it as Ci,j : vj = fj (vi). In this paper, we shall only consider binary

constraints. Note that n-ary constraints with n > 2 can always be decomposed into a set of

binary constraints, so this is not limitative.

A Set Constraint Satisfaction Problem (SCSP) is a 3-upleH = (V,D, C), where V = {v1, . . . ,vn}
is a finite set of vector variables, D = {V1, . . . ,Vn} is the set of their domains and C is a finite

set of binary constraints relating variables of V.

Example 1 Consider three real numbers x, y and z related by the constraint z = x2 + y2.

Assume that z is known to belong to the interval [−3, 1]. This situation can be represented by
an SCSP H = (V ,D, C), with V = {v1, v2} ,D = {V1,V2} , C = {C1,2} , v1 = (x y)T, v2 =

z,V1 = R
2,V2 = [−3, 1] and C1,2 : z = x2 + y2. Note that if real variables were used instead of

vector variables, it would not be possible to transform the ternary constraint (z = x2 + y2) into

a binary constraint v2 = f(v1), where f : R
2 −→ R; (x, y) −→ x2 + y2. ♦

A point solution of H is an n-uple (ṽ1, . . . , ṽn) ∈ V ⊂ Rd such that for all constraints Ci,j ∈ C,
the pair (ṽi, ṽj) ∈ Ci,j. The set of all point solutions of H is denoted by S (H). This set will

be called the global solution set. In Example 1, S = {(x, y, z) |z = x2 + y2 and z ∈ [−3, 1]}.

The variable vi is consistent in H (or H-consistent) if

∀ṽi ∈ Vi,∃(ṽ1 ∈ V1, . . . , ṽi−1 ∈ Vi−1, ṽi+1 ∈ Vi+1, . . . , ṽn ∈ Vn) | (ṽ1, . . . , ṽn) ∈ S (H) . (7)
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Figure 1: Illustration of the SCSPs Ha, Hb and Hc

Example 2 Consider three SCSPs Ha,Hb and Hc. Each of them involves two real variables

v1 and v2 and the single constraint v
2
1 + v

2
2 ≤ 4. They only differ by their domains, given by

V1 V2

Ha [0, 3] [1, 2]

Hb [0,
√
3] [1, 2]

Hc [0, 1] [1, 2]

(8)

as illustrated by Figure 1. The variable v2 is Ha,Hb and Hc-consistent because for all v2 ∈
V2 = [1, 2], there exists v1 ∈ V1 such that v21 + v22 ≤ 4. The variable v1 is Hb and Hc-consistent

but not Ha-consistent. For the three SCSPs, the global solution set is given by the intersection

of the disk (for the constraint) and the box V1 × V2. Note that S (Ha) = S (Hb) ⊃ S (Hc). ♦

In Example 1, neither v1 nor v2 is H-consistent. If the domain V1 is replaced by the disk

centered at 0 and with a radius a in [0, 1], denoted by Disk(0, a) then v1 becomes H-consistent.

If V2 is replaced by the interval [0, a2], then v2 becomes H-consistent. Note that for a given

SCSP H, if vi is H-consistent and if its domain Vi is replaced by any subset of Vi, then vi is

still consistent in the new SCSP.

If I = {i1, . . . , ip} is a subset of the set of indices {1, . . . , n} , then H′ = (V ′,D′, C ′), where

V ′ �
{
vi1 , . . . ,vip

}
, D′ �

{
Vi1 , . . . ,Vip

}
and C′ � {Ci,j ∈ C such that i ∈ I and j ∈ I},

is called a subSCSP of H. It is trivial to show that if vi ∈ V ′ is H-consistent, it is also

H′-consistent.

The ith projected domain Si = πi (H) onto the variable vi is the largest domain Si ⊂ Vi such

that if Vi is replaced by Si in H, vi becomes H-consistent. It can also be defined by the
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orthogonal projection of the global solution set S (H) onto Rdi , i.e.,

ṽi ∈ πi (H)
⇔ ∃ (ṽ1 ∈ V1, . . . , ṽi−1 ∈ Vi−1, ṽi+1 ∈ Vi+1, . . . , ṽn ∈ Vn) | (ṽ1, . . . , ṽn) ∈ S (H) .

