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a b s t r a c t

The stability analysis of nonlinear continuous systems often requires manual calculation, which can
become time-consuming when dealing with complex systems. Some works use positive invariant
sets to discuss stability. These sets can be numerically approximated using Interval analysis but
the computational complexity is exponential. In this paper, we propose a computational tractable
numerical but guaranteed method based on Interval analysis to verify the robust positive invariance
of ellipsoids to automatize the study of n-dimensional nonlinear systems’ stability. This method relies
on a fast enclosure of a state integration by an Euler method. Interval analysis guarantees the results
of the developed algorithms. Several examples show the effectiveness of the proposed approaches on
n-dimensional non-asymptotical continuous systems subject to bounded perturbation.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

The stability of dynamical systems can be studied with several
ethods. Classical methods consist in analytic calculations which
ay require a lot of time to be manually solved and may be
pecific to some problems. Thus, some numerical methods have
een developed to automatically solve some stability problems,
uch as the Routh–Hurwitz criterion (Routh & Adams prize es-
ay, 1877) or the Linear Matrix Inequalities (LMI) (Boyd, Ghaoui,
eron, & Balakrishnan, 1994). However, the class of problems cur-
ently solved by numerical methods is limited. There is therefore
nterest in developing new tools to automatize classical methods.

Lyapunov stability can be used to study the stability of nonlin-
ar systems around an equilibrium point. The Lyapunov stability
ethod consists in choosing a candidate Lyapunov function and

hen verifying if this candidate is positive-definite and decreases
n time. This method involves manual calculation which becomes
ore challenging as the systems become more complex, see Qian,
i, Lee, and Ma (2018) and Zhou, Guo, Li, and Zhang (2019).

✩ This work has been supported by the French Defence Innovation Agency
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This paper was recommended for publication in revised form by Associate Editor
Denis Efimov under the direction of Editor Luca Zaccarian.
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In these papers, the method is used several times with differ-
ent Lyapunov functions. If the system is modified, a new Lya-
punov function must be found and verified. Moreover, Lyapunov
functions are more complex on a high-dimensional system with
perturbations such as in Liu et al. (2018).

Some other works use positive invariant sets to discuss stabil-
ity such as Blanchini and Miani (2015), Esterhuizen, Aschenbruck,
and Streif (2020), Le Mezo, Jaulin, and Zerr (2017) and Valmorbida
and Anderson (2017). These approaches are based on the links
between the Lyapunov theory and the positive invariance concept
since the sublevels sets of a Lyapunov functions are positive
invariant. However, there exist invariant sets that are not related
to any Lyapunov function. Ellipsoids are the most commonly
exploited sets as candidate invariant regions because they can
always be associated with a quadratic Lyapunov function.

Positive invariance of sets like ellipsoids can be verified under
some criterion. For linear systems, they can be presented as
LMI which can be numerically solved, see Lian and Wu (2020),
Polyak, Nazin, Topunov, and Nazin (2006) and Weiss, Petersen,
Baldwin, Erwin, and Kolmanovsky (2015). For nonlinear systems,
they can be presented as inclusion problems as in Valmorbida and
Anderson (2017) or as nonlinear inequality problems as in Romig,
Jaulin, and Rauh (2019).

Interval analysis has been shown to provide efficient nu-
merical approaches for solving various tasks in control theory,
see Jaulin, Kieffer, Didrit, and Walter (2001), Rauh, Kersten, and
Aschemann (2020) and Yu et al. (2020). Some interval analysis

methods can be used to verify the positive invariance criterion
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or nonlinear systems in the presence of uncertainty. While the
esult of numerical methods is often non-guaranteed, numerical
ethods based on Interval calculation guarantee the verification
f the criterion. The paper (Romig et al., 2019) approximates pos-
tive invariant sets using the Set Inversion Via Interval Analysis
SIVIA) presented in Jaulin et al. (2001). However, this method
as exponential computational complexity, making it efficient
or 2-dimensional problems but not suited for n-dimensional
roblems.
This paper proposes a new method to verify the robust pos-

