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Abstract. Linear Matrix Inequalities (LMI for short) is a large class of convex constraints. Boxes,
Ellipsoids, linear constraints, can be represented by LMIs. Intersection of LMIs are also LMIs.
Interior point methods are able to minimize or maximize any linear criterion of LMIs with a com-
plexity which is polynomial regarding to the number of variables. As a consequence, as shown in
this paper, it is possible to build optimal contractors for sets represented by LMIs. When solving
a set of nonlinear constraints, one may extract from all constraints those that are LMIs in order to
build a single optimal LMI contractor. A combinaison with all contractors obtained for other non
LMI constraints can thus be performed upto the fixed point. The resulting propogation is shown to
be more efficient than other conventional contractor-based approaches.

Keywords. Interval Analysis, Linear Matrix Inequality, Contractor Programming, Convex Opti-
mization, Constraint Propagation, Robotics.

1. Introduction
Contractor techniques is the approach of combining Interval Analysis [1] [2] [3] and fixed-point [4]
methods to solve difficult nonlinear problems such as global optimization or parameter estimation
in a guaranteed manner. The collaboration of the two approaches makes it possible to treat high
dimensional, nonlinear problems efficiently, and has been used to solve various problems ranging
from controller design [4], robot localization and environment mapping [5] to global optimization
[6].

While Interval Analysis enables us to deal with nonlinearities and roundoff errors in a guaranteed
way, its core algorithms, by bisecting the search space and testing each bisection individually, has a
complexity that is exponential with respect to the dimension of the problems treated [7]. This makes
this approach well suited for low dimensional problems, but doesn’t scale well for higher dimen-
sional problems. On the other hand the goal of Constraints Propagation methods is to reduce the
search-space as much as possible without losing any feasible solution using fast algorithms. When
combined, those features enable us to deal efficiently with high-dimensional, nonlinear and noncon-
vex problems in a guaranteed manner, using bisections only as a last resort. In this perspective, we
understand why having polynomial time algorithms to contract optimally (i.e. to find the smallest
box satisfying the given set of constraints) the domains of interest is so important.

Using well-known convex optimization methods, which have already been used to contract opti-
mally an interval matrix for the semi-definite positive constraint [8], this article will introduce a new
optimal contractor for the LMI constraint, somehow generalizing previous work [9] which proposed
to apply a local solver dedicated to linear systems, for which, to the best of our knowledge, no
optimal algorithms have been presented yet.
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The paper is organized as follows. We shall first recall what a Linear Matrix Inequality (LMI) is
and present a few problems that can be represented as LMIs. In the third section we will present the
problem of convex optimization under LMI constraints, and see how it can be used in the context
of Interval Analysis. In the fourth section we will make a brief recall on Interval Constraints Prop-
agation and contractor programming and show how to leverage optimization under LMI constraints
methods to create a minimal contractor for the LMI constraint. Section 5 will recall the branch and
bound like algorithm used to pave sets using contractors. In section 6 we will present some examples
of application, compare the efficiency of our contractor with existing ones, and illustrate the power
of contractor programming by mixing convex and nonconvex constraints. Section 7 will conclude
the paper.

2. Linear Matrix Inequalities
In this section, we will recall some properties about LMIs. For an in depth review on the topic,
see [10] and [11].
A Linear Matrix Inequality (LMI) has the form:

F(x) = F0 + x1F1 + x2F2 + · · ·+ xnFn � 0

with x = (x1, x2, . . . , xn) ∈ Rn the unknown, Fi=0,...,n ∈ Rn×n a set of symmetric matrices.
The inequality means that F(x) is a positive definite matrix, i.e.:

∀ u ∈ RnuTFu > 0 ,u 6= 0.