(9)

Note that if vi is H-consistent, Vi = πi (H). In Example 2, π1 (Ha) = π1 (Hb) = [0,
√
3],

π1 (Hc) = [0, 1] and π2 (Ha) = π2 (Hb) = π2 (Hc) = [1, 2]. In Example 1, π1 (H) = Disk(0, 1)

and π2 (H) = [0, 1].

H is an elementary SCSP if V is a singleton {v1}. Therefore, C = ∅ and V1 is necessarily

H-consistent.

Two SCSPs H = (V,D, C) and H′ = (V ′,D′, C ′) are equivalent, denoted by H ≡ H′, if V =

V ′, C = C′ and S(H) = S(H′). We shall say that H′ is a contraction of H if H′ ≡ H and V
′

i ⊂ Vi
for any index i. To contract an SCSP is to replace it by one of its contractions. H is minimal if

it admits no contraction of itself but itself. In Example 2, we have Ha ≡ Hb; Hb is a contraction

of Ha and Hb and Hc are minimal.

H′ is the optimal contraction of H if H′ ≡ H and H′ is minimal. We shall write H′ = E(H) or

sometimes D′ = E(D) as in (5), since H and H′ can only differ by their domains (in Example 2,

Hb = E (Ha)). The n domains V′i of the optimal contraction satisfy V′i = πi (H) , i ∈ {1, . . . , n}.

Consider two variables vi and vj related by a constraint Ci,j. The local contraction operator of

the domain Vi with respect to the variable vj is defined as

ρj (Vi) = {ṽi ∈ Vi|∃ṽj ∈ Vj, (ṽi, ṽj) ∈ Ci,j} . (10)

Note that ρj (Vi) ⊂ Vi. The new SCSP obtained by replacing Vi by V′i = ρj (Vi) is thus a

contraction of the former SCSP. Figure 2 illustrates this definition. If the constraint Ci,j is

given by Ci,j : vj = fj (vi), then

ρj (Vi) = Vi ∩ f−1j (Vj) , (11)

ρi (Vj) = Vj ∩ fj (Vi) . (12)

In Example 1, if f (x, y) = x2 + y2, then

ρ1 (V2) = [−3, 1] ∩ f
(
R
2
)
= [−3, 1] ∩ [0,∞[= [0, 1], (13)

ρ2 (V1) = R
2 ∩ f−1 ([−3, 1]) = Disk (0, 1) . (14)

The Waltz algorithm [Wal75], [Dav87] is one of the basic algorithms that can be used to perform

contractions of SCSPs. Its principle is to choose any constraint in C and to contract the domains
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Figure 2: Local contraction operator

of the two associated variables vi and vj using the local contraction operators ρi and ρj. This is

continued until no constraint in C is able to contract any domain. Unfortunately, the resulting

SCSP may be non-minimal, because the algorithm may come to a deadlock, as illustrated by

the following example.

Example 3 Consider the SCSP H = (V,D, C), where

V = {v1, v2, v3} ,
D = {V1 = [−1, 1] ;V2 = [−1, 1] ;V3 = [−1, 1]} ,
C = {C1,2 : v2 = −v1;C2,3 : v3 = −v2;C3,1 : v1 = −v3}.

(15)

Although the only solution is v1 = v2 = v3 = 0, since for all i, j ∈ {1, 2, 3}, i �= j, ρi(Vj) = Vj,
the Waltz algorithm is unable to contract any of domains Vi. ♦

The graph of any given SCSP H can be constructed as follows. To each variable vi, is associated

a node and to each binary constraint Ci,j is associated an arc between the nodes vi and vj. The

graph associated with Example 3 is depicted on Figure 3. The failure of the Waltz algorithm

to contract this SCSP is due to the fact that its graph contains a cycle.

