
Constraints
DOI 10.1007/s10601-015-9231-9

APPLICATION

Range-only SLAM with indistinguishable landmarks;
a constraint programming approach

Luc Jaulin1

© Springer Science+Business Media New York 2015

Abstract This paper deals with the simultaneous localization and mapping problem
(SLAM) for a robot. The robot has to build a map of its environment while localizing itself
using a partially built map. It is assumed that (i) the map is made of point landmarks, (ii) the
landmarks are indistinguishable, (iii) the only exteroceptive measurements correspond to
the distance between the robot and the landmarks. This paper shows that SLAM can be cast
into a constraint network the variables of which being trajectories, digraphs and subsets of
R

n. Then, we show how constraint propagation can be extended to deal with such general-
ized constraint networks. As a result, due to the redundancy of measurements of SLAM, we
demonstrate that a constraint-based approach provides an efficient backtrack-free algorithm
able to solve our SLAM problem in a guaranteed way.

Keywords Constraint programming · Interval analysis · Localization · Robotics ·
Simultaneous localization and mapping

1 Introduction

Simultaneous localization and mapping (SLAM) for a robot is the problem of building the
environment (the map) while at the same time localizing itself inside that map [21] [28].
This paper deals with SLAM in the case where (i) the map is static; (ii) the map is made
of indistinguishable point landmarks (or mark form short) and (iii) the marks are partially
observable (i.e., multiple detections with different vehicle positions must be used to esti-

� Luc Jaulin
luc.jaulin@ensta-bretagne.fr

1 LabSTICC, IHSEV, OSM, 2 rue François Verny, 29806, Brest, France

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10601-015-9231-9-x&domain=pdf
mailto:luc.jaulin@ensta-bretagne.fr

Constraints

mate the position of a mark). SLAM is often referred to as a chicken and egg problem. A
chicken and egg problem of cardinality n is a mixture of n interconnected problems such
that if all problems are solved except one, the unsolved problem can be solved using known
techniques. Since, here, the marks are indistinguishable, our SLAM problem can be seen
as a chicken and egg problem of cardinality three: (i) if both the map and mark association
(i.e., the matching between mark detections) are solved, finding the robot trajectory can be
performed using any localization method, (ii) if the trajectory and the mark association are
solved, we can build the map and (iii) if the trajectory of the robot and the map are known
we can easily provide the association between marks. Fixed point methods are good can-
didates to deal efficiently with chicken and egg problems: fixed-point operators are called
successively until no more improvement can be observed. Unfortunately, it is often impos-
sible to guarantee that the process will converge and in case of convergence, it is difficult
to predict that the fixed point will be a solution of our problem. When the conditions of the
Tarski fixed point theorem [27] apply, fixed-point methods always converge. The Tarski the-
orem states that if (L, ≤) is a complete lattice and f : L → L is a monotonic function (i.e.,
a ≤ b ⇒ f (a) ≤ f (b)) which is Scott continuous (i.e., for each decreasing sequence xk ,
we have f (lim xk) = lim f (xk)), then the sequence xk+1 = f (xk), where x0 is the greatest
element of L, converges to the greatest fixed point of f in L. Although this theorem seems
to be far from our SLAM problem, it is an important element of the theoretical foundation
of constraint propagation [2] [32] [31], which has already been used successfully to solve
SLAM [12], [8] [14] and range-only localization problems [25]. The principle of constraint
propagation is to apply polynomial-complexity contraction operators (called contractors)
over domains containing the unknown variables. The contractors are called to shrink these
domains until no more contraction can be observed. The approach is particularly efficient
in case of redundant information [13] and provides guaranteed results.

In our SLAM problem, the unknown variables have an heterogenous nature: the marks
are vectors of Rq (where q ∈ {2, 3}), is the dimension of the world), the trajectories belong
to the set of functions from R → R

n, the free space is a subset of Rq and the mark associa-
tions can be represented by a graph G. This paper shows that constraint propagation methods
can easily deal with heterogenous variables and that solving the SLAM problem amounts to
use a fixed point method with specific heterogeneous contractors. The resulting method will
inherit properties of constraint propagation tools: a backtrack-free algorithm (i.e., without
combinatorial search) which provides guaranteed results. To illustrate the principle of what
we call heterogeneous constraint propagation, we will consider the range-only SLAM (see
[23] for probabilistic technics or [26] for set-membership approaches) in the case of distin-
guishable marks. The problem we consider in this paper is a difficult representative of the
class of SLAM problems: the marks are partially observable (due to range-only measure-
ments), the marks are indistinguishable and the collected ranges are huge in comparison
to the movement of the robot between sequential measurements, which makes the problem
inherently ill conditioned. Here, contrary to the range-only applications commonly treated
in literature (except in [7] where the number of marks is known, which is not assumed here),
the mark association problem will have to be solved.

The paper is organized as follows. Section 2 proposes a simple and new formulation for
SLAM with indistinguishable marks. Section 3 presents the basic notions of heterogeneous
constraint propagation. The resolution method is then presented in Section 4. Section 5 pro-
vides an illustration of the approach on a range-only SLAM problem with indistinguishable
marks. Two test-cases are presented. The first one is based on simulations whereas the sec-
ond one deals with actual data collected by an underwater robot. Section 6 concludes the
paper.

Constraints

2 Problem statement

Notations In this paper, the bold font is used to represent vectors of Rn (e.g., a, b) and
the capital blackboard bold font is used to represent subsets of Rn (e.g., A, B). The ith
component of a vector a is denoted by ai . A trajectory x is a smooth function from R → R

n

where n ≥ 1. It will be denoted indifferently by x or x (·). The vector x (t) ∈ R
n is the

value of x at time t ∈ R. The derivative of the trajectory x with respect to t is denoted by Px.
Intervals are denoted between brackets.

