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Figure 1: Polynesian navifation
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Introduction

The Polynesian navigation problem asks to
move from islands to other islands without be-
ing lost. The navigation should be performed
without without GPS, compass and clocks.
The difficulty of the navigation is illustrated
by Figure[l} the ocean is huge, the islands are
small, the boats are more or less uncertain.

Among the techniques used by Polynesian,
the observation of the stars (see Figure [2)) are
useful to get the heading, but also to detect
if the boat is on the route which leads us to
the desired island. The approach we will fol-
low to guarantee that we can reach an island
from another island, uses guaranteed integra-
tion [10], tube programming [9], [8], constraint
programming [IT], localization [3], contractors
[2] and interval analysis [6][4].

*Corresponding author.

Figure 2: Pair of stars technique: the boat
is on the right route if the bottom star rises
when the right star sets

Formalisation

The problem can be formalized as follows

e Given a set of geo-localized islands
mi,i > 0.

e The ith coastal area is:

Ci:{x\ci(x)SO}.

e A robot has to move in this environment
without being lost.

Figure [3] represents a set of 4 islands with
the associated coastal zones Ci,Cg,Cg, Cy
(painted blue).

We assume the following

e The coastal areas are small compare to
the offshore area.

e In the coastal area, the robot knows its
state.

e Offshore, the robot is blind and has an
open loop strategy, such as for instance
go North.
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Figure 3: Islands ans coastal zones

e The robot is described by blind state
equations

{%;sz’

u(-) € [u] (?)

where the input u(t) belongs to the un-
certainty box [u] (t).

We define the set flow ® : R x R" — P (R)
as:

®(t1,x9) ={ a|Fu(:) € [u](t),a=x(t1),

x =f(x,u),x(0) =x9 }

Given the set A (for instance a coastal area),
the backward reach set [1] is defined by

Back(A) ={ x|V e ®,
3> 0,0(tx) €A}

Interval analysis is often used to compute
backward reach sets in the case where the
robot is nonlinear [5], [7]. We have

Back(AUB) DO Back(A)UBack(B) .
This is the Archipelago effect which tells us

that finding an Archipelago (A U B) is easier

than finding individual islands, as illustrated

by Figures [ and [
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Figure 4: Back(A) U Back(B)
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Figure 5: Back(A UB)

Moving between coastal zones

Assume that we have m coastal sets
Cy,Cy,...,i € {1,2,...} and open loop con-
trol strategies u;,j € {1,2,...} or equiva-
lently, we have set flows ®;(t,xg). Moreover,
we assume that the control strategy cannot

change offshore. As a consequence,

e From C; we can reach Co with the jth
control strategy if C; N Back(j, Cq) # 0.

we can reach Co with at
strategy if C; N

e From C;
least one control

Uj BaCk(j7 (C?) # @



Figure 6: Reach an island from another island
using a 'Go-East’ strategy
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Figure 7: Reachability graph

e From C; we can reach Cy; U C3 with
at least one control strategy if C; N

Uj Back(j,Co UC3) # 0.

Therefore, we define the reachability relation
— as:

o C, — Cpif from C, we can reach C, with
at least one control strategy j.

e — is the smallest transitive relation
which satisfies

{ Vk € K,C;, < Cp
37, Co N Back(j, Upek Ci,) # 0
= C, — Cy

Consider for instance, the hyper-graph of Fig-

ure @ where the relation A % B, C means that
from A the robot can reach either B or C using
the jth strategy. For instance, in our graph

Cy NBack(1,C3UCy) # 0 = C; RN (C3,Cy)

Thus, the associated reachability graph
(corresponding to <) is given by Figure

In a similar way, we can also define the for-
ward reach set as illustrated by Figure [§]
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Figure 8: Forward reach set from a given is-
land

No lost zone

We define the no-lost zone as the set S of all
states that we may visit from a coastal area
without being lost with the available control
strategies. Define the indexr set associated
with the strategy Z; as

T; = {k|CxnBack(j, | | Ci) # 0}.
ik

If we start from Cy,k € Z;, then we will reach
at least another coastal area with the control
strategy j. We have

{ x € Back(j, U, Ci) =xc$S

x € Forw(j,Cy), k € Z;

Thus

sclJ |J Forw(j,Cx) N Back(j,|_JCi).
j keI, i

This property will allow us to have an inner
approximation of the no-lost zone, which is
the main contribution of this paper. This is il-
lustrated by Figure[d| with 8 strategies: North,
East, South, West, North-East, East-South,
South-West, West-North.
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Figure 9: No-lost zone associated with the 5
islands

Aknowledgement

This work has been supported by the French
Government Defense procurement and tech-
nology agency (DGA).It also benefited from
the support of the project CONTREDO of the
French National Research Agency (ANR).

References

[1] F. Blanchini and S. Miani. Set-Theoretic
Methods in Control. Springer Science &
Business Media, Oct. 2007.

[2] G. Chabert and L. Jaulin. Contrac-
tor Programming. Artificial Intelligence,
173:1079-1100, 2009.

[3] V. Drevelle, L. Jaulin, and B. Zerr. Guar-
anteed characterization of the explored
space of a mobile robot by using sub-
pavings. In Proc. Symp. Nonlinear Con-
trol Systems (NOLCOS’18), Toulouse,
2013.

[4] V. Kreinovich, A. Lakeyev, J. Rohn, and
P. Kahl. Computational complexity and
feasibility of data processing and inter-

val computations. Reliable Computing,
4(4):405-409, 1997.

[5]

(6]

7]

8]

19]

[11]

T. L. Mézo, L. Jaulin, and B. Zerr. An
interval approach to compute invariant
sets. IFEE Transaction on Automatic
Control, 62:4236-4243, 2017.

R. E. Moore. Interval Analysis. Prentice-
Hall, Englewood Cliffs, NJ, 1966.

N. Ramdani and N. Nedialkov. Comput-
ing Reachable Sets for Uncertain Nonlin-
ear Hybrid Systems using Interval Con-
straint Propagation Techniques. Nonlin-
ear Analysis: Hybrid Systems, 5(2):149-
162, 2011.

S. Rohou. Reliable robot localiza-
tion: a constraint programming approach
over dynamical systems. PhD disser-
tation, Université de Bretagne Occiden-
tale, ENSTA-Bretagne, France, decem-
ber 2017.

S. Rohou, L. Jaulin, M. Mihaylova,
F. L. Bars, and S. Veres. Guaran-
teed Computation of Robots Trajecto-
ries. Robotics and Autonomous Systems,
93:76-84, 2017.

J. A. D. Sandretto and A. Chapoutot.
Validated simulation of differential alge-
braic equations with runge-kutta meth-
ods. Reliable Computing, 22, 2016.

G. Trombettoni and G. Chabert. Con-
structive Interval Disjunction. In Proc.

CP, Constraint Programmaing, pages 635—
650, LNCS 4741, 2007.



