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Abstract. The paper proposes new method to secure a zone of the world
from intruders using a group a robots. The principle is to control the group
in order to form a chain through which no intruder can go without being
detected. We use a set membership method based on interval analysis and
mathematical morphology to guarantee that no intruder is inside the secure
zone. The approach is illustrated by an example where the environment
is the Bay of Biscay, the intruder is a submarine and the group of robots
consists of small underwater autonomous vehicles.

1 Introduction

We consider n robots R1, . . . ,Rn at positions a1, . . . , an and moving in a
2D world [1]. Each robot has a visibility zone. If an intruder is inside the
visibility zone of one robot, it is detected. The robots have to collaborate
to guarantee that there is no moving intruder inside a subzone of a compact
subset O of R2, representing the world.

This project is motivated by the detection of submarine intruders inside
the Bay of Biscay (golfe de Gascogne) by low cost robots [2] equipped with
low cost and passive sensors (microphones, cameras [3], electric sense [4][5]).
The set O corresponds to the ocean and the intruder is a submarine consid-
ered as an enemy. We will avoid using expensive sonars such as side-scan
sonars [6] which consume energy and which are not discrete.

For simplicity, we consider a 2D environment, and the robots are able
find their position with a given accuracy using a state observer. We assume
that each robot is able to detect any intruder inside a disk of a known ra-
dius. Moreover, the intruder’s dynamics is assumed to be known (but not its
control).

The goal of this paper is twofold: (1) to characterize a set for which we
can guarantee that there is no intruder (this corresponds to the secure zone)
and (2) to find a control strategy for the group of robots in order to extend
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the secure zone as much as possible. For this purpose, we will use interval
analysis and control theory.

Set-membership approaches have mainly been used in the context of un-
derwater robotics [7][8][9] for guaranteed localization and mapping. For the
first time, we use it here to guarantee that a zone is secured.

In this paper, we are not interested in a dynamical control of one robot
in order to perform a particular mission, but more by a collective control of
a group of robots for a common task.

The paper is organized as follows. Section 2 recalls how to control in-
dependently a group of robots that cannot communicate. Section 3 shows
how to compute an inner and outer approximation of the secure zone. An
illustration of our approach is given in Section 4 where a group of robots
collaborate to secure the Bay of Biscay. Section 5 concludes this paper and
proposes some perspectives.

2 Control of a group of robots

The first step to be solved to secure a zone is to control a group of robots
assuming that the robots cannot communicate, in order to be as silent as
possible. In such a case, classical linear control [10] do not apply. The
general method in this situation is the flocking approach [11] or to consider
that all trajectories of all robots have been decided a priori.

Remark. When we say that the robots do not communicate, it means
that they do not share any information stored inside their memory. But, we
can still assume that each robot, via its own sensors are able estimate the
state (position, orientation and speed) of its neighbors. We do not consider
the perception of neighbors as a communication. Now, since the behavior
of each robot is influenced by what is stored in its memory, a robot can
guess some part of the memory of its neighbors by analyzing their behav-
iors. Moreover, the robots can voluntarily change their behaviors in order
to transmit a coded message. It is what insects do when they perform some
kind of dance to communicate. For instance, by performing the figure-eight
dance, the honey bees can share with other members of the colony, informa-
tion about the direction and distance to flowers yielding nectar and pollen,
to water sources, or to new nest-site location. In such a case, there is a clear
intention to communicate. Here, we shall consider that we have no commu-
nication when there is no intention to transmit any message from one robot
to another robot.
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2.1 Flocking

To illustrate the flocking, let us consider m robots described by the following
state equations: 

ẋi = cos θi
ẏi = sin θi
θ̇i = ui

The state vector is x(i) = (xi, yi, θi). In this model, the speed in always
equal to 1, which means that each robot is only control its heading through
the input ui. These robots can see all other robots, but are not able to
communicate with them. We want that these robots behave as a flock as
illustrated by Figure 1. Basic models of flocking behaviors are controlled by
three rules of Reynolds:

• The separation corresponds to a short range repulsion force. This al-
lows the flock to avoid crowding neighbors.

• The alignment force implies that each robot steers towards average
heading of its neighbors.

• The cohesion is a long range attraction where each robot of the flock
is attracted by its neighbors.