When the graph is a tree, i.e., a connected graph without cycles, the Waltz algorithm converges

to the optimal contraction of H. This result is a direct consequence of Theorem 6 in Section 3,

which corresponds to a more efficient contraction algorithm.
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Figure 3: Graph of a SCSP with a cycle

3 Contraction algorithms

When the graph of the SCSP is a tree, the Waltz algorithm produces an optimal contraction,

but not very efficiently because the constraints are taken into account in arbitrary order. In

this section, we propose a new algorithm to contract an SCSP whose graph is a tree, which

also produces an optimal contraction, but in a much more efficient way. It extends to vector

variables the propagation-retropropagation algorithm proposed in [BGGP99] for real variables.

It is based on the next two theorems.

3.1 Propagation and retropropagation theorems

Theorem 1 (propagation theorem): Let Ha = (Va,Da, Ca) and Hb = (Vb,Db, Cb) be two SCSPs
with all their variables distinct. Let va1 ∈ Va and vb1 ∈ Vb be two variables related by the
constraint Ca1,b1. The new SCSP H = (V,D, C) , where

V = Va ∪ Vb; D = Da ∪ Db; C = Ca ∪ Cb ∪ {Ca1,b1},

is such that if va1 is Ha-consistent and vb1 is Hb-consistent, then πa1 (V,D, C) = ρb1 (Va1) and
πb1 (V,D, C) = ρa1 (Vb1) . ♦

Proof : Because of the symmetry of the problem, it suffices to prove that πa1 (H) = ρb1 (Va1).
Let va2, . . . ,vap be the p−1 variables of Va distinct from va1 and vb2, . . . ,vbq be the q−1 variables

of Vb distinct from vb1. Since va1 is Ha-consistent and vb1 is Hb-consistent, πa1 (Ha) = Va1 and

πb1 (Hb) = Vb1. Now, ṽa1 ∈ πa1 (H)⇔ ṽa1 ∈ Va1 and ∃ṽa2 ∈ Va2, . . . , ∃ṽap ∈ Vap, ∃ṽb1 ∈ Vb1,
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Figure 4: The three SCSPs involved in the propagation theorem

. . . , ∃ṽbn ∈ Vbn such that all constraints of C are satisfied, i.e.,

ṽa1 ∈ πa1 (H)

⇔





(i) ∃ṽa2 ∈ Va2, . . . ,∃ṽap ∈ Vap| (ṽa1, . . . , ṽap) ∈ S (Ha)

(ii) ∃ṽb1 ∈ Vb1, . . . , ∃ṽbn ∈ Vbn |
{

(ṽa1, ṽb1) ∈ Ca1,b1
(ṽb1, . . . , ṽbq) ∈ S (Hb)

(16)

Since Va1 = πa1 (Ha), (i) is equivalent to ṽa1 ∈ Va1. Since Vb1 = πb1 (Hb), (ii) is equivalent to

∃ṽb1 ∈ Vb1| (ṽa1, ṽb1) ∈ Ca1,b1. The equivalence (16) becomes

ṽa1 ∈ πa1 (H)⇔
{
ṽa1 ∈ Va1
∃ṽb1 ∈ Vb1| (ṽa1, ṽb1) ∈ Ca1,b1

}
⇔ ṽa1 ∈ ρb1 (Va1) . (17)

♦

Figure 4 illustrates how the two former SCSPs Ha and Hb related by the constraint Ca1,b1 form

the new SCSP H.

Corollary 2 Let Hb = (Vb,Db, Cb) be an SCSP and va be a new variable with domain Va

related to a variable vb1 ∈ Vb by the constraint Ca,b1. In the SCSP H = (V,D, C) , where

V = Vb ∪ {va} ; D = Db ∪ {Va} ; C = Cb ∪ {Ca,b1}, (18)

if vb1 is Hb-consistent then πa (H) = ρb1 (Va) .

Proof : Consider the elementary SCSP Ha = (Va,Da, Ca) where Va = {va},Da = {Va} and

Ca = ∅. Theorem 1 implies that πa (H) = ρb1 (Va) . ♦
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Theorem 3 (retropropagation theorem): Let Ha = (Va,Da, Ca) and Hb = (Vb,Db, Cb) be two
SCSPs with all their variables distinct. Let va1 ∈ Va and vb1 ∈ Vb be two variables related by
the constraint Ca1,b1. Consider the SCSP H = (V,D, C) :

V = Va ∪ Vb; D = Da ∪ Db; C = Ca ∪ Cb ∪ {Ca1,b1}. (19)

If va1 is H-consistent and vb1 is Hb-consistent, then

πb1 (H) = ρa1 (Vb1) . (20)

♦

Proof : Since Ha is a subSCSP of H and since va1 is H-consistent, va1 is also Ha-consistent.

