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Abstract—Rigid transformation is a popular method to esti-
mate the robot motion given two sets of corresponding points
seen from two different locations. Range imaging sensors, such
as stereo camera and structured-light 3-D scanner, can be used
to provide these corresponding points, however, such sensors
have measurement uncertainty defined by intervals with upper
and lower bounds. This paper presents a new approach to use
interval analysis and simultaneously estimate the following: (1)
the robot motion and, (2) the position of the landmarks with
respect to the initial frame of reference, i.e. the robot initial
pose. We will show that using this approach, the uncertainties
of the landmark positions decrease over time, which causes the
uncertainty of the robot pose to remain bounded. Our approach
is illustrated with examples using simulated data, and real data
acquired by Kinect sensor.

Keywords-Interval Analysis; Optimization; Parameter Esti-
mation; Range Imaging Sensor; Mobile Robot Localization;

I. INTRODUCTION

Estimating robot motion is essential for Simultaneous

Localization and Mapping problem (SLAM), and it can

be achieved by employing either proprioceptive sensors or

exteroceptive sensors. The latter has the advantage where

the uncertainty of the estimated parameters is bounded

according to the uncertainty of sensor measurement. Rigid

transformation is one of many approaches used to estimate

the robot motion using exteroceptive sensors, such as laser

scanners and cameras. The method of estimation depends

on several factors including: the type of measurement un-

certainty and the availability of features correspondence

between different frames of reference. If the measurement

uncertainty follows a Gaussian probability distribution and

the features correspondence between frames is not available,

Iterative Closest Point (ICP) algorithm can be used to find

the translation and rotation between two different frames

[1]. If there exists correspondence between different frames,

least squares techniques with tools such as: Singular Value

Decomposition (SVD) and unit quaternion, can be applied to

estimate the rigid transformation by minimizing the distance

between corresponding points [2], [10].

Range imaging sensors, such as: stereo camera and

structured-light 3-D scanner, have measurement uncertainty

defined by upper and lower bounds, with no further assump-

tion about its probability distribution [3], [4], [7]. Though, it

is possible to approximate such error with some probability

distribution and use probabilistic tools [3], we propose to

apply Interval Analysis [5] directly to the measurement

intervals and compute solution regions for the rigid transfor-

mation problem. In [5] and [6], Jaulin, et al., used interval

analysis to solve range-only SLAM using range sensors such

as laser scanners and sonars. The approach proposed in this

paper deals with measurements acquired by stereo cameras

or structured-light 3-D scanners such as Microsoft Kinect,

in which the landmark positions are measured with bounded

uncertainty. Bethencourt and Jaulin [8] used interval analysis

with data acquired by Kinect to reconstruct 3-D scenes. In

our approach, we extend that idea to estimate the robot

motion, and reduce the uncertainty of the landmark positions

with respect to the robot initial pose, i.e., the initial frame

of reference.

The paper is organized as follows: Section II presents

the relationship between the rigid transformation and robot

motion, and how it can be computed using exteroceptive

sensors. This section also gives an introduction to range

imaging sensors and the nature of error associated with

their measurements. Interval analysis is well-suited for such

type of error, and some of the useful tools in this field are

introduced in Section III, such as: Set Inversion Via Interval

Analysis (SIVIA), and contractors. The rigid transformation

problem is defined in the framework of interval analysis

in Section IV, and the approach is illustrated by several

examples using simulated data and real data. Section V

concludes the paper, and presents some comments about

future work.