Since the set
S = {x ∈ Rn | F(x) � 0}

is convex, an LMI is a convex constraint on x.
A set of linear inequalities is an LMI. For example{

I1(x) = a11x1 + a12x2 + b1 ≥ 0
I2(x) = a21x1 + a22x2 + b2 ≥ 0

is equivalent to the following LMI:(
I1(x) 0

0 I2(x)

)
=

(
a11x1 + a12x2 + b1 0

0 a21x1 + a22x2 + b2

)
� 0

i.e., (
b1 0
0 b2

)
+ x1

(
a11 0
0 a21

)
+ x2

(
a12 0
0 a22

)
� 0

A box is described by an LMI. x ∈ [x], with x = (x1, x2, ..., xn) ∈ Rn,
[x] = [

¯
x1, x̄1] × [

¯
x2, x̄2] × · · · × [

¯
xn, x̄n] ∈ IRn, where IRn is the set of all the intervals of Rn, is

an LMI. Indeed, it can be decomposed as a set of 2× n linear inequalities:

I−1 (x) = −
¯
x1 + x1 ≥ 0

I+1 (x) = x̄1 − x1 ≥ 0
I−2 (x) = −

¯
x2 + x2 ≥ 0

I+2 (x) = x̄2 − x2 ≥ 0
...

I−n (x) = −
¯
xn + xn ≥ 0

I+n (x) = x̄n − xn ≥ 0

which in turn can be formulated as an LMI. For example, the box

[x] = [−10, 15]× [3, 7]
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is an LMI and is written as:

B(x) =


x1 + 10 0 0 0

0 15− x1 0 0
0 0 x2 − 3 0
0 0 0 7− x2

 � 0

i.e.,

B(x) =


−

¯
x1 0 0 0
0 x̄1 0 0
0 0 −

¯
x2

0 0 0 x̄2

+ x1


1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

+ x2


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

 � 0

An ellipsoid in Rd is described by an LMI. An ellipsoid E in Rd is described as:

E = {x ∈ Rd | r − (x− c)TP−1(x− c) ≥ 0}

whith r > 0 its radius, c ∈ Rd its center and P its characteristic matrix.
Using Schur complement theorem, which states that for a set of matrices A,B,C,D respectively of

dimensions p× p, p× q, q × p, q × q,{
C � 0

A− BD−1C � 0 ⇔
(

A B
C D

)
� 0

we show that E can be described as the LMI:

E(x) =

(
r x− cT

x− c P

)
� 0

For example, the unit disk D in R2 is an ellipse with a characteristic matrix P =

(
1 0
0 1

)
, a radius

r = 1, centered on the origin c = (0, 0)T :

D = {x ∈ R2 | 1− xT Id−1x ≥ 0}

i.e.,

1− x21 − x22 ≥ 0

Using the Schur complement theorem with

A = 1,B = CT =
(
x1 x2

)
,D =

(
1 0
0 1

)
we get the LMI:  1 x1 x2

x1 1 0
x2 0 1

 � 0

i.e., 1 0 0
0 1 0
0 0 1

+ x1

0 1 0
1 0 0
0 0 0

+ x2

0 0 1
0 0 0
1 0 0

 � 0

Many other convex sets can be represented by LMIs. See [12, 11] for a presentation of a consequent
amount of LMI-representable sets.
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A distance constraint is partly an LMI constraint. Given two points x1, x2 in Rd, and y in R the
distance between x1, x2 such that

y2 = (x11 − x12)2 + (x21 − x22)2 + · · ·+ (xd1 − xd2)2

This constraint is partly an LMI constraint. Indeed, we have:

y2 = (x1 − x2)Id(x1 − x2)⇔
{
y2 ≥ (x1 − x2)Id(x1 − x2) (1)
y2 ≤ (x1 − x2)Id(x1 − x2) (2)

Thanks to the Schur complement theorem recalled above, we can reframe (1) as

R(x) =

(
y2 x1 − x2T

x1 − x2 Id

)
� 0

Which is an LMI constraint. On the other hand, (2) is not a convex constraint and can’t be framed
as an LMI.
A system described by several LMIs can be described by a single LMI. The set S12 = S1 ∩ S2
with S1,S2 two convex sets described by the LMIs S1(x) � 0,S2(x) � 0 is convex and is also
described as an LMI S12(x) � 0, obtained by concatenation of S1(x) and S2(x):