From Theorem 1, πb1 (V,D, C) = ρa1 (Vb1) . ♦

3.2 Algorithms FALL and CLIMB

This section describes two efficient contraction algorithms that can be used to contract an SCSP

H optimally, when its graph is a tree. F���, based on the propagation theorem, scans the tree

from its leaves down to its root and C����, based on the retropropagation theorem, scans it

from its root up to its leaves. It will be shown that a single execution of F��� followed by a

single execution of C���� leads to the optimal contraction of H. The same idea developed for

discrete domains can be found in [MR91].

Remark 2 Any SCSP containing cycles can be transformed into an equivalent SCSP whose

graph is a tree. It suffices for that to group all variables responsible for the existence of a cycle

into a single vector variable. Consider for instance the SCSP of Example 3 whose graph is given

by Figure 3. If we set w1 = v1 w2 = (v2, v3)
T, W1 = [−1, 1], W2 = {(v2,−v2)T | v2 = [−1, 1]}

and C1,2 : (v1 + v3)
2 + (v1 + v2)

2 = 0, we get a SCSP with two nodes and one arc. Its graph is

thus a tree. ♦

To present F��� and C����, some definitions concerning trees will be needed.

3.2.1 Trees

The trees to be considered are not directed. A rooted tree is obtained after selecting any node

of a given tree T as its root. By analogy with the forest variety, we shall say that the root is
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Figure 5: Example of a tree with eight nodes; the root chosen is indicated in grey

the lowest node of the tree. A node vb is above a node va (or equivalently va is below vb) if

the subtree Ta of T with root va contains vb. Consider a tree T , with root v1. By removing

v1, one obtains q subtrees Ti1, . . . , Tiq of T . These q subtrees are the branchs of T . A tree

with no branch is a leaf. If T is a leaf, we shall write T = v1. Otherwise, we shall write

T = v1 →
(
Ti1 | . . . |Tiq

)
. Each branch of T will be rooted in a natural way by choosing its node

that is connected to v1 as its root.

Example 4 When v1 is chosen as its root, the tree T of Figure 5 will be denoted by

T = v1 → (v2 → (v4|v5|v6) |v3 → (v7|v8)) . (21)

Its two branchs are T2 = v2 → (v4|v5|v6) and T3 = v3 → (v7|v8) . T has seven subtrees, five of

which are leaves. ♦

A tree SCSP (or TSCSP) H is an SCSP, the graph of which is a tree. A TSCSP can be rooted

by selecting one of its node vi as its root. Only rooted TSCSPs will be considered from now

on, and we shall write H =(V,D, C,vi) to denote a TSCSP with root vi. All notions (root,

leaves, branchs. . . ) existing for trees extend to TSCSPs in a natural way.

Let H = (V ,D, C,vi) be a TSCSP and vj be an element of V. Let Hj = SubTree(H,vj) be

the subTSCSP of H with root vj associated with all nodes that are above vj. A variable vj

is up-consistent in H if it is consistent in Hj = Subtree(H,vj). H is up-consistent if all of its

nodes are up-consistent in H.

3.2.2 Algorithm FALL

An up-consistent contraction of any TSCSP H = (V,D, C,vi) can be computed by the following

recursive algorithm.
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F���(inout: H)
1 if H is a leaf return;

2 i := index(root(H)); q := number of branchs of H;
3 for all branchs Hjk of H, k ∈ {1, . . . , q}
4 F���(Hjk);

5 jk := index(root(Hjk));

6 Vi := ρjk (Vi) ;

7 endfor.

Theorem 4 : F��� generates an up-consistent contraction of any TSCSP.