II. RIGID TRANSFORMATION AND ROBOT

MOTION

Consider a robot traversing in a static world, and it has

the ability to measure the position of distinctive landmarks
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in the environment with respect to its location as shown

in Fig. 1(a). As the robot moves in the world, it detects

the landmarks at different positions relative to its new

location as shown in Fig. 1(b). We assume the robot is able

to solve the data association and correspondence problem,

such that each landmark seen from the first location has

a matching landmark seen from the second location [1],

[9], [20] using algorithms such as: Iterative Closest Point,

Single Compatibility, and Joint Compatibility Branch and

Bound [1], [21]. Hence, the rigid transformation problem is

defined as follows: given two sets of corresponding points in

two different frames of reference SA = {xa
1 , xa

2 , ..., xa
m} and

SB = {xb
1, xb

2, ..., xb
m}, where xa

i , xb
i ∈ R

D×1, D ∈ {1, 2, 3},
estimate the translation t and rotation R that satisfy the
following equation:

xb
i = RT (xa

i − t), i = 1 : m, (1)

where t ∈ R
D×1, R ∈ R

D×D, and det(R) = 1. This
rigid transformation represents the robot motion from frame

A to frame B. Equation (1) has a unique solution if the
measurements in frame A and frame B are error-free.

Range imaging sensors such as: stereo cameras and

structured-light sensors, use triangulation between two

shifted images, as shown in Fig. 2, to determine the position

of landmarks with respect to the sensor [3], [7], [16]. Due

to image quantization and resolution limits, if the landmark

lies anywhere in the shaded region, the sensor will return the

same position value. This uncertainty region will increase

as the landmark distance from the sensor increases. We

will enclose this region by a box that is aligned with the

coordinate system of the sensor as shown in Fig. 2; this

will allow simple utilization of interval analysis as it will be

explained in Section III. Now, consider a robot equipped

with a range imaging sensor and moving in 2-D world

as shown in Fig. 3. The landmarks are measured with

uncertainties defined by regions (boxes) that are aligned
with the robot frame of reference. As the robot moves from

location A to location B, as shown in Fig. 3(a) and (b),
new measurements with uncertainties are acquired, and the

solution of (1) is no longer unique, but rather it satisfies

a range of values for translation and rotation that can be

computed using interval analysis.

Assume the robot moves again to a new location as shown

in Fig. 3(c). Should it compute its motion with respect to

location A or location B? It is important to always cast the
motion to a fixed frame in the environment. Since location

B is estimated with respect to location A, it will have some
uncertainty due to the measurement error. An ideal choice

for the fixed frame would be the initial frame A. In this case,
the measurements from frame A needs to be as accurate as
possible. This can be done by using the measurements from

frame B and reduce the uncertainty of the measurements in
frame A.
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Figure 1. Robot, represented by red triangle, moves in static 2-D world
with 4 landmarks represented by blue stars. (a) Landmarks seen by the
robot from location A, (b) landmarks seen from location B.
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Figure 2. Range imaging geometry showing triangulation uncertainty.
The blue box represents the range imaging sensor, and each segment in
the projection plane represents a pixel. Any point in the shaded region
projects on the same pixel in the right and left planes. This represents an
uncertainty about the position of the landmark (blue star). The uncertainty
region is enclosed by a green box aligned with the sensor coordinate system
to facilitate the use of interval analysis.

III. INTERVAL ANALYSIS

A. Real Intervals Arithmetic

A real interval is a connected, closed subset of R, and

it is denoted by [x] = [x−, x+] where x− and x+ are the
lower and upper bounds of the interval, respectively. The set

of all real intervals of R is denoted by IR [5].

Basic arithmetic operations and functions can be applied

to intervals. Let � be an arithmetic operation, i.e., � ∈
{+,−, ∗, /}, and [x], [y] are real intervals, then we can
define the following:

[x] � [y] � [{x � y ∈ R | x ∈ [x], y ∈ [y]}]. (2)

Similarly, elementary functions can be extended to inter-

vals. Consider f as an elementary function from R to R,

where f ∈ {sin, cos, log, exp, sqr, sqrt, ... }, the interval
function is defined as:

f([x]) � [{f(x) ∈ R | x ∈ [x]}]. (3)