Using a artificial potential field method [12] (see also [13] or [14] in the context
of ocean robotics) , we can find a controller for each robot to obtain a flock.
In Figure 1, the robots are first initialized randomly in the same zone of the
world. Then, following the rules of Reynolds, they adopt the behavior of a
swarm.
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Figure 1: Illustration of the flocking behavior from a random initialization
in the case where m = 20

For this, we define the potential of the ith robot as

Vi =
∑
j 6=i

α ‖p(i)− p(j)‖2 +
β

‖p(i)− p(j)‖

where p(i) = (xi, yj). The quadratic part of the sum corresponds to the
cohesion and the hyperbolic term corresponds to the separation. The coef-
ficients α and β have to be tuned. For instance, if β is high, the repulsion
will be stronger and the flock will be more scattered. The gradient of Vi is

dVi
dp(i)

=
∑
j 6=i

(
2α (p(i)− p(j))− β (p(i)− p(j))T

‖p(i)− p(j)‖3

)
.

Since we want to decrease Vi, we have to follow the opposite direction of the
gradient. Moreover, in order to follow the alignment rule of Reynolds each
robot should get the same heading as the other robots. Thus, the controller
is built in order to follow the direction∑

j 6=i

(
−2α (p(i)− p(j))− β (p(i)− p(j))T

‖p(i)− p(j)‖3
+

(
cos θj
sin θj

))
.
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The flocking is a nice method to move a group of robots and could be used to
find an intruder. Moreover, no communication or distributed computation
is needed. Now we cannot guarantee anything with flocking behavior about
the stability or the cohesion (see e.g., [1]). We need a control which is more
deterministic as proposed in the following subsection.

2.2 Group of robots forming a chain

To secure a zone, with guarantee, the first idea that comes to mind is to build
a virtual chain made with robots. If the chain is built with the right spacing
and takes into account the visibility zone of each robot, the intruder will not
be able to cross the chain without being detected. Moreover, we want the
robots move with respect to a cycle so that they can be able to recharge their
batteries at some points of the cycle.

To illustrate how this can be done, assume that we have a group of m = 20
robots the motion of which is described by the state equation

ẋ1 = x4 cosx3
ẋ2 = x4 sinx3
ẋ3 = u1
ẋ4 = u2

where (x1, x2) corresponds to the position of the robot, x3 to its heading and
x4 to its speed. We want the robots to follow an ellipse which corresponds
to a barrier for the intruder.

Circle. Assume first that this ellipse is a circle. We want a controller for
each of these robots so that the ith robot follows the trajectory(

cos(at+ 2iπ
m

)
sin(at+ 2iπ

m
)

)
,

where a = 0.1. As a consequence, after the initialization step, all robots
are uniformly distributed on the unit circle, turning around the origin. To
do this, we can use a feedback linearization method taking as an output
y = (x1, x2). We get the controller

u =

(
−x4 sinx3 cosx3
x4 cosx3 sinx3

)−1
·
(
c (t)−

(
x1
x2

)
+ 2ċ (t)− 2

(
x4 · cos(x3)
x4 · sin(x3)

)
+ c̈ (t)

)
,

(1)
where c(t) is the desired position. For the ith robot, we take

c (t) =

(
cos(at+ 2iπ

m
)

sin(at+ 2iπ
m

)

)
, ċ (t) = a ·

(
− sin(at+ 2iπ

m
)

cos(at+ 2iπ
m

)

)
, c̈ (t) = −a2c (t) ·
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Ellipse. By using a linear transformation of the unit circle, we can change
the controllers for the robots so that all robots stay on a moving ellipse. For
instance, assume that we want a first axis of length 20 + 15 · sin(at) and the
second axis of length 20. Moreover, we want the ellipse rotating by choosing
an angle for the first axis of θ = at.

To get the right ellipse, for each c (t), we apply the transformation

w (t) =

(
cos θ − sin θ
sin θ cos θ

)
︸ ︷︷ ︸

=R

·
(

20 + 15 · sin(at) 0
0 20

)
︸ ︷︷ ︸

=D

·c (t)

where w(t) is the new desired position. To apply our controller, we also need
the two first derivatives of w(t). We have

ẇ = R ·D · ċ + R · Ḋ · c + Ṙ ·D · c,

where

Ḋ =

(
15a · cos(at) 0

0 0

)
, and Ṙ = a ·

(
− sin θ − cos θ
cos θ − sin θ

)
.