Consider a robot the evolution of which is described by state equations. We assume
that the initial state vector x (0) of the robot is known. This assumption is not restrictive
since for SLAM, the environment is totally unknown and thus the origin and the orientation
of the world frame can be fixed as the pose (i.e., the position and the orientation) of the
robot at time t = 0. In the environment, we assume that there exist indistinguishable marks
represented by the setM = {m (1) ,m (2) , . . . } of vectors of Rq , where q is the dimension
of the environment (typically two or three). The number of marks and their location are
unknown and we may have an infinite number of marks. A sector is a subset of Rq which
contains a single mark. For some time samples t1, t2, . . . , tm, we assume that the robot is
able to collect sectors via exteroceptive sensors (like cameras or sonars). Note that these
sectors are expressed with respect to a frame of reference attached to the robot (i.e., their
coordinates are egocentric) and not in the world frame. More formally, we describe our
SLAM problem as follows {

ẋ = f(x, u) (evolution equation)
(ti ,Hi (x)) (sector list)

(1)

where x(t) is the state vector of the robot at time t , u(t) is the input vector (i.e., the actua-
tors), f is the evolution function and t ∈ [0, tmax] is the time. For all t ∈ [0, tmax], we assume
that boxes [u] (t) enclosing the vectors u(t) are available. For i ∈ {1, . . . , m}, the set-valued
functions

Hi :
{
R

n → P (Rq)

x �→ Hi (x) ,
(2)

where P (Rq) is the set of all subsets of Rq , are called sector functions. Each sector Hi =
Hi (x (ti)) ⊂ R

q of the world frame is known to contain one and only one mark. Note that
since x (ti) is unknown, the sector Hi is also unknown.

Example 1 Consider a robot moving in a plane and located at coordinates (x1, x2) . If at
time t3 the robot detects that there exists one and only one mark at a distance d inside [4, 5]
meters, the associated sector function is

H3 (x) =
{
a ∈ R

2| (x1 − a1)
2 + (x2 − a2)

2 ∈ [16, 25]
}

. (3)

Example 2 Figure 1 represents two photos collected at different times by the camera of a
robot moving inside a 2D environment where the marks are highlighters. On the left picture,
the robot detects one mark and represents this information by two sectors (the circle and
the square). Since each sector contains a single mark, the difference between the square
and the circle does not contain any mark. This may be used to solve the mark association
(i.e., to know if the mark detected at time ti corresponds to the mark detected at time tj).
On the right picture, the robot detects two marks. Since a sector contains a unique mark,
we need four sectors to represent this double detection. For the type sensor considered in
this example, the marks are observable because when the robot sees one mark, it is able to

Constraints

Fig. 1 Left: the robot detects one mark and represents this information by two sectors; Right: the robot
detects two marks and uses four sectors

localize this mark in its own frame with some uncertainties. This was not the case in the
previous example.

Example 3 Figure 2 illustrates a situation where the robot has detected a single mark (black
star in the ring) inside the sector Hi (here a ring). This sector may have been obtained using
an omnidirectional sonar, for instance. The visibility disk corresponds to the sector Hj .
Since in Hj there exists a unique mark, we conclude that the set Hj\Hi cannot contain any
mark. In the figure, Hj\Hi has two connected components: the white disk around the robot

Fig. 2 The robot has detected the mark inside the ring. The other mark (which is not in the visibility disk of
radius δ), is not detected

Constraints

and the white ring. The nested pair
(
Hi ,Hj

)
represents both a zone with a detected mark,

but also a zone without any mark. Note that due to the fact that Hi ⊂ Hj , we can associate
the mark in Hi to the mark in Hj . Both correspond to the star in the ring.

In the framework of this new formulation for SLAM, the following proposition shows
how marks that have been detected at different times can be associated.

Proposition 1 Consider a set of marks M ⊂ R
q . Define the free space as F =

{p ∈ R
q | p /∈ M}. Consider m sectors H1, . . . ,Hm, each of them containing exactly one

mark and denote by a (i) the unique element inM ∩ Hi . We have

(i) Hi ⊂ Hj ⇒ a (i) = a (j)

(ii) Hi ∩ Hj = ∅ ⇒ a (i) �= a (j)

(iii) Hi ⊂ Hj ⇒ Hj\Hi ⊂ F.

(4)

Proof Let us first prove (i). Denote by {a (i)} and {a (j)} the singletons containing a (i) and
a (j) . We have

{a (i)} = M ∩ Hi

= M ∩ Hi ∩ M ∩ Hj (since Hi ⊂ Hj)
= {a (i)} ∩ {a (j)} .

(5)

Thus a (i) = a (j). Let us now prove (ii)

{a (i)} ∩ {a (j)} = M ∩ Hi ∩ M ∩ Hj

= ∅ (since Hi ∩ Hj = ∅). (6)

Finally, let us prove (iii). If Hi ⊂ Hj , from (i), we have a (i) = a (j), i.e., {a (j)} \ {a (i)}
= ∅ or equivalently (

Hj ∩ M
) \ (Hi ∩ M) = (

Hj\Hi

) ∩ M = ∅.

Since F is the complement ofM, we get Hj\Hi ⊂ F.

Example 4 Figure 3 represents 6 sectors H1, . . . ,H6 in the world frame. Each of them
contains one and only one mark. Since H3 ⊂ H1, H2 ⊂ H1, H3 ⊂ H5, from (i) we
conclude that H1, H2, H3, H5 all contain the same mark and that this mark belongs to
H1 ∩H2 ∩H3 ∩H5. From (iii) we know that the hatched area cannot contain any mark. By
subtracting the hatched area fromH4, we conclude thatH4\H5 (the black zone on the right)
contains a single mark. Note that in our SLAM context, since exteroceptive measurements
are egocentric, the Hi are only known through the sector functionsHi (x) and the state x is
only approximately known.