For instance, [−1, 4] + [2, 3] = [1, 7]; [−1, 4] × [2, 3] =
[−3, 12]; ([−1, 4])2 = [0, 16]; sin([−1, 4]) = [−0.8415, 1];
and e([−1,4]) = [0.3679, 54.5982].
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Figure 3. Robot, represented by red triangle, measures landmarks with
uncertainties defined by the shaded regions (boxes). (a) Landmarks seen
by the robot from location A, (b) landmarks seen from location B, (c)
Landmarks seen from location C

To deal with intervals in higher dimensional problems, a

vector of intervals, also called a box, [x] is introduced [5],
[11]. A box is a subset of R

n that can be defined as the

Cartesian product of n intervals, and it can be written as
[x] = [x1] × [x2] × ... × [xn]. The set of all n-dimensional
boxes is denoted by IR

n.

B. Contractors

Consider the system of m equations with n variables

fj(x1, x2, ..., xn) = 0, j = 1 : m, (4)

where each variable xi belongs to an interval [xi], and [x] =
[x1] × [x2] × ... × [xn]. In vector form, (4) can be written
as f(x) = 0. This corresponds to a constraint satisfaction
problem (CSP) H, which can be formulated as:

H : (f(x) = 0, x ∈ [x]). (5)

The solution set of H is defined as:
S = {x ∈ [x] | f(x) = 0}. (6)

Contracting H means replacing [x] by a smaller domain
[x′] such that the solution set remains unchanged, i.e., S ⊂
[x′] ⊂ [x]. Therefore, a contractor C forH is an operator that
compute the subset [x′]. The formal definition of a contractor
is as follows:

Definition 1. A contractor C is a mapping from IR
n to

IR
n such that:

∀[x] ∈ IR
n, C([x]) ⊂ [x], (7)

C([x]) ∩ S = [x] ∩ S, (8)

where S is the solution set of H. Equations (7) and (8)
represent the contractance and correctness properties of the

contractor, respectively [5], [11].

Contractors can be built using interval arithmetic and

elementary functions [5], [12]. For instance, consider H :
(f(x) = 0, x ∈ [x]), where [x] = [−1, 2] × [−1, 2] and
f[x] = x2−log(x1). Now, define a contractor C : IR

2 → IR
2

for H and apply it to the interval [x] as follows:
C([x]) : = (Cx1

, Cx2
)([x])

: = ([x1] ∩ e[x2], [x2] ∩ log [x1]) (9)

= [0.3679, 2]× [−1, 0.6931].

Fig. 4 illustrates result of applying contractor C to [x].
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Figure 4. Contractor C applied to [x] = [−1, 2]× [−1, 2] and results in
[x′] = [0.3679, 2]× [−1, 0.6931].

There are different ways to build contractors such as:

Gauss elimination that works well with linear constraints,

and Newton with preconditioning which can handle non-

linear constraints. However, one of the most efficient is

forward-backward propagation contractor [5]. In fact, the
example shown in Fig. 4 uses this type of contractors. To

illustrate that, define y = f([x]). The forward propagation
uses the constraints f(x) to compute y as follows:

[a1] : = log [x1];

[y] : = [x2]− [a1]; (10)

where a1 is a temporary variables. Since f(x) = {0}, then,
the domain of y should be taken equal to the singleton {0}
as follows:

[y] := [a2] ∩ {0} (11)

The backward propagation is defined as:

[x2] : = [x2] ∩ ([y] + [a1])

[a1] : = [a1] ∩ ([x2]− [y])

[x1] : = [x1] ∩ e[a1] (12)

This procedure produces the same result as (9). Because

the constraint here is a monotonic function, this contractor

is applied once to produce the smallest box containing the

solution set. However, for other CSPs, forward-backward
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propagation contractors may be applied several times to

result in the smallest possible box [5].

C. Set Inversion Via Interval Analysis (SIVIA)

Consider the system of equations f(x) = 0, the set
inversion [5] is the problem of characterizing the set Sx of

all vectors x that satisfy the system equations and belong
to a large search box [x]. The recursive algorithm shown
in Table I computes a set of non-overlapping boxes, also

called subpaving, L, that contains Sx. CSx used in Step 01
is a contractor for Sx such that CSx([x]) ∩ Sx = [x] ∩ Sx.

w([x]) represents the width of the box [x], and it is defined
as follows:

w([x]) � max
i=1:n

w([xi]) = max
i=1:n

(x+i − x−i ). (13)

Table I
ALGORITHM SIVIAX FOR SOLVING A SYSTEM OF EQUATIONS [5].