Moreover

ẅ = R ·D · c̈+R · D̈ · c+ R̈ ·D · c+ 2 · Ṙ ·D · ċ+ 2 ·R · Ḋ · ċ+ 2 · Ṙ · Ḋ · c

where

D̈ =

(
−15a2 · sin(at) 0

0 0

)
and R̈ = −a2 ·R.

We can now apply the controller given by Equation (1), where c(t) is now
replaced by w(t). Figure 2 illustrates the behavior of the control law and
shows that the group moves exactly with the ellipse.
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Figure 2: During the transient phase, all robots go toward their setpoints in
the ellipse. Then, the group follows exactly the deformation of the ellipse.

We have shown how a group of robots can follow an ellipse. As a result, we
may interpret the group as a unique ellipse robot which can have an arbitrary
shape. Now, when the ellipse becomes flat (as it is the case when we want to
build a chain for the intruders), the placement of the robots is not uniform:
the robots concentrate around the two apogee points. The next subsection
explains how to get a uniform distribution of robots along the ellipse.
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2.3 Convoy

To illustrate how to have a uniform distribution along the ellipse (with a
constant distance between robots), consider one robot RA described by the
following state equations: 

ẋa = va cos θa
ẏa = va sin θa
θ̇a = ua1
v̇a = ua2

where va is the speed of RA the robot, θa its orientation and (xa, ya) the co-
ordinates of its center. The robot can be considered as a leader and all robots
have to follow it, maintaining a constant distance between two successors.
For instance, as previously, we can ask all robots to follow RA. Therefore,
we ask RA to follow the trajectory:{

x̂a(t) = Lx sin(ωt)
ŷa(t) = Ly cos(ωt)

with ω = 0.1, Lx = 20 and Ly = 5. We can take:

ua =

(
−va sin θa cos θa
va cos θa sin θa

)−1
·
((

x̂a
ŷa

)
−
(
xa
ya

)
+
d

dt

(
x̂a
ŷa

)
−
(
va cos θa
va sin θa

))
where

x̂a = Lx sinωt , dx̂a
dt

= ωLx cosωt

ŷa = Ly cosωt ,
dŷa
dt

= − ωLy sinωt.

We now want that m = 6 other robots with the same state equations
follow this robot taking exactly the same path. The distance between two
robots should be d = 5m. To achieve this goal, we propose to save every
ds = 0.1m the value of the state of RA and to communicate this information
to the m followers. This will allow us to synchronize the time with the
traveled distance. For this, we propose to add a new state variable s to RA

which corresponds to the curvilinear value that could have been measured
by a virtual odometer. Each time the distance ds has been measured by the
virtual odometer, s is initialized to zero and the value for the state of RA is
broadcast. We have the new state equation ṡ = v which corresponds to the
virtual odometer. Each time s is larger than ds = 0.1m, we set s = 0 and we
store the corresponding state of RA in a matrix S which is available to the
followers. Since the robot has to be at a distance d · i to RA, it has to follow
the position that RA had at a time t − δi when it was at a distance d · i m
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earlier. Now, the speed to be followed is that of RA at the current time t.
Indeed, if RA slows down, all followers should also slow down immediately.
Thus the control to be given at time t is

u(i) =

(
−vi sin θi cos θi
vi cos θi sin θi

)−1
·
((

xa(t− δi)
ya(t− δi)

)
−
(
xi
yi

)
+ va(t) ·

(
cos (θa(t− δi))
sin (θa(t− δi))

)
−
(
vi cos θi
vi sin θi

))
where (xi, yi, θi, vi) is the state of the ith robot at time t. The values
(xa(t− δi), ya(t− δi), θa(t− δi)) have been stored in the matrix S. It was
d·i
ds

steps earlier. Figure 3 illustrates the behavior of the control law and
shows that the distance between two robots does not depend on the position
of the robots on the ellipse.
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Figure 3: After the transient phase, all robots follow the leader with constant
separation distance between two robots
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3 Computing the secure zone

We consider n robotsR1, . . . ,Rn at positions a1, . . . , an in a 2D world O. We
assume that this group of robots move in order to build a barrier to protect a
zone against the presence of any intruder, for instance, using the techniques
presented in the previous section. We now want to provide a numerical set-
membership method to guarantee that indeed there is no moving intruder
which has entered inside a subzone of O.