tive invariance (RPI) of an ellipsoid for n-dimensional time-
ndependent nonlinear continuous systems using interval anal-
sis. To our knowledge, it is the first time that n-dimensional
tability is studied with interval methods. The main idea of the
ethod is to verify if the border of an ellipsoid, after one step
f the Euler scheme, is still contained in the same ellipsoid to
erify RPI via Nagumo’s theorem. The result of the Euler scheme
s outer approximated by another ellipsoid using Interval anal-
sis. This method can be implemented to automatically verify
he system’s stability, so manual calculations can be avoided
n the case of high dimensional problems. This numerical but
uaranteed method has computational tractability, contrary to
ommon numerical approaches like SIVIA (Romig et al., 2019)
ith exponential computational complexity.
The paper is structured in the following way. The key concept

f ellipsoids, RPI, and interval analysis are presented in Section 2.
ection 3 presents the positive invariance criterion which needs
o be verified. The developed method is discussed in Section 4.
ection 5 discusses the method with two case applications on
-dimensional and n-dimensional nonlinear systems.

. Notations and hypotheses

The theory of the numerical method presented in this paper
elies on ellipsoids presented in Section 2.1, and on Interval
nalysis presented in Section 2.2. These mathematical tools will
e used to prove the RPI presented in Section 2.3.

.1. Ellipsoids

For a matrix Q ∈ Rn×n, Q ≻ 0 means Q is positive definite
matrix, and Q ⪰ 0 means Q is positive semi-definite. Let S+

n be
the set of the real symmetric positive definite matrices.

Let us define the norm

∥x∥Q =

√
xTQx, (1)

with Q ∈ S+
n . This norm can be associated with the scalar product

⟨x, y⟩Q = xTQy. (2)

Let us define the ellipsoid

E (Q ) =
{
x ∈ Rn

| ∥x∥2
Q ≤ 1

}
(3)

centred at the origin and described with Q ∈ S+
n .

For each Q 1 ∈ S+
n and Q 2 ∈ S+

n , one has E (Q 1) ⊆ E (Q 2) if
and only if Q 1 − Q 2 ⪰ 0.

The border of an ellipsoid E (Q ) is written ∂E (Q ). For each
matrix Q ∈ S+

n , there exists a unique matrix ΓQ ∈ S+
n such that

Q = Γ−1
Q · Γ−1

Q , (4)

with ΓQ =
(√

Q
)−1.

The numerical operations on the ellipsoid’s matrix are guar-
nteed by interval analysis.
2

Fig. 1. Inclusion function in 2 dimension.

.2. Interval analyses

Interval analysis is relevant to solve nonlinear inequalities in
guaranteed way. With basic mathematical tools, algorithms can
e developed to test the conditions without further theory. This
ection presents interval analysis tools developed in Jaulin et al.
2001).

An interval [x] is defined as a connected subset of R. The set of
ntervals is written IR. A box [x] is defined as a subset of Rn and
artesian product of intervals such that

x] = [x1] × [x2] × · · · × [xn] . (5)

The set of boxes of Rn is written IRn.

Definition 1. Let f be a function from Rn to Rm. An inclusion
function for f is defined as an interval function [f ] from IRn to
IRm such that

∀ [x] ∈ IRn, f ([x]) ⊂ [f ] ([x]) , (6)

see Fig. 1.

Some inclusion functions give better approximation of f ([x]).
In this paper, the centred inclusion functions are the most suitable
because ellipsoids are centred around the origin.

Definition 2. Let f be a D1 function from Rn to R. The centred
inclusion function for f is an inclusion function defined as

[f c ] :IRn
→ IRn

[x] ↦→ f (xm) +

[
∂f
∂x

]
([x]) ([x] − xm) (7)

with the middle point of [x] written xm.