Algorithm SIVIAX(in: [x], CSx , ε; inout: L)
01 [x] := CSx ([x]);
02 if([x] = φ), return;
03 if(w([x]) < ε),
04 L := L ∪ [x]; return;
05 bisect [x] into [x1] and [x2]
06 SIVIAX([x1], CSx , ε, L); SIVIAX([x2], CSx , ε, L).

Set inversion via interval analysis, SIVIA, can be applied

to CSPs, for example, consider the problem of characterizing

the set of vectors [x] that satisfy the following constraints:

x2 − x21 = y;√
x1 − x2 = y; (14)

where y ∈ [0,∞). Fig. 5 shows the result of applying
SIVIA with contractors to characterize the region enclosed

by (14), where the initial search box is [x] = [−0.25, 1.25]×
[−0.25, 1.25]. More details about SIVIA and contractors can
be found in [5].

IV. RIGID TRANSFORMATION AS CONSTRAINT

SATISFACTION PROBLEM

The rigid transformation problem can be seen in the

framework of interval analysis as a constraint satisfaction

problem (CSP) as follows: given two sets of correspond-

ing points in two different frames of reference SA =
{xa
1 , xa

2 , ..., xa
m} and SB = {xb

1, xb
2, ..., xb

m}, where xa
i ∈ [xa

i ]
and xb

i ∈ [xb
i ], estimate the solution set of translation [t],

rotation [R], and the landmark positions with respect to the
initial robot position [xa

i ], that satisfy the following equation:

[xb
i ] = [R]T ([xa

i ]− [t]), i = 1 : m, (15)

This CSP can be solved using SIVIA with contractors to

find the solution set that are consistent with (15). In this

paper, we assume that all landmarks in the environment are

seen from all different robot locations. Also, the correspon-

dence problem is assumed solved, i.e., the matching between

(a) (b)

Figure 5. The goal is to find the region enclosed by two inequalities x2 ≥
x21 and x2 ≤

√
x1, where the initial box is [−0.25, 1.25]× [−0.25, 1.25].

(a) Applying the contractor only results in the shaded box. (b) SIVIA
with contractors produces three regions: red, white, and yellow. The red
region represents all boxes that are part of the solution, e.g., boxes that
are definitely enclosed by the two inequalities. The white region represents
all box that are not part of the solution. The yellow region represents the
set of boxes that have some part inside the solution region and some part
outside the solution region, and the size of each box is determined by ε.
This solution was generated using IBEX 2.1.7 [22].

different sets of landmarks seen from different locations

is assumed available and accurate [16], [20]. Although

different contractors can be applied [5], all implementations

in this paper use forward-backward propagation contractors

with SIVIA.
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Figure 6. Red triangular robot moves in 1-D world with 3 landmarks,
in blue stars. Black horizontal lines represent the uncertainty in position
of each item. (a) Robot at first location with measurements, (b) robot at
the second location with measurements, (c) robot and landmarks estimated
positions after applying SIVIA with ε = 0.3.

Consider a robot moving in 1-D world as shown in Fig. 6.

In this case, R = 1 and t ∈ [tx], xa
i ∈ [xa

i ], and xb
i ∈ [xb

i ]. We
build the contractor shown in Table II and use it with SIVIA

algorithm described in Section III to compute the solution

sets for tx and x
a
i . The results are in Fig. 6(c) where the

robot pose is estimated using the measurements shown in

Fig. 6(a) and (b).