3.1 Complementary approach

We show here that the problem of computing the secure zone is equivalent
(or more precisely complementary) to building a set-membership observer.
For this purpose, we assume the following

• There exists a virtual intruder moving inside O.

• The virtual intruder satisfying the differential inclusion[15]

ẋ(t) ∈ F(x(t)),

where x(t) is its state vector.

• Each robot Ri has a visibility zone of the form g−1ai
([0, d]) where d is

the scope.

Our contribution is to show that characterizing the secure zone translates into
a set-membership set estimation problem [16] where x(t) is shown to be inside
the set X(t) returned by our set-membership observer. Then we conclude
that x(t) cannot be inside the complementary of X(t). The complementary
corresponds to the secure zone. This result can be formalized by the following
theorem.

Theorem. The virtual intruder has a state vector x(t) inside the set

X(t) = O ∩ (X(t− dt) + dt · F(X(t− dt)) ∩
⋂
i

g−1ai(t)
([d(t),∞]), (2)

where X(0) = O. As a consequence, the secure zone is

S(t) = projworld(X(t)). (3)

Proof (sketch). Two cases should be considered. If no actual intruder
exists then S(t) cannot contain the intruder. If the virtual intruder is a real
one, its state x(t) is inside X(t) and its position (which is a part of the state)
is inside projworld(X(t)). In both situations, the intruder cannot be inside
S(t).

10



3.2 Mathematical morphology

For the implementation of equation 2. We assume that the state of the
intruder corresponds to its position. Thus the state space is of dimension 2
and corresponds to the 2D world. As a consequence, the projection operator
in (3) is not needed anymore and S(t) = X(t). The set-membership evolution
equation can be obtained using mathematical morphology [17] that is now
recalled.

The Minkowski sum and the Minkowski difference of two sets A and B
are defined by

A + B = {a + b ∈ Rn|a ∈ A and b ∈ B}
A− B = {a− b ∈ Rn|a ∈ A and b ∈ B}. (4)

These operations correspond to the addition and difference used in interval
computation. When A or B are singletons, we get these rules yield:

A + b = {a + b ∈ Rn|a ∈ A} (translation by b)
A− b = {a− b ∈ Rn|a ∈ A} (translation by − b)
−A = {−a ∈ Rn|a ∈ A}. (symmetry)

(5)

Dilatation. The dilatation of a set A by the structuring element B is
defined by A + B.

Erosion. The erosion of A by B is defined by the three following equiv-
alent relations:

A	 B = {z ∈ Rn|B + z ⊆ A}
=

⋂
b∈B

A− b

= A− B.
(6)

where X denotes the complement of X relative to Rn.
Opening. The opening of A by B is obtained by the erosion of A by B ,

followed by dilation by B :

A ◦ B = (A	 B) + B (7)

Closing. The closing of A by B is obtained by the dilatation of A by B
, followed by erosion by B :

A • B = (A + B)	 B (8)

Properties of the basic operators. Here are some properties of the
basic binary morphological operators :
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They are increasing, that is, if

A ⊂ C ⇒ A + B ⊂ C + B
A ⊂ C ⇒ A	 B ⊂ C	 B
0 ∈ B ⇒ A	 B ⊆ A ◦ B ⊆ A ⊆ A • B ⊆ A + B

A ⊆ (C	 B) ⇔ (A⊕ B) ⊆ C

(9)

Moreover
A + B = B + A

(A + B) + C = A + (B + C)
(A	 B)	 C = A	 (B + C)

A + B = A	−B
A • B = A ◦ −B

(10)

4 Illustration

To illustrate our method, we consider that there exists an intruder in the set
O which corresponds to the Bay of Biscay with an area of about 220 000 km2.
The set O is represented by Figure 4. All computations made in this section
have been performed using contractor/separator algebra [18][19], except for
the erosion and the dilatation that are taken from OpenCV.