Proof : The proof is in two parts. We shall first prove, by induction on k, that if F���(Hjk)

makes Hjk up-consistent at Step 4, then H is up-consistent after completion of F���. Let

Hi(k) be the subtree of H, with root vi and with k branchs Hj1 , Hj2, . . . ,Hjk , in common with

H, k ∈ {1, . . . , q}. For k = 1, from Corollary 2, Hi(1) is up-consistent after Step 6 (take a = i

and b1 = j1). Assume now that Hi(k) is up-consistent. From Theorem 1 (take Ha for the SCSP

associated with Hi(k) and b1 = jk+1), Hi(k + 1) is up-consistent after the (k + 1)th execution

of Step 6. Therefore H = Hi(q) is up-consistent at Step 7. We shall now complete the proof

by induction. If H is a leaf, it is already up-consistent and the theorem holds true. Assume

that all branchs Hj1 , . . . ,Hjq of H have been made up-consistent by F���. From the first part

of the proof, F���(H) then makes H up-consistent. ♦

Example 5 Consider the TSCSP H = (V,D, C,v1) associated with the tree (21). F��� exe-
cutes the following sequence of set operations

(i) V2 := ρ4 (V2) ∩ ρ5 (V2) ∩ ρ6 (V2) ,
(ii) V3 := ρ7 (V3) ∩ ρ8 (V3) ,
(iii) V1 := ρ2 (V1) ∩ ρ3 (V1) ,

(22)

which makes H up-consistent. The variable v1 is then also H-consistent, i.e., V1 = π1 (H).
Figure 6 illustrates this propagation assuming that the vi’s are real variables, the Vi’s are all

equal to [−2, 2], and the domains defined by the constraints are represented in grey. Statement
(i) corresponds to subfigures (b), (c) and (d) for ρ4 (V2) , ρ5 (V2) and ρ6 (V2) (which are rep-

resented by the vertical thick segments), respectively. The thick vertical segment of subfigure

(a) is obtained by intersecting the thick vertical segments of (b), (c) and (d). Statement (ii)

corresponds to (f) and (g) for ρ7 (V3) and ρ8 (V3), respectively. Statement (iii) corresponds to

(a) and (e). The intersection of the thick horizontal segments of (a) and (e) represents the

13



Figure 6: Illustration of propagation; the arrows indicate the direction of propagation

domain V1 computed at (iii). Check that any other ordering of these operations would lead to

more pessimistic domains. ♦

3.2.3 Algorithm CLIMB

Let H = (V,D, C,v1) be an up-consistent TSCSP. This consistency may result from an execu-

tion of F���(H). We shall now give an algorithm to compute E (H) , the minimal contraction

of H. The principle of C���� is to propagate the H-consistency of v1, from the root up to

the leaves. One step of C���� is now described. Consider an H-consistent variable vi and one

node vj immediately above vi. Cut the arc between the nodes vi and vj (see Figure 7). Two

TSCSPs are thus generated. One of them is Hj = (Vj ,Dj, Cj ,vj) = SubTree(H,vj). Since H is

up-consistent, vj is Hj-consistent. From Theorem 3 (where a1 = i, b1 = j), πj (H) = ρi (Vj) .
This reasoning can be applied to all nodes of H, from its root to its leaves. The following

recursive algorithm is thus obtained.

14



Figure 7: Illustration of the retropropagation step

C����(inout: H)
1 i := index(root(H));

2 for all branchs Hj of H
3 j := index(root(Hj));

4 Vj := ρi (Vj);

5 C����(Hj);

6 endfor.

Theorem 5 C���� computes the optimal contraction of any up-consistent TSCSP. ♦

Proof : The proof is by induction. Since H = (V ,D, C,v1) is up-consistent, v1 is H-consistent.

Assume now that the root vi of the current subtree Hi, is H-consistent. Consider a branch

vj of vi. After Step 4, from Theorem 3 (where a1 = i and b1 = j), vj is H-consistent. After

completion of the algorithm, all variables are thus H-consistent. ♦

Example 6 Consider again the TSCSP H associated with the tree given by (21). Assume

that H has been made up-consistent by F��� as in Example 5. C���� generates the following

sequence of set operations: (a) V2 := ρ1 (V2) ; (b) V4 := ρ2 (V4) ; (c) V5 := ρ2 (V5) ; (d)

V6 := ρ2 (V6) ; (e) V3 := ρ1 (V3) ; (f) V7 := ρ3 (V7) ; (g) V8 := ρ3 (V8). From Theorem 5,

H is now minimal. Figure 8 illustrates this retropropagation, which follows the propagation

illustrated by Figure 6. The thicker segments correspond to the projected domains Si = πi(H).
Note that the domains cannot be contracted anymore. This is due to the fact that the graph of

H is a tree. ♦
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Figure 8: Illustration of retropropagation

3.2.4 Algorithm FALL-CLIMB

F��� and C���� can be combined to compute the minimal contraction of a given TSCSP H.