Fig. 6(c) shows that the uncertainty of the landmark

at position 7 is reduced compared to the uncertainty in

Fig. 6(a). In fact, as the robot keeps moving in the world,

the uncertainty of all landmarks decreases over time as

illustrated in Fig. 7, and this result is due to the geometric

constraints of the landmarks. Therefore, the estimated land-

mark positions with respect to the initial robot pose become
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Table II
FORWARD-BACKWARD PROPAGATION CONTRACTOR FOR ROBOT

MOVING IN 1-D WORLD

Algorithm Contractor1D (in: [xbi ]; inout: [tx], [x
a
i ], i = 1 : n)

01 do
02 for i := 1 to n,
03 [z1] = [xai ]− [tx]; // forward

04 [z1] = [z1] ∩ [xbi ]; // projection
05 [xai ] = [xai ] ∩ ([z1] + [tx]); // backward
06 [tx] = [xt] ∩ ([xai ]− [z1]); // backward
07 endfor
08 while contraction is significant.

more accurate, and the robot motion estimation does not

increase over time.
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Figure 7. Robot moving in 1-D world: The uncertainty of the robot pose
does not increase over time, however, the landmark uncertainties decrease
as the robot moves in the environment.

Consider now the case of a robot moving in 2-D world

and its motion is defined by translation only without rotation,

hence R = I2 and t = [tx ty]T , where I2 is the identity
matrix. The robot can measure landmarks in the environment

with uncertainties using the sensor described in Fig. 2.

We extend the contractor shown in Table II to handle the

example in 2-D world as illustrated in Table III.

Table III
FORWARD-BACKWARD CONTRACTOR FOR ROBOT MOVING, WITHOUT

ROTATION, IN 2-D WORLD

Algorithm Contractor2D basic (in: [xbi ], [y
b
i ];

inout: [tx], [ty ], [xai ], [y
a
i ], i = 1 : n)

01 do
02 for i := 1 to n,
03 [z1] = [xai ]− [tx]; // forward
04 [z2] = [yai ]− [ty ]; // forward

05 [z1] = [z1] ∩ [xbi ]; // projection

06 [z2] = [z2] ∩ [ybi ]; // projection
07 [tx] = [tx] ∩ ([xai ]− [z1]); // backward
08 [ty ] = [ty ] ∩ ([yai ]− [z2]); // backward
09 [xai ] = [xai ] ∩ ([z1] + [tx]); // backward
10 [yai ] = [yai ] ∩ ([z2] + [ty ]); // backward
11 endfor
12 while contraction is significant.

Fig. 8(a) show the robot measuring the landmark positions

from the first location, and Fig. 8(b) shows the robot after

translation only measuring all the landmark positions. SIVIA

algorithm and contractor2D basic estimate the subpaving
L for the robot location and the landmark positions. Fig. 8(c)
shows the subpaving that represents the robot pose with

small green boxes around the robot. The subpaving that

represents the landmark positions is enclosed with an outer

approximation, e.g. a single shaded box, that includes all

solutions. This enclosure is done because the estimated land-

mark positions are needed for the next estimation step. The

uncertainty of some landmarks, e.g., at position [3.9, 1.4]T ,
is reduced after motion. As the robot moves in the environ-

ment and repeats the estimation process, the uncertainty of

the landmarks decreases over time as illustrated in Fig. 9.
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Figure 8. Red triangular robot moves in 2-D world with 4 landmarks, in
blue stars. The shaded regions represent the uncertainty in position of each
item. (a) Robot at first location with measurements, (b) robot at the second
location with measurements, (c) robot and landmarks estimated positions
after applying SIVIA with ε = 0.3.
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Figure 9. Robot moving in 2-D world (motion is translation only): The
uncertainty of the robot pose does not increase over time, however, the
landmark uncertainties decrease as the robot moves in the environment.