Figure 4: In blue is represented the set O which is supposed to enclose the
virtual intruder

4.1 Computation of secure zone

Assume that each robot Ri is able to detect the intruder if the distance is
less than a scope distance d. This means that a robot located at position a
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and equipped with a range sensor within a scope distance of d, detects that
no intruder exists in the set g−1a ([d,∞]), where

ga(x) = ‖x− a‖ /∈ [0, d]. (11)

Figure 5 considers a situation with two robots. The blue zone of all sub-
figures is proved to contain the intruder. It corresponds to the right term in
(2). The first sub-figure corresponds to the static case, i.e., it is given by the
set:

O ∩
⋂

i∈{1,2}

g−1ai
([d,∞]). (12)

Assume now that the virtual intruder has a speed less than v̄, i.e., ‖ẋ‖ ≤ v̄.
The motion of the virtual intruder thus obeys to the following state equation:{

ẋ1 = v cosψ
ẋ2 = v sinψ

(13)

where v ≤ v̄. This also means that, F(x) corresponds to a disk D(0, v̄) of
center 0 and radius v̄ and does not depend on x. Again, since we assume that
Ri detects nothing, we have ‖x− ai‖ > d. For the initialization, we assume
that X(0) ⊂ O ⊂ [x](0) where [x](0) is a box. Sub-Figures (b),(c),(d) of
Figure 5 shows the corresponding secure zone painted magenta. The blue
zone, contains the virtual intruder.
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Figure 5: No intruder can be inside the magenta zone

4.2 Smoother

It is be possible to take into account the future to increase the secure zone.
Indeed, it the intruder is at position x, and if for all feasible maneuvers, the
intruder will be detected in the future, then the point x belongs to what we
call the anti-causal secure zone. The complete secure zone is thus composed
of two regions that may overlap: the causal and the anticausal secure zones.
Its complementary X can be computed by the following contractions

X(t) = X(t) ∩O
X(t) = X(t) ∩ (X(t− dt) + dt · F(X(t− dt)))
X(t) = X(t) ∩

⋂
i g
−1
ai(t)

([d(t),∞])

X(t) = X(t) ∩ (X(t+ dt)− dt · F(X(t+ dt)))

with the initialization X(t) = Rn. The contractions should be performed up
to the fixed point. This corresponds to a set-membership smoother. As
shown in [20] the fixed point is reach in two steps: a forward step followed
by a backward step.
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4.3 Combining with a barrier strategy

Each robot follows a reference point. All reference points form a flat ellipsoid
which plays the role of a barrier (see Section 2). The strategy is illustrated
by Figure 1 for 10 robots. The set O corresponds to the blue area (left). On
the right, S(t) is painted green. The observer has been implemented using
interval analysis.

Figure 6: The ellipse moves in order to extend the secure zone (magenta).
The position of the robots are represented by yellow points.

5 Conclusion

In this paper, we have proposed a set-membership method to compute the
secure zone associated to a group of robots. In the secure zone, no undetected
intruder can exist. We also proposed a control strategy to make the secure

15



zone as large as possible with a limited number of robots. The principle is to
make the group follow a flat ellipse which makes a barrier. Some perspectives
to this work are the following

• Find a control strategy based on the shape of the secure zone and also
on the shape of the boundary of O. The ellipse strategy is indeed suited
to convex shape for O, but cannot deal with more complex shapes. For
instance to secure the sea around an archipelago such as UK or Japon
cannot be considered with a single barrier.

• Adapt the method to capture an intruder. If we assume that the in-
truder is captured as soon as it is detected, then we can guess that there
exists strong links between securing a zone and the capture problem.

• Consider the escape problem. We are now on the side of the intruder.
Escaping from capture by a group of robots or entering inside a zone
without being detected can be considered a dual to the problem of
securing a zone.

As previously said, we are not totally convinced by our control strategy which
is only adapted to convex zones and is not efficient in case of zones with
islands (such as archipelago). Since the basic model of Reynolds can been
extended in several different ways to incorporate the effects of fear, emotions,
leadership change, etc, we would like to take into account the shape of the
current secure zone in our control strategy. For instance, we can add a
law which motivates each robot to follow a leader (chain building low), and
another low to follow the boundary of the computed secure zone (boundary
following low). The strategy could also be take advantage of algorithms taken
from operational research such as the solutions of the art gallery problems
[21].
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