Association graph Consider m mark detections a (1) , . . . , a (m). We define the associa-
tion graph as the graph with vertices a (i) such that one edge between a (i) and a (j) means
that a (i) = a (j).

Remark 1 When the robot is able to select a silent zone, i.e., a zone with no mark, we
cannot take this information into account with our model. An extended model that could be
considered is the following:{

ẋ = f(x, u) (evolution equation)
(ti ,Hi (x) , ηi) (sector list)

Constraints

Fig. 3 From the configuration of the six sectors H1, . . . ,H6, we conclude that each of the two black zones
contains a single mark and that no mark exists in the hatched area. Nothing can be concluded about the white
area

where ηi is the exact number of marks inside the sector Hi (x). When no mark exists in
Hi (x), then ηi = 0.

3 Heterogeneous constraint propagation

Constraint propagation [3] has been used in the context of finite domains for 40 years (see,
e.g., [33]). For 20 years, it has also been used as a numerical tool to solve nonlinear problems
involving real numbers [32]. In most applications that can be found in the literature, the
unknown variables are Boolean numbers, integers or real numbers. Constraint propagation
has recently been extended to deal with unknown variables that can be trajectories [20] or
subsets of Rn [15], as required for SLAM. This section recalls the principle of constraint
propagation and extends the technique to deal with problems where the unknown variables
are graphs, trajectories or subsets or Rn, as needed to solve our SLAM problem. It also
presents the notion of graph intervals, trajectory intervals (or tube) and set intervals.

3.1 Lattices

Constraint propagation can be applied as soon as the set of domains for the variables has
a lattice structure. A lattice (E, ≤) is a partially ordered set, closed under least upper and
greatest lower bounds [9]. The least upper bound of x and y is called the join and is denoted
by x ∨ y. The greatest lower bound is called the meet and is written as x ∧ y.

Example 5 The set (Rn, ≤) is a lattice with respect to the partial order relation given by
x ≤ y ⇔ ∀i ∈ {1, . . . , n} , xi ≤ yi . We have x ∧ y = (x1 ∧ y1, . . . , xn ∧ yn) and x ∨ y =
(x1 ∨ y1, . . . , xn ∨ yn) where xi ∧ yi = min (xi, yi) and xi ∨ yi = max (xi, yi) .

Example 6 If E is any set, the powerset P (E) of all subsets of E is a complete lattice with
respect to the inclusion ⊂. The meet operator corresponds to the intersection and the join to
the union.

Constraints

A lattice E is complete if for all (finite or infinite) subsets A of E , the least upper bound
∧A and the greatest lower bound ∨A belong to E . When a lattice E is not complete, it is
often possible to add two elements corresponding to ∧A and ∨A to make it complete. For
instance, the set R is not a complete lattice whereas R = R ∪ {−∞,∞} is. By convention,
for the empty set, we set ∧∅ = ∨E and ∨∅ = ∧E . The Cartesian product of two lattices
(E1,≤1) and (E2, ≤2) is the lattice (E,≤) defined as the set of all (a1, a2) ∈ E1 × E2 with
the order relation (a1, a2) ≤ (b1, b2) ⇔ ((a1 ≤1 b1) and (a2 ≤2 b2)) .

Intervals A closed interval (or interval for short) [x] of a complete lattice E is a subset of
E which satisfies [x] = {x ∈ E | ∧ [x] ≤ x ≤ ∨[x]} . Both ∅ and E are intervals of E . An
interval is a sub-lattice of E . If we denote by IE the set of all intervals of a complete lattice
(E, ≤) then (IE, ⊂) is also a lattice. For two elements [x] = [

x−, x+]
and [y] = [

y−, y+]
of IE , we have:

[x] ∧ [y] = [
x− ∨ y−, x+ ∧ y+]

[x] ∨ [y] = [
x− ∧ y−, x+ ∨ y+]

.
(7)

The meet [x]∧ [y] is called the intersection and will denoted by [x]∩ [y] . The join [x]∨ [y]
is called the interval union and will be denoted by [x] � [y].

3.2 Heterogeneous contractors

Many problems of estimation, control or robotics can be represented by constraint networks
[18]. A constraint network (see, e.g., [31]) is composed of a set of variables {x1, . . . , xn} , a
set of constraints {c1, . . . , cm} and a set of domains {X1, . . . ,Xn} . The domains Xi should
belong to a complete lattice (Li , ⊂). In the context of our paper, the domains will be (i)
subsets of Rq to represent the location of the marks, (ii) tubes (or interval of trajectories) to
represent the unknown trajectory and (iii) intervals of subsets of Rq to represent the sectors
and the free space. Denote by L the Cartesian product of all Li’s, i.e., L = L1 × · · · × Ln.
An element X of L is the Cartesian product of n elements of Li , (i.e., it satisfies X = X1 ×
· · · × Xn). The set X will be called heterogeneous domain and the Xi’s are the components
of X. A heterogeneous contractor is an operator

C : L → L
X �→ C (X)

(8)

which satisfies
X ⊂ Y ⇒ C (X) ⊂ C (Y) (monotonicity)
C (X) ⊂ X (contractance)

(9)

The set of (heterogeneous) contractors forms also a complete lattice. As a consequence, the
meet (or intersection) and join (or union) can also be defined. This leads us to the contractor
algebra [6] which can naturally be extended to the heterogeneous case. When all variables
of the constraint network belong to R, contractor techniques have been shown to be very
powerful [29] [4]. One contribution of the paper is to show that these techniques can still
be efficient when the unknown variables are heterogeneous, i.e., when the variables have a
different nature (real numbers, trajectories, subsets of Rn, . . .).

Heterogeneous constraint propagation The principle is to associate to each constraint
cj ∈ {c1, . . . , cm} of a heterogeneous constraint network, a contractor Cj (X) which does
not remove any (x1, . . . , xn) consistent with cj . Then, we build the contractor C = C1 ◦
· · · ◦ Cm. We apply the contractor C until no more contraction can be observed. From the
Tarski’s theorem, we conclude that the process converges toward the largest subdomain

Constraints

X = X1 × · · · ×Xn of the initial heterogeneous domain which cannot be contracted by any
Ci .