S12(x) = diag(S1(x),S2(x)) =

(
S1(x) 0

0 S2(x)

)
� 0

3. Optimization under LMI constraints
Given a vector of variables x ∈ Rn, a cost vector c ∈ Rn and a matrix F, an optimization problem

under the LMI constraint F(x) � 0 is stated as follows:

Pc,F(x) =

{
minimize: cT x
under the constraint: F(x) � 0

Many engineering problems, for example in the field of control theory [13], can be framed as an
optimization problem under LMI constraints. The book [11] presents a consequent amount of prob-
lems that can be formulated as optimization problems under LMI constraints. Only trivial cases of
optimization under LMI constraints can be solved analytically. On the other hand, numerical meth-
ods have been developped to solve this type of problem efficiently.
Among such methods, the most efficient are based on interior point methods. Interior point methods
were introduced in 1984 by Karmarkar for solving linear programming problems with a polynomial-
time algorithm [14]. A lot of research activities followed, leading to [15], where general interior-
point methods solving LMI problems are introduced. We refer the reader to [10] for a more detailed
review on the algorithms for solving LMI optimization problems and their implementation.
Unlike simplex method commonly used in linear programming, which moves along the edges of
the polytope defining the feasible set until it reaches the vertex of optimum solution, interior point
methods start from a feasible solution and interates inside this set until the optimal solution is found.
Computing the box-hull of a set in Rd described by an LMI reduces to solving 2d optimization
problems under LMI constraints. The box-hull, or the bounding-box [X] of a set X in Rd is the
smallest axis-aligned box enclosing X.

Indeed, for each dimension d we are looking for the maximal and minimal values x̄d,
¯
xd of xd,

giving us the interval [xd] = [
¯
xd, x̄d], their Cartesian product [x] = [x1] × [x2] · · · × [xd] being the

box-hull of X.
Since finding these 2×d extrema reduces to solving an optimization problem under LMI constraints
for each of them, each minimization problem having a polynomial-time complexity, the box-hull
problem also has a polynomial-time complexity.
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FIGURE 1. Characterization of [S1∩S2] (a) maximization of x1, (b) minimization
of x1, (c) minimization of x2, (d) maximization of x2

TABLE 1. Properties of contractors

Possible properties of a contractor CX
Monotonicity [x] ⊂ [y]⇒ CX([x]) ⊂ CX([y])
Minimality ∀[x] ∈ IRn,CX([x]) = [[x] ∩ X]
Thinness ∀x ∈ Rn,CX({x}) = {x} ∩ X
Idempotence ∀[x] ∈ IRn,CX(CX([x])) = CX([x])
Convergence [x](k)→ x⇒ CX([x](k))→ {x} ∩ X

Illustration. Given two sets of R2: a triangle S1 and an ellipse S2 described by the LMIs S1(x) �
0,S2(x) � 0,, we want to find the box-hull [S∩] for their intersection S∩ = S1 ∩ S2, described by

the LMI S(x) =

(
S1(x) 0

0 S2(x)

)
,� 0.

S∩,S1 and S2 are illustrated on figure 1.

First, we are looking for an upper-bound x̄1 for x1. Therefore we solve the optimization prob-
lem:

Pc,S(x) =

{
minimize: cT x
under the constraint: S(x) � 0

with cT =
(
−1 0

)
. The dashed-line (a) illustrates the solution found by the algorithm while search-

ing for x̄1. We are then looking for the lower-bound
¯
x1 for x1, which is done by solving Pc,S(x) with

cT =
(
1 0

)
. The solution is the dashed-line (b). The same process is then repeated for x2 as illus-

trated on the dashed lines (c), (d).
The box-hull [S] is then given by the Cartesian product [x1]×[x2] of the intervals [x1] = [