The resulting algorithm is:

F���-C����(inout: H)
1 F���(H);

2 C����(H).

Theorem 6 F���-C���� returns the optimal contraction of any TSCSP. ♦

Proof : Denote by H(0) the initial TSCSP, by H(1) the TSCSP after Step 1 and by H(2) the

TSCSP after Step 2. From Theorem 4, H(1) is up-consistent and equivalent to H(0). From

Theorem 5, H(2) is minimal and equivalent to H(0). ♦
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Figure 9: Graph associated with the autonomous system

4 Application to state estimation

4.1 Causal state estimator

To facilitate understanding, we shall consider the autonomous discrete-time system:

{
xk = fk(xk−1)

yk = gk(xk)
k = 1, . . . , k̄, (23)

where xk ∈ Rn is the state vector and yk ∈ Rm is the output vector. It is a special case of the

problem defined by (1), which could be treated in its general form along the same lines. The

functions fk and gk may be nonlinear. At time k, the state estimator can use the measurement

ym
1 , . . . ,y

m
k in the causal case, and ym

1 , . . . ,y
m
k , y

m
k+1, . . . ,y

m
k̄

in the noncausal case. The sets Xk

and Yk are deduced from prior information, or from the measurements ym
k via the interpretation

function φy. In the absence of specific prior information, the prior sets X0, . . . ,Xk̄ are all taken

as Rn and the prior sets Y1, . . . ,Yk̄ are all taken as Rdimy.

The SCSP H = (V ,D, C) associated with the state estimator is defined by

V = {x0, . . . ,xk̄,y1, . . . ,yk̄} ,
D = {X0, . . . ,Xk̄,Y1, . . . ,Yk̄} ,
C =

{
xℓ = fℓ(xℓ−1); ℓ = 1, . . . , k̄

}
∪
{
yℓ = gℓ(xℓ); ℓ = 1, . . . , k̄

}
.

(24)

Its graph is represented on Figure 9. Despite the presence of arrows, this graph is not ori-

ented. The arrows are only meant to indicate the direction along which the associated function

operates.

In the causal case, the generalized set estimator presented in Section 1 specializes into the

following algorithm, where CSE stands for Causal State Estimator.
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CSE

Input: X0, . . . ,Xk̄,Y1, . . . ,Yk̄;

Initialization:

1 for ℓ := 1 to k̄, {Xℓ := Xℓ ∩ fℓ(Xℓ−1) ∩ g−1ℓ (Yℓ); };
2 for ℓ := k̄ down to 1, {Yℓ := gℓ(Xℓ); Xℓ−1 := Xℓ−1 ∩ f−1ℓ (Xℓ) ; };
3 k := 1;

Iteration k

4 wait for ym
k ;

5 Yk := Yk ∩ φy (ym
k ) ;

6 Xk := Xk ∩ g−1k (Yk);
7 for ℓ := k + 1 to k̄, {Xℓ := Xℓ ∩ fℓ(Xℓ−1); Yℓ := gℓ(Xℓ); };
8 for ℓ := k down to 1, {Yℓ := gℓ(Xℓ); Xℓ−1 := Xℓ−1 ∩ f−1ℓ (Xℓ) ; };
9 if

(
k < k̄

)
{k := k + 1; go to Step 4}.

CSE is a specialization of the generalized set estimator presented in Section 1. It performs

an optimal contraction during the initialization and after each measurement as stated by the

following theorem.