Remark 2 In the literature the domains for the variables of a constraint network are intervals
except in the case of finite domains. The interval nature is not needed as soon as the set of
domains has a structure of lattice. For our SLAM resolution, the domains for the marks will
not be boxes (i.e., intervals of Rq), but subsets of Rq . The propagation will be still valid due
to the lattice structure of the P (Rq).

Intervals for a set E can be defined as soon as E is a complete lattice. As previously writ-
ten, we could have intervals of real numbers, intervals of sets, etc. In this section, intervals
of graphs [5] [10] are presented for the following reasons: (i) graph intervals have never
been presented in the context of robotics, (ii) they will illustrate how contractors can be built
from a constraint, and (iii) they have a fundamental role in the resolution of the mark asso-
ciation problem. Then, we will present tubes [20] and set intervals [16], which have already
been used in robotics, to represent uncertain trajectories of robots or uncertain maps.

3.3 Graph intervals

Consider m nodes A = {a1, . . . , am} (for our SLAM problem, these nodes correspond to
the marks ai detected at time ti). A graph G of A is a subset of A × A. A graph can either
be represented graphically using nodes and arcs or by a m × m-matrix

(
gij

)
of Boolean

numbers. For instance, the following three propositions are equivalent (i)
(
ai, aj

) ∈ G (ii)
there exists an arc between node i and node j , (iii) gij = 1 (here 1 corresponds to true and
0 to false). If the set of graphs of A is equipped with the following order relation

G ≤ H ⇔ ∀i, j ∈ {1, . . . , m} , gij ≤ hij , (10)

then it is easy to check that this set corresponds to a complete lattice. Intervals of graphs of
A can thus be defined. Figure 4 represents a graph which belongs to a graph interval. The
corresponding matrix relation is⎛

⎝ 1 1 0
1 1 0
0 0 1

⎞
⎠ ∈

⎛
⎝ [0, 1] [0, 1] 0

1 [0, 1] [0, 1]
[0, 1] [0, 1] [0, 1]

⎞
⎠ . (11)

Consider a constraint on a graph G which belongs to a graph interval
[
G

]
. A contractor

associated to this constraint is able to contract
[
G

]
without removing a single graph which

satisfies the constraint. Consider for instance the optimal contractor C associated with the
constraint “G is an equivalence relation”. Since, for SLAM, the mark association graph is

Fig. 4 The graph on the left belongs to the graph interval on the right

Constraints

an equivalence relation, such a contractor will be used for the resolution of our problem.
If we apply C to the graph interval given by the right hand side of relation (11), we get a
degenerated interval which contains as a unique element the graph of the left hand side of
(11).

3.4 Tubes

The setF of all functions from R to R̄n is a complete lattice with the following partial order
x (·) ≤ y (·) ⇔ ∀t ∈ R, f(t) ≤ g(t). An interval of F is called a tube [19]. Since tubes
are defined as intervals of a complete lattice, the set of tubes (IF , ⊂) is also a lattice. Tubes
make it possible to represent the uncertain trajectory of the robot [20]. When non empty, a
tube [x] (·) can be represented by its lower and its upper bound:

[x] (·) = [
x− (·) , x+ (·)] = {

x (·) | ∀t, x− (t) ≤ x (t) ≤ x+ (t)
}
. (12)

Contractors associated with constraints on trajectories can be built. For instance, the min-
imal contractor associated with the constraint ẋ = y can be obtained by achieving the
forward interval integration:

[x] (t) = [x] (t) ∩ ([x] (t − dt) + dt · [y] (t)) (13)

followed by the backward interval integration:

[x] (t) = [x] (t) ∩ ([x] (t + dt) − dt · [y] (t)) . (14)

No contraction can be obtained for [y]. If the constraint is given by a state equation of the
form ẋ (t) = f (x (t) , u (t)), a contractor can be obtained performing the decomposition{

ẋ (t) = y (t)

y (t) = f (x (t) , u (t))
(15)

and then by a composition of the two resulting contractors. Now, it is much more efficient
to use specific interval integration methods (see, e.g., [34]).

In the computer, a tube is represented as a list of nonoverlapping boxes (or slices) in the
R

n × R space. Figure 5a represents a scalar (i.e., n = 1) tube [x] (t) for t ∈ [−2, 2] and
for a sampling time δ = 0.1. The tube [x] (t) is thus made with 40 slices. To illustrate how
contractor-based techniques can be implemented in practice, assume that the tube [x] (t)
contains an unknown function x (t) which is periodic with a period of 1. This means that
we have the constraint ∀t, x (t) = x (t + 1) for the trajectory x (·). We now illustrate how
the tube [x] (·) can be contracted without removing any feasible x (·). We first compute the
tube [y] (t) = [x] (t + 1) (painted darkgrey in Fig. 5b). The large slices for t ∈ [−2,−1]
correspond to [−∞, ∞], due to the fact that nothing is known for x (t), when t < −2.
An intersection in thus performed between the two tubes [x] (t) and [y] (t) (see Fig. 5c).
This operation is repeated for a left/right shift until no more contractions are observed. The
fixed-point tube is painted darkgrey on Fig. 5d. On Fig. 5b–d, the lightgrey tube behind the
darkgrey tube corresponds to the initial tube [x] (·).