¯
x1, x̄1], [x2] =

[
¯
x2, x̄2]

4. Contractors
An operator CX : IRn → IRn is a contractor for the set X if:

∀[x] ∈ IRn,
{

CX([x]) ⊂ [x] (contractance)
CX([x]) ∩ X = [x] ∩ X (completeness)

A contractor associated to a constraint is a contractor associated with the set X of all x which satisfy
the constraint.
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FIGURE 2. Illustration of a minimal and non-minimal contractor for the set X: C2

is minimal, C1 is not

Some properties of contractors are recalled in table 1. The minimality of a contractor is a
desirable property. Indeed, if a contractor is minimal, it will remove all the infeasible solutions and
return the box-hull of the feasible solutions. Figure 2 illustrates the minimality of a contractor.

Besides, since an optimal contractor is idempotent, we only need to apply it once to reach the
fixpoint, which can save us a considerable amount of processing time.

A classical way to contract a box with respect to a constraint is to use the forward-backward
algorithm [16].
For example, consider the following constraint:

(x1 + x2).x3 ∈ [1, 2]

The forward-backward contractor associated with this constraint is depicted in the algorithm 1.

Algorithm 1 C([x1]× [x2]× [x3]) for the constraint (x1 + x2).x3 ∈ [1, 2]

1: [a] = [x1] + [x2] // Decomposition into
2: [b] = [a].[x3] // elementary constraints
3: [b] = [b] ∩ [1, 2] // Forward propagation
4: [x3] = [x3] ∩ [b]

[a] // Backward propagations

5: [a] = [a] ∩ [b]
[x3]

6: [x1] = [x1] ∩ [a]− [x2]
7: [x2] = [x2] ∩ [a]− [x1]

Lines 1 and 2 decompose the constraint into elementary constraints. Line 3 is the forward
propagation step, and lines 4 to 7 are the backward propagation steps.
Now if we apply this contractor on the box [x] = [−∞, 10] × [1, 3] × [8, 9] for example, it gets
contracted to [x′] = [−2.88889,−0.75]× [1, 3]× [8, 9].
Optimal contractor under LMI constraints. Let S be a convex set described by the LMI S(x) � 0,
and [x] ∈ IRn a box described by the LMI B(x) � 0. The operator CLMI, which maps [x] to the box-

hull of the set S∩ described by
(

B(x) 0
0 S(x)

)
� 0 is a contractor for S, and it is minimal.
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Implementing the LMI contractor. Using the C++ library lib-SDPA [17], we implemented the
LMI contractor for the IBEX library [18] [19] [20]. Given a set of matrices F0,F1, . . .Fn and a box
[x] ∈ IRn as inputs, it contracts [x] with respect to the LMI constraint:

CLMI(x) = diag(B(x),F0 +

n∑
i=1

Fi(xi)) � 0

where B(x) � 0 is the LMI constraint for x ∈ [x] as presented in section 2. It should be noted that
each time an LMI contractor is called, since the bounds of the box to be contracted are possibly
changed, we have to partly rebuild the contractor. This requires to modify the F0 matrix for the box
LMI B(x), which makes it a lightweight operation.
It should also be noted that the current implementation of the LMI contractor has no numerical
guarantee. We plan to implement a verification step using [21] and integrate the contractor in the
IBEX library.

5. Paving with contractors
We want a paving (I,B,O) of a set S described by a set of constraints, that is, a set of non-overlapping
boxes that can belong to three categories:
• I, which means the box belongs to S
• O, which means the box does not belong to S
• B, which means we can’t say for sure if the box belongs to I or O

Building the lists defining the sets I,B,O involves three core steps. First, the box [x] representing
the initial domain is contracted to a box [x′] by an inner contractor Cin, that is a contractor that
guarantees:

[x′] ⊆ [x] ∧ [x] \ [x′] ⊆ I
The boxes resulting from the set-difference [x] \ [x′] are then pushed in the list I.
If [x′] 6= ∅ then [x]′ is contracted to a box [x′′] by an outer contractor Cout that guarantees:

[x]′′ ⊆ [x]′ ∧ [x]′ \ [x]′′ ⊆ O

Finally, if [x]′′ 6= ∅ then [x]′′ is bisected in two new boxes that are pushed in the list of boundary
boxes B. The recusion stops when a specified fixed number of bisections b have been performed.
The algorithm 2 summarizes these steps.