Theorem 7 After Step 2 and after each execution of Step 8 of CSE, H is minimal. ♦

Proof : Step 1 corresponds to F���(H), where H = (V,D, C,xk̄) and Step 2 corresponds to

C����(H). From Theorem 6, these two steps produce the optimal contraction of H. At Step 5,

an external contraction of H takes place. After Step 5, H is thus no longer minimal, but it

is still up-consistent, if we consider yk as the new root of H. Steps 6, 7 and 8 correspond to

C����(H). After Step 8, H is minimal from Theorem 5. ♦

In many practical situations, we are interested not in all variables but only in a few of them.

In the context of state estimation, at time k, we may only want to estimate xk and yk. Define

the RCSE algorithm, for Recursive CSE, by replacing Steps 6, 7 and 8 in CSE by

6 Xk := Xk ∩ fk(Xk−1) ∩ g−1k (Yk);
7 Yk := Yk ∩ gk(Xk);

Note that Step 8 of CSE does not exist any more in RCSE. The following theorem shows that,

although much simpler and much more efficient, RCSE provides the same accuracy for xk and

yk as CSE.
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Theorem 8 After Step 2 and after Step 7 of RCSE, xk and yk are H-consistent. ♦

Proof : The consistency of xk and yk after Step 2 is a direct consequence of the minimality of

H (see Theorem 7). Assume that Theorem 8 is true for k−1. Consider xk as the root of H. (i)

Because Hxk−1 = SubTree(H,xk−1) is up-consistent before Step 4, it remains so after Step 5.

(ii) Because Hxk+1 = SubTree(H,xk+1) is up-consistent after Step 2, it is also up-consistent

after Step 5. (iii) Because Hyk = SubTree(H,yk−1) is a leaf, it is up-consistent. From (i), (ii)

and (iii) and from Theorem 1, after Step 6 of RCSE, H is up-consistent and thus its root xk

is H-consistent. From Theorem 3, yk is H-consistent after Step 7. ♦

Remark 3 RCSE is similar to the algorithm proposed in [KJW98], [KJWM99]. The main

difference is that in RCSE the initialization steps make it possible to take into account prior

information on the future state or output vectors. Moreover, the use of the theory of set con-

straint satisfaction problems made it possible to derive Theorem 8 in a very simple way. ♦

4.2 Non-causal state estimator

Consider now the noncausal case. Assume that the k̄ domains Yk, k ∈ {1, . . . , k̄} are available.

The minimal contraction of H is computed using F���-C����, where the root is chosen as xk̄.

It can be translated, for this special problem, into the following Non-Causal State Estimator

(NCSE) algorithm.

NCSE

Input: X0, . . . ,Xk̄,Y1, . . . ,Yk̄;

Initialization:

1 for k := 1 to k̄, Yk := Yk ∩ φy (ym
k ) ;

2 for k := 1 to k̄, {Xk := Xk ∩ fk(Xk−1) ∩ g−1k (Yk); };
3 for k := k̄ down to 1, {Yk := gk(Xk); Xk−1 := Xk−1 ∩ f−1k (Xk) ; };

Step 2 corresponds to F��� and Step 3 corresponds to C����. Note that the contracted domain

Yk after Step 1 contains the actual output vector y∗k with a better accuracy than before Step 1.

4.3 Computer implementation

The computer implementation of F��� and C���� requires a representation for sets and an

implementation of the local contraction operator ρi(). A set V is represented by a subpaving
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Figure 10: A subpaving (or union of boxes) is used to approximate a compact set

(union of boxes) that encloses it. For instance, the two-dimensional ring defined by x21 + x
2
2 ∈

[1, 2] can be represented by the subpaving of Figure 10.

In our context, the local contraction operator ρi() corresponds either to the image f(V) of a

set V by a vector function f or to the reciprocal image f−1(W) of a set W. The computation

of a guaranteed enclosure of f(V) can be performed by the algorithm I����SP [KJW98] and

a guaranteed enclosure of f−1(W) can be obtained with the algorithm S���� [JW93]. These

two algorithms are based on interval analysis [Moo79]. The following example illustrates the

principle of I����SP.