2.3. Robust positive invariance

Consider the nonlinear systems

ẋ (t) = f (x (t) , w (t)) , (8)

with the state x (t) ∈ Rn and the bounded perturbation w (t) ∈

[w] ⊂ Rm. Assume f is D1, and for each initial condition x (0) and
piece-wise continuous function w (t) the system has a unique and
globally defined solution.

Definition 3 (Blanchini and Miani (2015, Definition 4.3)). The set
S ⊆ Rn is said to be robust positive invariant (RPI) with respect
to (8) if, for all x (0) ∈ S and any w (t) ∈ [w], the solution x (t)
of system (8) is in S for all t ≥ 0.

Fig. 2 presents an example of a RPI ellipsoid E (Q ) on R2.
Section 3 presents a specific condition for RPI for Ellipsoids.
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. Problem formulation

This paper aims to discuss the stability of n-dimensional non-
inear system (8) around the origin. This stability is studied using
PI ellipsoids. The first step is to find an ellipsoid candidate
or the system. Then the RPI of the ellipsoid is shown using a
ondition defined in this section. This condition will be tested by
lgorithmic approaches in the following sections.
Consider the nonlinear system described by (8) and the cen-

red ellipsoid E (Q ) with Q ∈ S+
n . A condition to verify the

RPI of E (Q ) is given using Nagumo’s theorem. This condition is
presented in Theorem 4.

Theorem 4 (Blanchini and Miani (2015, Section 4.4.1)). The ellip-
soid E (Q ) is RPI w.r.t. (8) if and only if

∀ {x, w} ∈ ∂E (Q ) × [w] , ⟨x, f (x, w)⟩Q ≤ 0. (9)

A numerical method to solve the stability problem is proposed
n the following Section 4.

. Enclosing method

We propose a new numerical method, called the enclosing
ethod to verify the RPI, with operations on matrices of intervals.
he method has computational tractability with a computational
omplexity between O

(
n2

)
and O

(
n3

)
, as it will be illustrated in

ig. 6 in Section 5.2.2.
Let us define the function

δ : Rn+m
→ Rn

{x, w} ↦→ x + δf (x, w) ,
(10)

ith an arbitrary small parameter δ > 0. At a time t > 0,
δ (x(t), w(t)) approximates the future state x (t + δ), by the Eu-
er method. Consider the set YQ

δ defined by
Q
δ =

{
y ∈ Rn

|∃(x, w) ∈ ∂E (Q ) × [w], y = hδ(x, y)
}
. (11)

s shown in the following Theorem 5, if for all state x (t) on
the border ∂E (Q ) of an ellipsoid E (Q ), the approximation of the
future state x (t + δ) is inside E (Q ), then the state x (t) will stay
inside E (Q ), as illustrated by Fig. 2.

Theorem 5. If there exists a δ > 0 so that YQ
δ ⊆ E (Q ), then E (Q )

is RPI w.r.t. (8).

Proof. Assume YQ
δ ⊆ E (Q ). Let x ∈ ∂E (Q ) and w ∈ [w]. Since

hδ (x, w) ∈ YQ
δ , one has hδ (x, w) ∈ E (Q ) and thus

hδ (x, w)T Qhδ (x, w) ≤ 1
(10)
⇔ (x + δf (x, w))T Q (x + δf (x, w)) ≤ 1

(1), (8)
⇔ ∥x∥2

Q + 2δxTQ f (x, w) + δ2 ∥ẋ∥2
Q ≤ 1

⇔ ∥x∥2
Q + 2δ ⟨x, f (x, w)⟩Q + δ2 ∥ẋ∥2

Q ≤ 1

⇔ ⟨x, f (x, w)⟩Q ≤
1
2δ

(
1 − ∥x∥2

Q − δ2 ∥ẋ∥2
Q
)
.