Algorithm 2 (I,B,O) = pave([x], b)

1: b′ ← 0 // Number of bisections performed
2: I← ∅,O← ∅,B← [x]
3: while b′ 6= b do
4: [x]← first box in B
5: pop [x] from B
6: [x]′ ← Cin([x]), I← I ∪ ([x] \ [x]′) // inner contraction
7: [x]′′ ← Cout([x]′), O← O ∪ ([x]′ \ [x]′′) // outer contraction
8: if [x′′] 6= ∅ then
9: ([x]1, [x]2)← bisect([x]′′)

10: push [x]1 and [x]2 in B
11: b′ ← b′ + 1
12: end if
13: end while
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(a) (b)

FIGURE 3. Subpaving of F (a) with forward-backward contractors only, (b) with
a forward-backward and a LMI contractor

6. Examples
All the illustrations shown here were made using the VIBEs [22] drawer and its C++ API. We did not
include any timing information, and it should be noted that on these problems the forward-backward
contractor approach is faster than our proposed approach. However, we anticipate that it could be the
other way around when dealing with higher dimensional problems, and this kind of problems should
be studied in a further work. In the following examples, we ran algorithm 2 with b = 100.

6.1. Representation of a simple LMI-set
Consider the following LMI:

F(x) =

(
x1 x2
x2 x1 + x2

)
� 0

which means that the two eigenvalues λ1, λ2 of F are real positive, i.e.:

λ1 =
2x1+x2+

√
x2
2+4x2

2

2 ≥ 0

λ2 =
2x1+x2−

√
x2
2+4x2

2

2 ≥ 0

Using set-inversion and contractor programming methods, we want to approximate this LMI-
set F with a subpaving. For this we need two contractors:

Cin
↑↓ = Cin

λ1↑↓ ∪ Cin
λ2↑↓

wich will classify in I parts of the search space that are consistent with the constraints λ1 ≥ 0 and
λ2 ≥ 0 and

Cout
↑↓ = Cout

λ1↑↓ ∩ Cout
λ2↑↓

wich will classify in O part of the search space that are inconsistent with the constraints λ1 ≥ 0 and
λ2 ≥ 0. The boxes classified in I are drawn in red, the boxes classified in O are drawn in blue while
the undetermined ones are drawn in yellow.

Since the constraint F(x) � 0 is an LMI constraint, we can replace the outer contractor Cout
↑↓

with our LMI contractor CLMI introduced in section 4. On the other hand, the constraints defining
Cin are non-convex, and a forward-backward approach is appropriated.
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(a) (b)

FIGURE 4. Characterization of E (a) with forward-backward contractions only
(b) with a forward-backward contractor and the LMI contractor

Figure 3 compares the two approaches, with the same allowed number of bisections. As can be
seen, the subpaving computed by the combination of the forward-backward and the LMI contractor
is much finer than the one computed with the forward-backward approach only. This is due to the fact
that since CLMI is minimal, less time is spent bisecting parts of the search space that do not satisfy
the positive semidefinite constraint for sure, and more bisections can be performed on elsewhere.

6.2. Characterization of ellipsoidal sets
In this example we want to characterize the set

E = {x ∈ R2 | xTP−1x ≤ r}

⇔ E = {x ∈ R2 | 1.9608x21 + 1.9608x22 − 2.7450x1x2 ≤ r}

which is an ellipse with P =

(
1 0.7

0.7 1

)
, r = 5. As in the previous example, we want to approxi-

mate E with a subpaving. Since it can be described as an LMI-set, we compare the results obtained
with the LMI contractor and forward-backward contractor for the outer contractor. The subpavings
generated are shown in figure 4. Again, thanks to the minimality of the LMI contractor, we see that
the subpaving generated in (b) is much more precise than the one generated in (a) using forward-
backward contractors only. However, if P was diagonal, it should be noted that the forward-backward
contractor would be minimal as there would be no multi-occurrences of variables.