3.5 Set intervals

The set P (Rn) of all subsets of Rn is a complete lattice with respect to the inclusion ⊂. We
can thus define the set IP (Rn) of intervals of P (Rn) which is also a lattice with respect
to ⊂. An element [X] = [

X
−,X+]

is called a set interval and can be used to represent an
uncertain subset X of Rn, i.e.,

X
− ⊂ X ⊂ X

+, (16)

Constraints

Fig. 5 Illustration of the contraction process over interval functions (or tubes). The darkgrey tube [x] (·)
encloses the unknown trajectory x (·)

or equivalentlyX ∈ [X]. The top of IP (Rn) is � = [∅,Rn
]
and encloses all sets ofRn. The

bottom ⊥ of IP (Rn) is the empty set of IP (Rn). It should not be confused with the interval
[∅, ∅] which a singleton: it contains as a single element the empty set of Rn. Contractors
can also be defined for set intervals. For instance, the minimal contractor C associated with
the constraint A ⊂ B is (see [16])

C
([

A
−,A+]

[
B

−,B+]
)

=
([

A
−,A+ ∩ B

+]
[
B

− ∪ A
−,B+]

)
.

To illustrate the principle of constraint propagation in P (Rn), consider an unknown subset
X of R2 which satisfies the constraint f (X) = X, where f is a rotation of R2 around 0 with
an angle π

6 . A possible contractor for [X] is

C ([X]) = [
X

− ∪ f
(
X

−)
,X+ ∩ f

(
X

+)]
.

Assume now that the initial domain is [X] = [
X

−,X+]
, as represented on Fig. 6a. Figure 6b

represents C ([X]) and Fig. 6c depicts the fixed point C∞ ([X]) = C ◦ · · · ◦ C ([X]). In the

Constraints

Fig. 6 a initial set interval [X]; b: C ([X]); c: the fixed point C∞ ([X]) .The color code for the representation
of a set interval is as follows: the black boxes correspond to the lower bound and the black+white boxes
correspond to the upper bound

computer, all set intervals are represented by a finite collection of boxes. This explains why
the fixed point set interval do not have the rotational symmetry that we could have expected.

4 SLAM as a heterogeneous constraint network

This section formulates the SLAM problem described by (1) as a constraint network. We
now describe the associated variables, constraints and domains.

Variables Among the unknown variables of our SLAM problem, we have (i) the trajectory
of the robot x (ii) the sectors Hi containing a unique mark a (i): the one which corresponds
to the ith detection. (iii) the location of the mark a (i) detected at time ti , (iv) the association
graph G and (v) the free space F.

Domains The domains are sets enclosing the true value for the variables. Depending on
the nature of the set V to which a given unknown variable v belongs, the domain can have
different representations. For instance, when V is finite, the domain for v can be described
by extension; when V is a lattice, the domain for v can be represented by intervals or by
union of intervals (also called subpaving) [24]. In our context, the trajectory x belongs to a
lattice and its domain will be represented by an interval of trajectories

[
x−, x+]

. The vector
ai belongs to the lattice R

q and thus we could represent its domain as an interval of Rq .
Now, to get better accuracy, this domain will be represented by a subset A (i) of Rq . The
set variableHi is a subset of Rq . Since the P (Rq) is a lattice, we thus represent the domain
of Hi by an interval

[
H

−
i ,H+

i

]
of P (Rq). The free space F will also be represented by an

interval
[
F

−,F+]
of P (Rq) . Again, since the set of graphs with nodes ai is a complete

lattice, we represent the domain of the graph G by an interval of graphs
[
G−,G+]

. As a
consequence, we will write: x (·) ∈ [x] (·) = [

x− (·) , x+ (·)], a (i) ∈ A (i), Hi ∈ [Hi] =[
H

−
i ,H+

i

]
, F ∈ [F] = [

F
−,F+]

and G ∈ [
G

] = [
G−,G+]

.

Initialization Let us now describe how the domains are initialized. Since we only know
the initial state, we initialize the domain for the trajectory as follows: [x] (t) ← [−∞,∞] if
t > 0 and [x] (0) ← 0. The prior position for each mark is also unknown. As a consequence,
for all i, we take A (i) ← R

q . The initial value for the sectors are also unknown and thus
[Hi] ← [∅,Rq

]
. This is also the case for the free space, i.e., [F] ← [∅,Rq

]
. The domain

Constraints

for the graph G is initialized by
[
G

] ← [
G−,G+]

where the lower bound G− corresponds
to a graph with no arc and an upper bound G+ corresponds to a complete graph (i.e., with
edges between any two vertices).

Constraints The constraints relating all variables x, a (i), Hi , F, G, are the following

(i) ẋ = f (x, u)

(ii) Hi = Hi (x (ti)) , ∀i

(iii) a (i) ∈ Hi , ∀i

(iv) a (i) = a (j) ⇔ gij = 1, ∀i,∀j

(v) a (i) ∈ Hj ⇔ gij = 1, ∀i,∀j

(vi) gij = 1 ⇒ Hj\Hi ⊂ F, ∀i, ∀j

(vii) a (i) /∈ F, ∀i

(17)

for all i and j . Constraint (i) claims that the robot evolution must satisfy the state equations.
From the initial state, it is possible to get a (poor) idea of the trajectory via dead reckoning,
i.e., by considering the state equation (i) only for the prediction. Constraint (ii) defines the
sectors Hi from the state of the robot. If the x (ti) are approximately known this constraint
allows us to get an approximation concerning the sectors Hi . Constraint (iii) expresses that
the mark a (i) belongs to the corresponding sector. Equivalence (iv) defines the graph G.
Equivalence (v) formulates the main set-membership condition used to prove the associa-
tion (and the non-association) between marks (see Proposition 1). Relation (vi) provides a
condition to dig the free space. Constraint (vii) states that a mark cannot belong to the free
space.