(12)

oreover, since x ∈ ∂E (Q ), one has ∥x∥2
Q = 1. Thus ⟨x, f (x, w)⟩Q

≤ 0. Therefore, by Theorem 4, E (Q ) is RPI. □

In practice, the inclusion in Theorem 5 is hard to verify with
a numerical method. Therefore, we propose to use instead an
outer ellipsoidal approximation of YQ

δ to verify RPI as described
in Corollary 6 of Theorem 5.

Corollary 6. Let the ellipsoid E
(
Q

)
be an outer approximation of

YQ , i.e. YQ
⊆ E

(
Q

)
. If E

(
Q

)
⊆ E Q then E Q is RPI.
δ δ ( ) ( )

3

Fig. 2. RPI ellipsoid w.r.t. (8) with the Euler prediction of the function hδ with
> 0.

Note that E
(
Q

)
⊆ E (Q ) is equivalent to Q −Q ⪰ 0 which can

be numerically verified with a Cholesky decomposition applied on
interval matrix. The algorithm of this decomposition consists in
using the interval counterpart of the operations in the classical
Cholesky decomposition algorithm.

A method to find an outer ellipsoidal approximation E
(
Q

)
is

proposed in the next Section 4.1.

4.1. Outer ellipsoidal approximation

Inspired from Rauh and Jaulin (2021, Theorem 3), the outer
ellipsoidal approximation E

(
Q

)
can be calculated using the The-

orem 7.

Theorem 7. An outer ellipsoidal approximation of YQ
δ is E

(
Q

)
with

Q =
1

(1 + ρ)2
A−T
x QA−1

x (13)

here

x =
∂hδ

∂x
(0, wm) (14)

ith wm as the middle of the box [w], and

= sup {∥[b] ([x] , [w])∥} (15)

ith the tightest axis-aligned box [x] containing E (Q ) and with the
ector

(x, w) = Γ−1
Q · A−1

x · hδ (x, w) − Γ−1
Q · x (16)

Proof. Let x ∈ ∂E (Q ) and w ∈ [w]. Let us write a1 = Γ−1
Q · A−1

x ·

hδ (x, w). From (16), one has

a1 = Γ−1
Q · x + b (x, w) (17)

Moreover, according to (3), (4), (15) and the triangular identity,
one deduces

∥a1∥ ≤

Γ−1
Q · x

 + ∥b (x, w)∥

≤ 1 + ρ. (18)

From (1), one has

∥hδ (x, w)∥2
Q

= hδ (x, w)T Qhδ (x, w) .

(13)
= h (x, w)T 1 A−TQA−1h (x, w)
δ

(1+ρ)2 x x δ
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4), (17)
=

1
(1 + ρ)2

aT
1a1

=
1

(1 + ρ)2
∥a1∥

2 .

(19)

Therefore, with (18), one deduces that ∥hδ (x, w)∥Q ≤ 1. As a
esult, hδ (x, w) ∈ E

(
Q

)
which verifies the theorem. □

The parameter ρ can be calculated using the centred inclusion
function for b given by Theorem 8

Theorem 8. The centred inclusion function for b with the middle
point (x, w) = (0, 0) is equal to

[b] ([x] , [w])
=b (0, wm)

+

(
Γ−1

Q · A−1
x

(
In + δ ·

[
∂f
∂x

]
([x] , [w])

)
− Γ−1

Q

)
· [x]

+ Γ−1
Q · A−1

x · δ ·

[
∂f
∂w

]
([x] , [w]) · ([w] − wm) . (20)

roof. From (7) the centred inclusion function for b with the
iddle point (0, 0) is

[b] ([x] , [w])

b (0, wm) +

[
∂b
∂x

]
([x] , [w]) · ([x] − 0)

+

[
∂b
∂w

]
([x] , [w]) · ([w] − wm)[

∂b
∂x

]
([x] , [w]) · [x] +

[
∂b
∂w

]
([x] , [w]) · ([w] − wm) , (21)

ith the tightest axis-aligned box [x] containing E (Q ). The in-
olved Jacobians are expressed as