The third example to consider is a robot moving in 2-D
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world, and its motion is defined by translation t and rotation
R(θ). The robot pose parameters are tx, ty, θ, and the rigid
transformation between points in two different frames can

be written as:

xb
i = cos(θ) (xa

i − tx) + sin(θ) (ya
i − ty)

yb
i = − sin(θ) (xa

i − tx) + cos(θ) (ya
i − ty) (16)

We build the contractor shown in Table IV and use it

with SIVIA algorithm to estimate the following parameters:

[tx], [ty], [θ], [xa
i ], and [ya

i ] where i = 1 : n. Fig. 10(a) and
(b) show the robot and landmarks in the first and second

frame, respectively, and Fig. 10(c) illustrates the subpaving

estimated for the robot position and the outer approximation

for the landmark positions after applying SIVIA algorithm.

Fig. 11 shows that the uncertainties of landmark positions

decrease as the robot keeps moving in the environment.

Table IV
FORWARD-BACKWARD CONTRACTOR FOR ROBOT MOVING, WITH

TRANSLATION AND ROTATION, IN 2-D WORLD

Algorithm Contractor2D full (in: [xbi ], [y
b
i ];

inout: [tx], [ty ], [θ], [xai ], [y
a
i ], i = 1 : n)

01 do
02 for i := 1 to n,
03 [z1] = cos([θ]); // forward 1
04 [z2] = sin([θ]); // forward 2
05 [z3] = [xai ]− [tx]; // forward 3
06 [z4] = [yai ]− [ty ]; // forward 4
07 [z5] = [z1] ∗ [z3]; // forward 5
08 [z6] = [z2] ∗ [z4]; // forward 6
09 [z7] = [z2] ∗ [z3]; // forward 7
10 [z8] = [z1] ∗ [z4]; // forward 8
11 [z9] = [z5] + [z6]; // forward 9
12 [z10] = [z8]− [z7]; // forward 10

13 [z9] = [z9] ∩ [xbi ]; // projection

14 [z10] = [z10] ∩ [ybi ]; // projection
15 [z7] = [z7] ∩ ([z8]− [z10]); // backward 10
16 [z8] = [z8] ∩ ([z10] + [z7]); // backward 10
17 [z5] = [z5] ∩ ([z9]− [z6]); // backward 9
18 [z6] = [z6] ∩ ([z9]− [z5]); // backward 9
19 [z1] = [z1] ∩ ([z8]/[z4]); // backward 8
20 [z4] = [z4] ∩ ([z8]/[z1]); // backward 8
21 [z2] = [z2] ∩ ([z7]/[z3]); // backward 7
22 [z3] = [z3] ∩ ([z7]/[z2]); // backward 7
23 [z2] = [z2] ∩ ([z6]/[z4]); // backward 6
24 [z4] = [z4] ∩ ([z6]/[z2]); // backward 6
25 [z1] = [z1] ∩ ([z5]/[z3]); // backward 5
26 [z3] = [z3] ∩ ([z5]/[z1]); // backward 5
27 [yai ] = [yai ] ∩ ([z4] + [ty ]); // backward 4
28 [ty ] = [ty ] ∩ (yai − [z4]); // backward 4
29 [xai ] = [xai ] ∩ ([z3] + [tx]); // backward 3
30 [tx] = [tx] ∩ (xai − [z3]); // backward 3
31 [θ] = [θ] ∩ (arcsin([z2])); // backward 2
32 [θ] = [θ] ∩ (arccos([z1])); // backward 1
33 endfor
34 while contraction is significant.

The algorithm shown in Table IV is applied to a sim-

ulated mobile robot moving in 2-D environment shown in

Fig. 12(a) where the robot is equipped with a simulated

range imaging sensor, e.g., Microsoft Kinect, to observe

distinctive landmarks. Fig. 12(b) shows the true robot path
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Figure 10. Red triangular robot moves in 2-D world with 4 landmarks, in
blue stars. The shaded regions represent the uncertainty in position of each
item. (a) robot at first location with measurements, (b) robot at the second
location with measurements, (c) robot and landmarks estimated positions
after applying SIVIA with ε = 0.3.
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Figure 11. Robot in 2-D world (motion is translation and rotation): The
uncertainty of the robot pose does not increase over time, however, the
landmark uncertainties decrease as the robot moves in the environment.

represented by the solid line, and the estimated xy poses
(robot path) represented by the red boxes, where each box

represents the hull of the resulting subpaving. As shown
in Fig. 13, the uncertainties of the robot pose parameters

([x], [y], [θ]) do not increase over time, however, they do
depend on the sensor noise and the robot true pose.