Contractors To each constraint, we associate a contractor which is an operator able to
contract the domains without removing any value which satisfies the constraint. Constraint
(i): several specific contractors for state equations can be used in the literature (see, e.g.,
[30]). Constraint (ii): the contractor for (ii) is described in [15] and makes it possible to
contract the set intervals [Hi] containing the sectors Hi . Constraint (iii): the contractor is
A (i) ← A (i) ∩ H

+
i , where H

+
i is the upper bound for the interval [Hi]. Constraint (iv):

if the domains for a (i) and a (j) do not intersect, no association between a (i) and a (j)

exists, i.e., gij = 0. And if gij = 1, we can intersect these two domains. The resulting
contractor is thus

if A (i) ∩ A (j) = ∅ then
[
gij

] ← [
gij

] ∩ [0, 0]
if

[
gij

] = [1, 1] then A (i) ← A (i) ∩ A (j) .
(18)

Constraint (v): if the domain A (i) for a (i) is a subset of H−
j , the association can be done.

The corresponding contractor is thus

if A (i) ⊂ H
−
j then

[
gij

] ← [
gij

] ∩ [1, 1] . (19)

Constraint (vi): if the association between a (i) and a (j) has been proved, then we can
increase the free space, i.e.

if gij = [1, 1] then [F] ←
[
F

− ∪ H
−
j \H+

i ,F+]
. (20)

Constraint (vii): The domain a (i) can be contracted by the free space using the following
contractor: A (i) ← A (i) \F−.

Constraints

To make the contractions more efficient, redundant constraints can be added [31] to the
set of constraints (17). For speeding (or improving) the solving process, we added the two
constraints

(viii) a (i) ∈ Hi (x (ti)) , ∀i

(ix) G is an equivalence relation
(21)

Constraint (viii) is derived from constraints (ii) and (iii) and corresponds to an inequality
involving a (i) and x (ti) (see Example 1). The contractor can be built using the method
proposed in [22]. Constraint (ix): It is a consequence of constraint (iv). It forces the graph to
be reflexive, symmetric and transitive. Figure 7 represents the contractor graph. The dotted
arrows correspond to the redundant constraints. To solve the SLAM problem, we call all 9
contractors, represented by the (hyper)-arcs in the figure, once and we repeat the procedure
several times until no more significant contraction can be observed. From Tarski’s theorem,
the resulting propagation method converges and the method is guaranteed (no solution can
be lost).

Example 7 Consider the situation, described by Fig. 3, where the sectorsHi , i ∈ {1, . . . , 6}
are exactly known (which is not the case in our SLAM context where we only know a set
interval [Hi] such that Hi ∈ [Hi]). If nothing is known for the association graph G, i.e.,

Fig. 7 Contractor digraph. Each node represents an unknown variable. The 9 (hyper)-arcs represent the
constraints or the contractors. The arrow indicates which variable will be contracted by the contractor

Constraints

G = [⊥, �], and for the a (i), i.e., A (i) = R
2 then the contractors (iii), (iv) and (v) provide

the following contraction for
[
G

]
:

[
G

] =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 1 [0, 1]
1 1 1 0 1 [0, 1]
1 1 1 0 1 [0, 1]
0 0 0 1 0 0
1 1 1 0 1 [0, 1]
[0, 1] [0, 1] [0, 1] 0 [0, 1] 1

⎞
⎟⎟⎟⎟⎟⎟⎠

Moreover, the domains A (1) ,A (2) ,A (3) ,A (5) are all contracted to H (1) ∩ H (2) ∩
H (3) ∩ H (5), i.e., the black zone on the left of Fig. 3. The domain A (4) for a (4) is con-
tracted to the black zone on the right of the figure and A (6) is contracted to H (6) \Z where
Z corresponds to the hatched area.

5 Test-cases

To illustrate the principle of the method, we consider two test-cases. The first test case is
based on a simulation and will be used to check that the method is guaranteed and also to
illustrate how the computing time depends on different parameters such as the number of
marks or the accuracy of the sensors. The second example is based on an actual experiment
[14] that has been performed by an underwater robot.

5.1 Test-case 1

Generation of the data We have generated a set of data from a simulated robot following
a cycloid for 100sec. We have also added randomly 10 marks inside the square [−8, 8] ×
[−8, 8], in meters . The robot is equipped with a specific sonar which collects a measure d̃

of the distance d to the nearest mark with an accuracy of 1cm. If the echo is clear, the sensor
is able to conclude the unicity of the mark inside the ring at a distance d ∈ [d] = d̃ ± 0.01.
Now, due to the silence before and after the first echo, our sensor is also able to detect a
disk with radius δ which contains a single mark (see Fig. 2). The radius δ is smaller than the
distance of the robot to the second nearest mark. If two marks are inside the echo ring, the
sonar does not detect a clear echo and the data is rejected.

Resolution We assume that the robot is described by the state equations{
ẋ1 = u1 cos u2
ẋ2 = u1 sin u2

(22)

where the speed u1 and the heading u2 are measured every 0.01 sec. with an accuracy
of ±0.0001. The initial state is taken as x (0) = (0, 0)T. Every second, from the sonar
measurement, we define the set-valued sector functions

Hi (x (ti)) = {a | ‖a − x (ti)‖ ∈ [di]}
Hi+1 (x (ti+1)) = {a | ‖a − x (ti+1)‖ < δi+1}

where i is odd and ti = ti+1. As illustrated by Example 3, this decomposition into the two
sector functions allows us to represent both the existence and the absence of mark without
changing our formalism. A new solver, named MSLAM, implementing the propagation is
made available [17], with the C++ code and one tutorial video. MSLAM has been able to
generate Fig. 8 in order to illustrate the off-line propagation. This figure has 5 lines and 2

Constraints

Fig. 8 Illustration of the
propagation. Left: the tube [x] (·)
becomes more and more
accurate. Right: The association
graph G has more and more
black edges (i.e., associations)