6.3. Manipulating the LMI contractor using contractor algebra
In this example we have two sets: a triangle

T = {x ∈ R2 | x2 + x1 − 1 ≥ 0, x2 − x1 − 1 ≥ 0, x2 ≥ 0}

and an ellipse:
E = {x ∈ R2 | (c− x)TP−1(x− c) ≤ r}

with P =

(
1 0.7

0.7 1

)
, r = 0.5, c =

(
0.5 0.5

)T
.

We would like to compute a subpaving for the set S = (T ∪ E) \ (T ∩ E).
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(a) (b)

FIGURE 5. Characterization of S (a) with forward-backward contractions only (b)
with forward-backward contractors and LMI contractors

For this we need the inner and outer contractors Cin
T ,C

out
T for T and the inner and outer con-

tractors Cin
E ,C

out
E for E.

Using contractor algebra [19], we obtain the outer and inner contractors for S:

Cout
S = (Cin

E ∩ Cout
T ) ∪ (Cout

E ∩ Cin
T )

Cin
S = (Cout

E ∪ Cin
T ) ∩ (Cin

E ∪ Cout
T )

In figure 5 we compare the subpavings obtained when Cout
E and Cout

T are forward-backward contrac-
tors (a) and when they are LMI contractors. Again, we observe the gain in precision when using the
LMI-based contractor.

7. Conclusion and Outlook
In this paper, we introduced a new contractor based on convex optimization under LMI constraints.
To the best of our knowledge, this kind of constraint is under-exploited in the interval analysis com-
munity and has never been implemented in the contractor framework before. Having LMI constraints
in the contractor programming framework has numerous advantages, as it enables us to mix this kind
of constraint with other, possibly non-convex constraints, to solve complex problems.
LMI constraints are omnipresent in the context of robotics. For example, range or pseudo-range mea-
surements can be framed as an LMI constraint [23] [24] [25], and therefore the use of our contractor
could be used in this kind of application.
Furthermore, in many Bayesian estimation techniques, the parameters to be estimated are modeled
as Gaussian random variables, for which the confidence domain is an ellipsoid, which can be repre-
sented by an LMI. Therefore we anticipate that our contractor could be used to combine probabilistic
and non-probabilistic estimation methods in some possibly interesting ways. The performances of
our contractor should also be compared, with timing information, with other state-of-the art con-
straint propagation based contractors such as HC4, on meaningful, high dimensional problems.
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[2] Luc Jaulin, Michel Kieffer, Olivier Didrit, and Éric Walter. Applied interval analysis. With examples in

parameter and state estimation, robust control and robotics. Springer, 2001.
[3] R. B. Kearfott and V. Kreinovich, editors. Applications of Interval Computations. Kluwer, Dordrecht, the

Netherlands, 1996.
[4] L. Jaulin, I Braems, and E. Walter. Interval methods for nonlinear identification and robust control. In

Decision and Control, 2002, Proceedings of the 41st IEEE Conference on, volume 4, pages 4676–4681
vol.4, Dec 2002.

[5] L. Jaulin. A Nonlinear Set-membership Approach for the Localization and Map Building of an Underwater
Robot using Interval Constraint Propagation. IEEE Transaction on Robotics, 25(1):88–98, 2009.

[6] Frederic Messine. Deterministic global optimization using interval constraint propagation techniques.
RAIRO - Operations Research - Recherche Opérationnelle, 38(4):277–293, 2004.

[7] Luc Jaulin and Eric Walter. Set inversion via interval analysis for nonlinear bounded-error estimation.
Automatica, 29(4):1053–1064, July 1993.

