Guaranteed Polynesian Navigation

Thibaut Nico1, Luc Jaulin *2, and Benoît Zerr2

1ECA, Lab-STICC UMR CNR 6285
2ENSTA-Bretagne, Lab-STICC UMR CNRS 6285

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig1.png}
\caption{Polynesian navigation}
\end{figure}

\textbf{Keywords:} Navigation; Intervals, Contractors, No-lost zone

\section*{Introduction}

The Polynesian navigation problem asks to move from islands to other islands without being lost. The navigation should be performed without GPS, compass and clocks. The difficulty of the navigation is illustrated by Figure 1: the ocean is huge, the islands are small, the boats are more or less uncertain.

Among the techniques used by Polynesian, the observation of the stars (see Figure 2) are useful to get the heading, but also to detect if the boat is on the route which leads us to the desired island. The approach we will follow to guarantee that we can reach an island from another island, uses guaranteed integration 10, tube programming 12, 13, constraint programming 11, localization 13, contractors 2 and interval analysis 61.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig2.png}
\caption{Pair of stars technique: the boat is on the right route if the bottom star rises when the right star sets}
\end{figure}

\section*{Formalisation}

The problem can be formalized as follows

\begin{itemize}
\item Given a set of geo-localized islands $m_i, i \geq 0$.
\item The ith coastal area is:
\[C_i = \{ x | c_i(x) \leq 0 \} \].
\item A robot has to move in this environment without being lost.
\end{itemize}

Figure 3 represents a set of 4 islands with the associated coastal zones C_1, C_2, C_3, C_4 (painted blue).

We assume the following

\begin{itemize}
\item The coastal areas are small compare to the offshore area.
\item In the coastal area, the robot knows its state.
\item Offshore, the robot is blind and has an open loop strategy, such as for instance go North.
\end{itemize}

*Corresponding author.
• The robot is described by blind state equations
\[
\begin{aligned}
\dot{x} &= f(x, u), \quad u(\cdot) \in [u](t) \\
x(0) &= x_0
\end{aligned}
\]
where the input \(u(t) \) belongs to the uncertainty box \([u](t)\).

We define the set flow \(\Phi : \mathbb{R} \times \mathbb{R}^n \rightarrow \mathcal{P}(\mathbb{R}) \) as:
\[
\Phi(t_1, x_0) = \{ a | \exists u(\cdot) \in [u](t), a = x(t_1), \\
\dot{x} = f(x, u), x(0) = x_0 \}
\]

Given the set \(A \) (for instance a coastal area), the backward reach set \([1]\) is defined by
\[
\text{Back}(A) = \{ x | \forall \varphi \in \Phi, \\
\exists t \geq 0, \varphi(t, x) \in A \}
\]

Interval analysis is often used to compute backward reach sets in the case where the robot is nonlinear \([3], [4]\). We have
\[
\text{Back}(A \cup B) \supset \text{Back}(A) \cup \text{Back}(B).
\]

This is the Archipelago effect which tells us that finding an Archipelago \((A \cup B)\) is easier than finding individual islands, as illustrated by Figures 4 and 5.

Moving between coastal zones

Assume that we have \(m \) coastal sets \(C_1, C_2, \ldots, i \in \{1, 2, \ldots\} \) and open loop control strategies \(u_j, j \in \{1, 2, \ldots\} \) or equivalently, we have set flows \(\Phi_j(t, x_0) \). Moreover, we assume that the control strategy cannot change offshore. As a consequence,

• From \(C_1 \) we can reach \(C_2 \) with the \(j \)th control strategy if \(C_1 \cap \text{Back}(j, C_2) \neq \emptyset \).
• From \(C_1 \) we can reach \(C_2 \) with at least one control strategy if \(C_1 \cap \bigcup_j \text{Back}(j, C_2) \neq \emptyset \).
From C_1 we can reach $C_2 \cup C_3$ with at least one control strategy if $C_1 \cap \bigcup_j \text{Back}(j, C_2 \cup C_3) \neq \emptyset$.

Therefore, we define the reachability relation \leftarrow as:

- $C_a \leftarrow C_b$ if from C_a we can reach C_b with at least one control strategy j.
- \leftarrow is the smallest transitive relation which satisfies

$$\forall k \in K, C_{i_k} \leftarrow C_b \quad \exists j, C_a \cap \text{Back}(j, \bigcup_{i \in K} C_{i_k}) \neq \emptyset \quad C_a \leftarrow C_b$$

Consider for instance, the hyper-graph of Figure 6 where the relation $A \xrightarrow{j} B, C$ means that from A the robot can reach either B or C using the jth strategy. For instance, in our graph

$$C_1 \cap \text{Back}(1, C_3 \cup C_4) \neq \emptyset \Rightarrow C_1 \xrightarrow{j} (C_3, C_4)$$

Thus, the associated reachability graph (corresponding to \leftarrow) is given by Figure 7.

In a similar way, we can also define the forward reach set as illustrated by Figure 8.

No lost zone

We define the no-lost zone as the set S of all states that we may visit from a coastal area without being lost with the available control strategies. Define the index set associated with the strategy I_j as

$$I_j = \{k|C_k \cap \text{Back}(j, \bigcup_{i \neq k} C_i) \neq \emptyset\}.$$

If we start from $C_k, k \in I_j$, then we will reach at least another coastal area with the control strategy j. We have

$$\{x \in \text{Back}(j, \bigcup_i C_i) \quad x \in \text{Forw}(j, C_k), k \in I_j \Rightarrow x \in S\}$$

Thus

$$S \subset \bigcup_j \bigcup_{k \in I_j} \text{Forw}(j, C_k) \cap \text{Back}(j, \bigcup_i C_i).$$

This property will allow us to have an inner approximation of the no-lost zone, which is the main contribution of this paper. This is illustrated by Figure 9 with 8 strategies: North, East, South, West, North-East, East-South, South-West, West-North.
Figure 9: No-lost zone associated with the 5 islands

Acknowledgement

This work has been supported by the French Government Defense procurement and technology agency (DGA). It also benefited from the support of the project CONTREDO of the French National Research Agency (ANR).

References