Finally, we test our SIVIA localization approach with real

data acquired by Microsoft Kinect range imaging sensor

mounted on a mobile robot as shown in Fig. 14. When

Kinect captures a scene, it records two objects: (1) the RGB

image of the scene, and (2) 3-D point cloud where each 3-

D point corresponds to a pixel in the RGB image. When

two scenes are available, corresponding 3-D points across

scenes can be found using one of many features match-
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(a) (b)

Figure 12. Mobile Robot Localization using SIVIA: (a) Robot (red triangle)
observing (green boxes) landmarks (blue stars) using range imaging sensor.
(b) The robot true path is represented by the black solid line, the estimated
poses (x and y positions only) are represented by the red boxes. The pose
estimation always includes the true robot pose.

(a) (b)

(c)

Figure 13. Robot localization using SIVIA (shaded region) compared to
ground truth (solid line) over time. (a) x position, (b) y position, and (c)
robot orientation θ.

ing algorithm [16] whose procedures can be summarized

as follows: (1) from each RGB image, extract distinctive

descriptors using feature detectors such as SIFT [18] and

SURF [19], (2) match descriptors across scenes and find

corresponding pixels, (3) use these pixels to find the set

of corresponding 3-D points from the point clouds. Fig. 15

shows the result of the first two steps of the matching

algorithm. We use these sets of corresponding points over

several time frames to estimate the robot path using SIVIA

and contractor2D full. The results illustrated in Fig. 16
show that the true pose is always included in the estimated

region. In this exercise, the robot average velocity is 0.2

m/sec, and by applying SIVIA combined with contractors

for large number of observed landmarks, i.e., large number

of constraints expressed by (16), the time complexity is

no longer NP-hard, and solving for local consistency [6]
is sufficient for real-time applications [5].

Figure 14. Microsoft Kinect mounted on Pioneer P3-DX mobile robot.

Figure 15. Microsoft Kinect is used to acquire two RGB images and the
corresponding point clouds from two different scenes. Then, feature detector
algorithms such as SIFT [18] or SURF [19], are used to find pixels with
distinctive descriptors. These descriptors are matched across scenes, and
the corresponding 3-D points from different point clouds are found [16].
Matched features are connected by yellow lines.

Figure 16. Mobile Robot Localization using SIVIA with data from
Microsoft Kinect. The robot true path is represented by the black solid
line, the estimated poses (x and y positions only) are represented by the
red boxes, and the blue stars represent the observed landmarks. The pose
estimation always includes the true robot pose.

V. CONCLUSIONS

This paper presented a new approach to compute the

rigid transformation using range imaging sensors such as

stereo cameras and structured-light 3-D scanner, with the

help of interval analysis. This approach estimates the robot
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motion, as well as the landmark positions, with respect to

the initial robot pose, i.e., the initial frame of reference.

Interval analysis tools such as: set inversion via interval

analysis (SIVIA) and contractors, were used to compute the

solution set. It is illustrated in the paper that this approach

can be used to solve the robot localization problem where

the robot pose uncertainty does not increase over time,

and the uncertainty of landmark positions decreases as the

robot moves in the environment. The approach can also be

extended to solve the SLAM problem [17] by considering

the following topics in the framework of interval analysis:

(a) incorporate the data acquired by internal sensors such

as encoders and IMU [8], (b) new landmarks are measured

as the robot moves in the environment, and they need to

be projected to the initial frame of reference in order to

build a single large map, (c) matching can be available to

only a subset of the landmarks in the environment, and (d)

how to handle loop-closure and reduce the uncertainty of all

landmark positions in the map. All of these issues will be

considered as part of the future work.
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