Constraints

Fig. 9 Width w(t) of the tube [x] (t). When the number of iterations increases, w (t) decreases

columns. The four first lines, which correspond to the four first iterations of the propagation,
have been obtained in less than 2 minutes on a classical laptop (Intel 2.8GHz, 4.0 Go RAM).
Line 5 corresponds to the fixed point obtained in less than 5 minutes (the fixed point is
considered as reached when there are no more significant contractions). Column a on the
left depicts the tubes (grey) for x (·) and the true trajectory (thin black cycloid). The black
boxes correspond to the value of the tube at time t ∈ {t1, . . . , tm} and the thick black + are
the 10 marks. Column b on the right corresponds to the graph intervals. The vertices have
been placed at the true pose x (ti) of the robot. The black, darkgrey, lightgrey segments
correspond to gij = 1, [0, 1] , 0, respectively. At the initialization, all edges are darkgrey
(i.e., we can have either a (i) = a (j) or a (i) �= a (j)). During the propagation, the edges
become lightgrey (i.e., a (i) �= a (j)) or black (i.e., a (i) = a (j)) whereas the trajectory
envelope becomes more and more accurate.

Figure 9 shows that the width w (t) = w ([x] (t)) of the tubes decreases at each step
of the propagation. After one iteration, w (t) is a line which is a consequence of the dead
reckoning: since the initial position is known w (0) = 0 and when t increases, the robot
becomes more and more lost. At iteration 2, the SLAM makes it possible to contract the
trajectory by taking into account other constraints. After several iterations, the uncertainty
remains limited. This means that the robot could evolve in its environment (which was not
initially known) without getting lost.

Figure 10 provides the inner approximation F− (white) of the free space F obtained when
the fixed point is reached. At the fixed point, 3888 associations have been found, 29128
pairs (a (i) , a (j)) have been proven disjoint and 5400 pairs (a (i) , a (j)) have not been
classified.

Remark 3 The solver MSLAM [17] also provides a simulator which makes it possible to
change easily different parameters such as the size of the world, the density of marks, the
trajectory of the robot, the sampling time, the frequency of detections, etc. When we change
these parameters, we always observe that after 20 contractions we do not have any signif-
icant contractions anymore. As a consequence, we could provide an empirical complexity
for our SLAMmethod: linear with respect to the number of time samples and quadratic with
respect to the number of detections, due to the number of arcs (a (i) , a (j)) in the graph.

Remark 4 The main difficulty with the SLAM problem considered in this paper is that the
search space is of huge dimension (trajectories + graphs + marks) and the attraction basin
of the solution is small. Existing methods, such as Monte-Carlo based SLAM, assume that
if the trajectory is known, the mark association is almost solved. This is the case only if
the marks are observable, which is not the case here: we only measure the distance, not the
directions.

Constraints

Fig. 10 Representation of the free space F. The white zone (which corresponds to F
−) is proven to be free

of mark

5.2 Test-case 2

The second test-case is taken from [14]. A two-hours experiment has been made by an
underwater robot (see Fig. 11) in the Douarnenez bay, Brittany (France) in order to test
SLAM algorithms. On this experiment, we have six seamarks. Even if the location of the
robot and of the seamarks is known, we assume here that we only measure proprioceptive

Fig. 11 The autonomous underwater vehicle, Redermor, built by the GESMA (Groupe d’Etude Sous-Marine
de l’Atlantique)

Constraints

Fig. 12 Localization and mapping for an experiment invoving an actual robot; a initial envelope for the
trajectory of the robot; b final envelope obtained after SLAM, c correspondance graph after SLAM; d inner
approximation of the free space F

data (from the gyrocompass and the loch Doppler), the distances (not the directions) to the
nearest seamark and the distances to the second nearest seamark. We are thus in a similar
situation as for Testcase 1 and we can therefore use the same software for the two test-cases.
The distances are measured every 20 seconds. To reduce the computation time, we took a
sampling time of 2 sec (instead of 0.1sec as taken in [14]).

After less than 100 minutes on the samel laptop, the propagation is able to get the approx-
imation depicted on Fig. 12. To get the fixed point, 15 calls to each contractor have been
needed. Figure 12a gives us the initial envelope obtained using only proprioceptive sen-
sors. Figure 12b is the final envelope obtained after propagation by taking into account the
distances to the seamarks. Figure 12c is the association graph obtained after propagation.
A black edge links two positions of the robot that are proved to see the same seamark. A
lightgrey edge corresponds to a validated non-association between two positions (they see
different seamarks). Darkgrey edges correspond to unknown associations. For this testcase,

Constraints

we obtain 32,368 validated associations, 251,592 validated non-associations and 57,096
unknown associations. Figure 12d provides an inner approximation of the free space. No
seamark can belong to the white area, i.e., all marks are inside the grey zone. It is proved that
we have at least six seamarks, but of course, no upper bound for the number of marks may
be computed. The set of black edges in the circle of Fig. 12b corresponds to the associations
between positions where the robot detects the seamark located at the bottom of Fig. 12d.

All files (C++ codes for the simulator, the solver, data) associated to the two test-cases
can be found in [17]. A tutorial video explaining the theory introduced in this paper is also
given.

6 Conclusion

Range-only SLAM is a difficult problem, mainly due to partially observable marks and the
fact that the problem is ill-conditioned. To solve the problem, this paper has first proposed
a new formulation for SLAM which encompasses the information needed to guarantee pos-
sible associations. Then, a constraint programming approach has been followed. This has
been made possible by introducing the new notion of heterogeneous constraint network. As
a result, a backtrack-free fixed point method has been provided to compute sets that are
proved to enclose the trajectory of the robot, the position of the marks and the free space.
Moreover, the resulting method has been able to solve the mark association problem, which
was not yet solved rigorously in the context of range-only SLAM. As most interval-based
methods, the proposed approach could be combined with probabilist methods [1] and made
robust with respect to outliers by relaxing a given number of constraints [11].

References

1. Abdallah, F., Gning, A., & Bonnifait, P. (2008). Box particle filtering for nonlinear state estimation using
interval analysis. Automatica, 44(3), 807–815.