[8] L. Jaulin and D. Henrion. Contracting optimally an interval matrix without loosing any positive semi-
definite matrix is a tractable problem. Reliable Computing, 11(1):1—17, 2005.

[9] Ignacio Araya, Gilles Trombettoni, and Bertrand Neveu. A contractor based on convex interval taylor. In
Integration of AI and OR Techniques in Contraint Programming for Combinatorial Optimzation Problems
- 9th International Conference, CPAIOR 2012, Nantes, France, May 28 - June1, 2012. Proceedings, pages
1–16, 2012.

[10] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in System and Control
Theory, volume 15 of Studies in Applied Mathematics. SIAM, Philadelphia, PA, June 1994.

[11] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, New York,
NY, USA, 2004.

[12] A. Ben-Tal and A. Nemirovskii. Lectures on modern convex optimization: analysis, algorithms, and engi-
neering applications. SIAM, Philadelphia, PA, 2001.

[13] D. Arzelier, B. Clement, and D. Peaucelle. Multi-objective h2/hinfinity/impulse-to-peak control of a space
launch vehicle. European Journal of Control, 12(1), 2006.

[14] M. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica, 4:373–395,
1984.

[15] Y. Nesterov and A. Nemirovskii. Interior-point polynomial methods in convex programming. SIAM,
Philadelphia, PA, 1994.

[16] F. Benhamou, F. Goualard, L. Granvilliers, and J-F. Puget. Revising Hull and Box Consistency. In ICLP,
pages 230–244, 1999.

[17] Katsuki Fujisawa, Mituhiro Fukuda, Kazuhiro Kobayashi, Masakazu Kojima, Kazuhide Nakata, Maho
Nakata, and Makoto Yamashita. Sdpa (semidefinite programming algorithm) user’s manual – version
7.0.5. Technical report, 2008.

[18] Ignacio Araya, Gilles Trombettoni, Bertrand Neveu, and Gilles Chabert. Upper bounding in inner re-
gions for global optimization under inequality constraints. Journal of Global Optimization, 60(2):145–
164, 2014.

[19] Gilles Chabert and Luc Jaulin. Contractor programming. Artificial Intelligence, 173(11):1079 – 1100,
2009.

[20] Jordan Ninin, Frédéric Messine, and Pierre Hansen. An Automatic Linear Reformulation Technique Based
on Affine Arithmetic. In International Symposium on Mathematical Programming (ISMP), Chicago,
23/08/2009-28/08/2009, page 52, http://www.journals.uchicago.edu/, 2009. University of Chicago Press.

[21] Arnold Neumaier and Oleg Shcherbina. Safe bounds in linear and mixed-integer linear programming.
Math. Programming, pages 283–296, 2004.

[22] Vincent Drevelle and Jeremy Nicola. Vibes: A visualizer for intervals and boxes. Mathematics in Computer
Science, 8(3-4):563–572, 2014.



12 Jeremy Nicola and Luc Jaulin

[23] L. Jaulin. Range-only SLAM with occupancy maps; A set-membership approach. IEEE Transaction on
Robotics, 27(5):1004–1010, 2011.

[24] J.L. Blanco, J. Gonzalez, and J.A. Fernández-Madrigal. A pure probabilistic approach to range-only
SLAM. In Proceedings of the IEEE International Conference on Robotics and Automation, pages 1436–
1441, 2008.

[25] V. Drevelle and P. Bonnifait. High integrity gnss location zone characterization using interval analysis. In
ION GNSS, 2009.

Jeremy Nicola
Lab STICC - ENSTA Bretagne
2 rue Francois Verny, 29806 Brest Cedex 9, France
e-mail: jeremy.nicola@ensta-bretagne.org

Luc Jaulin
Lab STICC - ENSTA Bretagne
2 rue Francois Verny, 29806 Brest Cedex 9, France
e-mail: luc.jaulin@ensta-bretagne.fr