∂b
∂x

(x, w) = Γ−1
Q · A−1

x
∂hδ

∂x
(x, w) − Γ−1

Q

(10)
= Γ−1

Q · A−1
x

(
In + δ ·

∂f
∂x

(x, w)

)
− Γ−1

Q (22)

∂b
∂w

(x, w) = Γ−1
Q · A−1

x ·
∂hδ

∂w
(x, w)

(10)
= Γ−1

Q · A−1
x · δ ·

∂f
∂w

(x, w) . (23)

oreover, the matrices Ax and ΓQ do not depend on x and w,
herefore the inclusion function of (22) and (23) can be deduced
rom the inclusion function of ∂f

∂x and ∂f
∂w

such that[
∂b
∂x

]
([x] , [w]) = Γ−1

Q · A−1
x (In

+δ ·

[
∂f
∂x

]
([x] , [w])

)
− Γ−1

Q , (24)

∂b
∂w

]
([x] , [w]) = Γ−1

Q · A−1
x · δ ·

[
∂f
∂w

]
([x] , [w]) . (25)

rom (21), (24) and (25), one deduces (20). □

The algorithmic application of Corollary 6 and Theorems 7 and
is presented in the following Section 4.2.

.2. Algorithm of the enclosing method

The algorithm of the enclosing method is presented in Algo-
ithm 1. This algorithm verifies if the ellipsoid E Q is RPI w.r.t.
( )

4

(8) with the perturbation w ∈ [w]. If the result is True, the
ellipsoid is guaranteed RPI. If the result is False, the algorithm is
not able to conclude.

The Algorithm depends on two sub-algorithms. The enclose_
ellipse_by_box algorithm find the tightest axis-aligned box [x]
such that E (Q ) ⊆ [x]. The is_definite_positive algorithm return
True if Q − Q ≻ 0 with a guaranteed method such as a Cholesky
decomposition. It returns False if it is not able to conclude.

The two most complex operations in this algorithm are the
matrix inversion and the Cholesky decomposition. Depending
on their algorithm, these operations have a computational com-
plexity between O

(
n2

)
and O

(
n3

)
. Therefore the computational

complexity of Algorithm 1 is expected to have a similar scale.
This algorithm will be applied to several examples in the

following Section 5.

Algorithm 1 Algorithm of the enclosing method
Input Q , f ,[w],δ
Output res
1: Γ Q =

(√
Q

)−1

2: [x] = enclose_ellipse_by_box (Q )

3: Ax = In + δ ·
∂f
∂x

(0, wm)

4: [b] = b (0, wm) +

(
Γ −1

Q A−1
x(

In + δ ·

[
∂f
∂x

]
([x] , [w])

)
− Γ −1

Q

)
· [x]

+Γ −1
Q · A−1

x · δ ·

[
∂f
∂w

]
([x] , [w]) · ([w] − wm)

5: [∥b∥] = norm2 ([b])
6: ρ = upper_bound ([∥b∥])
7: Q =

1
(1+ρ)2

A−T
x QA−1

x

8: res = is_definite_positive(Q − Q )

5. Application

In this section, the RPI is tested with the enclosing method
exposed in Section 4 on two example systems. The first example
is a simple damping pendulum to illustrate the approaches with
2-dimensional ellipsoids. The second example is a n-dimensional
nonlinear system, deduced from a platooning problem. Results
are discussed in Section 5.3.

To find a good candidate for E (Q ), one may linearize the sys-
em at the equilibrium, then find a quadratic Lyapunov function
ith the Lyapunov equation (Blanchini & Miani, 2015, Section
.4.1). Then, one may interpret this function as the norm (1),
hus defining the matrix Q . In this case, E (Q ) is RPI w.r.t. the
linearized system.

Note that RPI can also be verified by conventional procedures
such as in Khalil (2001, Chapter 9) with Lyapunov function, or
such as in Romig et al. (2019) with interval analysis. While there
is plenty of result for the pendulum example such as in Hirsch,
Smale, and Devaney (2013) and Khalil (2001), Lyapunov functions
are more difficult to find for the 2nd example. Conventional
interval analysis methods with bisection are relevant for the
pendulum. But they are irrelevant to high dimensional problems
because of the exponential computational time, as it will be
shown in Fig. 6.