2. Apt, K. (1998). The essence of constraint propagation. Theoretical Computer Science, 221(2), 179–
210.

3. Apt, K. (2003). Principles of constraint programming: Cambridge University Press.
4. Araya, I., Trombettoni, G., & Neveu, B. (2012). A Contractor Based on Convex Interval Taylor, vol. 7,
1–16, LNCS 7298: Springer.

5. Beldiceanu, N., Carlsson, M., Demassey, S., & Petit, T. (2006). Graph properties based filtering,
Constraint Programming. Principles and Practice of Constraint Programming, 13, 59–74.

6. Chabert, G., & Jaulin, L. (2009). Contractor Programming. Artificial Intelligence, 3(173), 1079–1100.
7. Chabert, G., Jaulin, L., & Lorca, X. (2009). A constraint on the number of distinct vectors with application
to localization, CP 2009, Vol. 7.

8. Colle, E., & Galerne, M.obile.r.obot.l.ocalization.b.y.m.ultiangulation.u.sing.s.et.i.nversion. (2013).
Robotics and Autonomous Systems, 61, 39–48.

9. Davey, B.A., & Priestley, H.A. (2002). Introduction to Lattices and Order: Cambridge University Press.
(ISBN 0521784514).

10. Dooms, G., Deville, Y., & Dupont, P. (2005). Introducing a graph computation domain in constraint
programming. Principles and Practice of Constraint Programming, 7, 211–225.

11. Drevelle, V., & Bonnifait, P. (2009). High integrity gnss location zone characterization using interval
analysis, ION GNSS, Vol. 7.

12. Drocourt, C., Delahoche, L., Brassart, E., & Clerentin, A. (2005). Incremental construction of the
robot environmental map using interval analysis, Global Optimization and Constraint Satisfaction: Second
International Workshop, COCOS 2003, 127–141.

13. Gning, A., & Bonnifait, P. (2006). Constraints propagation techniques on intervals for a guaranteed
localization using redundant data. Automatica, 42, 1167–1175.

Constraints

14. Jaulin, L. (2009). A Nonlinear Set-membership Approach for the Localization and Map Building of an
Underwater Robot using Interval Constraint Propagation. IEEE Transaction on Robotics, 88–98.

15. Jaulin, L., & maps, R.ange.-o.nly.S.LAM.w.ith.o.upancy (2011). A set-membership approach. IEEE
Transaction on Robotics, 1004–1010.

16. Jaulin, L. (2012). Solving set-valued constraint satisfaction problems. Computing, 297–311.
17. Jaulin, L. (2015). MSLAM, a solver for range-only SLAM with indistinguisable landmarks, available at
www.ensta-bretagne.fr/jaulin/mslam.html, LabSTICC, ENSTA Bretagne.

18. Jaulin, L., Kieffer, M., Didrit, O., & Walter, E. (2001). Applied interval analysis, with examples in
parameter and state estimation, robust rontrol and robotics. London: Springer-Verlag.

19. Kurzhanski, A., & Valyi, I. (1997). Ellipsoidal Calculus for Estimation and Control. MA: Birkhauser.
20. Le Bars, F., Sliwka, J., Reynet, O., & Jaulin, L. (2012). State estimation with fleeting data. Automatica,
381–387.

21. Leonard, J.J., & Durrant-Whyte, H.F. (1992). Dynamic map building for an autonomous mobile robot.
22. Messine, F. (2004). Deterministic global optimization using interval constraint propagation techniques.
Operations Research, 277–293.

23. Newman, P., & Leonard, J. (2003). Pure range-only sub-sea slam, ICRA03, pp. 1921–1926. Washington.
24. Sainudiin, R. (2010).Machine interval experiments: Accounting for the physical limits on empirical and
numerical resolutions. Germany: LAP Academic, Koln.

25. Soares, G., Arnold-Bos, A., Jaulin, L., Vasconcelos, J.A., & Maia, C.A. (2008). An interval-based target
tracking approach for range-only multistatic radar. IEEE Transactions on Magnetics, 1350–1353.

26. Spletzer, J. (2004). A new approach to range-only slam for wireless sensor networks, LU-CSE-04-008.
Lehigh University.

27. Tarski, A. (1955). A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics, 285–309.

28. Thrun, S., Bugard, W., & Fox, D. (2005). Probabilistic Robotics. Cambridge: MIT Press.
29. Trombettoni, G., & Chabert, G. (2007). Constructive Interval Disjunction. In Proc. CP, Constraint
Programming, LNCS 4741 (pp. 635–650).

30. Tucker, W. (2002). A Rigorous ODE Solver and Smale’s 14th Problem. Foundations of Computational
Mathematics, 53–117.

31. van Emden, M. (1999). Algorithmic power from declarative use of redundant constraints, p. 363–381.
32. van Hentenryck, P., Deville, Y., & Michel, L. (1997). Numerica: A modeling language for global
optimization. MA: MIT Press.

33. Waltz, D. (1975). Generating semantic descriptions from drawings of scenes with shadows. In P. H.
Winston (Ed.), The Psychology of Computer Vision (pp. 19–91). New York: McGraw-Hill.

34. Wilczak, D., & Zgliczynski, P. (2011). Cr-lohner algorithm. Schedae Informaticae, 9–46.

www.ensta-bretagne.fr/jaulin/mslam.html

	Range-only SLAM
	Abstract
	Introduction
	Problem statement
	Notations
	Association graph

	Heterogeneous constraint propagation
	Lattices
	Intervals

	Heterogeneous contractors
	Heterogeneous constraint propagation

	Graph intervals
	Tubes
	Set intervals

	SLAM as a heterogeneous constraint network
	Variables
	Domains
	Initialization
	Constraints
	Contractors

	 Test-cases
	Test-case 1
	Generation of the data
	Resolution

	Test-case 2

	Conclusion
	References