Example 7 Consider again the set X = {(x1, x2) ∈ R2 | x21 + x22 ∈ [1, 2]} and assume that
f (x) = (x ∗ y ; x + y)T. X is approximated by the subpaving of Figure 11 (a). The first step

performs a mincing of all boxes of this subpaving into smaller boxes as in Figure 11 (b). Then

an outer approximation by a box of the image by f of each of these smaller boxes is computed

using interval analysis. For instance, the image of the (much too large) box [x] = [x1]× [x2] =
[1, 2]× [3, 4] would be approximated as follows:

[y] = ([x1] ∗ [x2])× ([x1] + [x2]) = ([1, 2] ∗ [3, 4])× ([1, 2] + [3, 4]) = [3, 8]× [4, 6]. (25)

We thus obtain the union of all image boxes of Figure 11 (c). This union is guaranteed to

contain f(X). The last step of I����SP is a reorganization of the boxes in order to get the

subpaving of Figure 11 (d). ♦
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Figure 11: Principle of I����SP. (a) initial subpaving; (b) minced subpaving; (c) set approxi-

mating the image set, obtained by computing an outer approximation of the image by f of each

of the boxes in (b); (d) final subpaving approximating the image set, obtained by simplifying

(c)
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5 Test case

Consider the nonlinear system




(
x1 (k)

x2 (k)

)
= 3

(
sin (x1 (k − 1)+x2 (k − 1))
cos (x1 (k − 1)+x2 (k − 1))

)

y (k) = |x1 (k) |
with k ∈ {1, . . . , 10}. (26)

For x∗ (0) = (0 0)T, the values x∗(k) and y∗ (k) , k ∈ {1, . . . , 10}, have been generated by

simulation of this system. The measurements ym (k) have then been obtained by adding a

bounded noise to the actual output y∗(k):

ym (k) = y∗(k) + n(k),

where n(k) is a random variable with a uniform distribution in the interval [−0.1, 0.1]. The

measurement uncertainty sets are taken as

Y(k) = φy(k) (y
m (k)) = ym (k) + [−0.1; 0.1]. (27)

Note that the condition

y∗(k) ∈ Y(k) (28)

is satisfied for all k. The domains obtained for x(k) by RCSE and NCSE are depicted in Figure

12. The total computing time for RCSE and NCSE is less than one minute on a Pentium 133

MHz personal computer. The frames of all subfigures are [−4, 4]× [−4, 4]. The initial domains

given to the estimators are X(0) = · · · = X(10) = R2 and Y(1) = · · · = Y(10) = R. The

first subfigure is entirely grey, which means that RCSE is unable to provide any information

about x(0) (X(0) = R2), contrary to NCSE 3. The last two subfigures, for k = 10, are identical

because both estimators have now processed the same information.

6 Conclusions

Nonlinear parameter and state estimation has been cast into the general framework of SCSPs.

The notion of SCSP is itself a generalization to the vector case of that of ICSP (Interval

3The lines obtained by the noncausal set estimator for k = 0 are due to the non-invertibility of f . As can be

seen from the picture for k = 1, x(1) is rather precisely estimated, with a value approximately equal to (0; 3)T .

Solving f(x(0))) = x(1) amounts to solving x1(0) + x2(0) = 2kπ, k ∈ Z, the solutions of which correspond to a

family of parallel lines in the x(0)-space.
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Figure 12: Causal and noncausal set estimations
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Constraint Satisfaction Problem) well known in the area of artificial intelligence [Hyv92]. The

main difference between SCSPs and ICSPs is that ICSPs handle intervals whereas SCSPs

handle subsets of Rn. This made it possible to obtain two powerful theorems (the propagation

and retropropagation theorems) that are not true in an ICSP context. Existing algorithms

[BGGP99], have been generalized to SCSPs whose graphs are trees, under the names of F���

and C����. Contrary to what happens for ICSPs, we have shown that a single execution of

F��� followed by a single execution of C���� was sufficient to produce an optimal contraction.

In the special case of causal state estimation, the algorithms proposed in [KJW98] and [KJWM99],

can be interpreted in the framework of the more general F���-C���� algorithm.

We have chosen in this paper not to put emphasis on computer implementation, but this is of

course a critical issue, addressed in detail in [Kie99]. The source code in C++ Builder 4, and

an executable program for IBM-compatible PCs corresponding to the example are available on

request.
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