These tests are implemented in Python language with the
libraries Codac for interval analysis, Scipy for symbolic expres-
sions, Numpy for matrix operations, and Mathplotlib for figure
drawing. The code and further documentation is available at
https://morgan-louedec.fr/index.php/ellirpi/

State trajectories illustrated by Figs. 3, 4(a) and 4(b) are sim-
ulated for 10 s with the Euler method with a time period dt =
0.1 s.

https://morgan-louedec.fr/index.php/ellirpi/
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Fig. 3. Pendulum with the red ellipse ∂E (Q ), the green ellipse ∂E
(
Q

)
, the blue

tate trajectories starting on ∂E (Q ) and the black vector field f (x, 0). (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 4. Results for ellipsoids E (Q 2) and E (Q 3).

5.1. Pendulum

Consider a simple pendulum described by the state equations{
ẋ1 = x2
ẋ2 = − sin (x1) − 2 · x2 + w

(26)

here x1 is the position of the pendulum, x2 its rotational speed
and w is a speed perturbation. Consider [w] = [−0.1; 0.1].

5.1.1. Testing a positive invariant ellipsoid

The ellipsoid E (Q 1) is tested with Q 1 =

[
6 2
2 2

]
and the

parameters δ = 0.1. The Algorithm 1 verifies that E (Q 1) is RPI.
Fig. 3 illustrates the results.

One observes that the ellipsoid E
(
Q 1

)
(in green) is inside the

ellipsoid E (Q 1) (in red). The matrix Q 1 − Q 1 has a Cholesky
decomposition. Therefore Q 1 − Q 1 is positive definite. Thus, one
an use Corollary 6 to show that E (Q 1) is RPI. Indeed, one can
bserve that the four state trajectories starting on the ellipse
E (Q 1) stay in the ellipsoid E (Q 1) at any time and converge to
smaller set around origin.

.1.2. Testing a non positive invariant ellipsoid

The ellipsoid E (Q 2) is tested with Q 2 =

[
6 −2

−2 2

]
and the

parameters δ = 0.1. The Algorithm 1 is not able to conclude.
Fig. 4(a) illustrates the results.

One observes that E
(
Q 2

)
is not inside E (Q 2). Indeed, the

Cholesky decomposition algorithm of Q 2 − Q 2 failed. Thus, the
enclosing method cannot conclude on the robust positive invari-
ance of E (Q 2). One can also observe that some state trajectories
starting on ∂E Q exit E Q . Q is not RPI.
( 2) ( 2) 2

5

Fig. 5. Platooning on the circle.

5.1.3. Testing a small positive invariant ellipsoid
The ellipsoid E (Q 3) is tested with Q 3 = 10Q 1 and the

parameters δ = 0.1. Note that E (Q 3) =
1

√
10
E (Q 1) can be verified

RPI with SIVIA methods. The Algorithm 1 is not able to conclude.
Fig. 4(b) illustrates the results.

As in Section 5.1.2, the Cholesky decomposition of Q 3 − Q 3
failed. E

(
Q 3

)
is not inside E (Q 3) in Fig. 4(b). Therefore, the

enclosing method cannot verify the positive invariance. Different
values of δ were tested to find a better enclosing ellipsoid Q 3.
ven with a very small value of δ, such as δ = 10−10, Q 3 − Q 3 is

not verified positive definite.

5.2. n-Dimensional system

Consider m robots turning on a circular road of circumference
L. Each robot Ri with i ∈ [1, . . . ,m] satisfies the following state
equation{
ȧi = vi

v̇i = ui + wi
(27)

where ai is the position of the robot, vi its speed, ui its control
signal and wi a small dynamical perturbation. Each robot Ri is
equipped with a radar that returns the distance di to the next
robot Ri+1 and its derivative ḋi as illustrated by Fig. 5. The
controller of Ri is defined by

ui = arctan
(
(di − dd) + ḋi + (vd − vi)

)
(28)

where dd =
L
m is the desired value for di and where vd is the

desired value for vi. The arctan (.) function illustrates a control
saturation and makes the system non linear. Consider the state
vector

x =

[
d1 − dd, d2 − dd, . . . , dm−1 − dd,
v1 − vd, v2 − vd, . . . , vm − vd

]T

. (29)

of dimension n = 2m − 1. This state is solution to the system

ẋi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

xm+i − xm+i−1 for i < m
arctan (xi−m+1 + xi+1

−2xi) + wi−m+1 form ≤ i < n
arctan (xm − 2xn

−

m−1∑
k=1

xk

)
+ wm for i = n

(30)

5.2.1. Example with 5 robots
Consider [wi] =

[
−10−4

; 104
]
, m = 5 and n = 2m − 1 = 9.

The 9-dimensional candidate ellipsoid E (Q n) is tested with the
parameter δ = 0.01, and Q n as the solution to the Lyapunov
equation

ATQ n + Q nA = −10jIn

A =
∂f
∂x

(0, 0) (31)

with j = 4. The Algorithm 1 verifies that E Q is RPI.
( n)
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Fig. 6. Computational time.

.2.2. Computational time with m robots
Different values of m are tested with [wi] =

[
−10−k

; 10k
]
, the

perturbation amplitude k > 0, and Q n as the solution to (31). The
parameters j, k and δ are adjusted to have E (Q n) verified RPI. In
comparison, a SIVIA is also tested to solve (9). The computational
time is measured and illustrated in Fig. 6. One can observe that
the complexity of the enclosing algorithm is polynomial. In com-
parison, the computational time of the SIVIA method skyrockets.
The SIVIA method is also limited by the random-access memory
capacity which made it inoperative with m > 3 in the test.

5.3. Result and discussion

In the examples of the previous section, the enclosing methods
verified the robust positive invariance of some candidates for the
example systems.

Section 5.1.3 shows that the enclosing method has some pes-
simism and cannot always verify the RPI. It is only problematic
with ellipsoids which are barely RPI. The method works better on
systems whose linearization at the equilibrium is asymptotically
stable. It is often the case for controlled systems.

Section 5.2 shows that the enclosing method is effective on
high-dimensional systems. It is a big advantage compared to
exponential solving methods such as the SIVIA method in Romig
et al. (2019) which are inoperative on high dimensional problems.

The parameters δ can influence the chance of a conclusion.
Thus, several attempts with different parameter values may be
necessary.

Other ellipsoids verifying RPI can exist. Among them, the
smallest RPI ellipsoid can approximate the zone where the state
does not converge anymore. This smallest ellipsoid will be the
subject of a future study. The methods could be generalized to
time-dependent systems and time-dependent RPI ellipsoids. It
will also be the subject of future study.

6. Conclusion

In this paper, a computational tractable method is presented
to test the robust positive invariance of ellipsoids with respect to
n-dimensional nonlinear systems with bounded perturbations. To
our knowledge, it is the first time that n-dimensional stability is
studied with interval methods. Ellipsoids allow for analysing the
systems’ stability around their equilibrium point. The developed
method finds the image of the ellipsoid by a one-step Euler pre-
diction, encapsulates this image with another ellipsoid, and uses
it to verify the invariance criterion. This numerical method cannot
always conclude on the positive invariance, but the invariance is
guaranteed when a conclusion is found.
6

Future work will study the RPI of time-dependent ellipsoids.
These ellipsoids will be used to solve problems with time-depe-
ndent systems or to find ellipsoidal state tubes. Moreover, the
encompassing algorithm will be applied in the stability analysis
of practical high-dimensional systems such as robot fleets. The
calculation of the smallest RPI ellipsoid will also be investigated.
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