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Initial Localization by Set Inversion

Dominique Meizel, Olivier Lévêque, Luc Jaulin, and Eric Walter

Abstract—In this paper, initial localization problems are solved by using
set-membership estimation. The method can be used with any robot and
any kind of sensor(s), provided that a computable model of the environ-
ment/sensor interaction is available. With a pedagogical aim in mind, it is
detailed in the case of the localization of a vehicle from range measure-
ments in a polygonal environment. Salient properties of the method are as
follows. First, it does not need any explicit management of matching hy-
potheses. Second, it is able to deal with ambiguous situations where several
radically different vehicle configurations are consistent with the measure-
ments. Third, it can be made robust to outliers. Fourth, it can deal with
nonlinear observation models without any approximation. Fifth, the result
is guaranteed in the sense that no configuration consistent with the data
and the hypotheses can be missed.

Index Terms—Guaranteed estimation, interval analysis, localization,
mobile robotics, set-membership estimation.

I. INTRODUCTION

A robot is a machine that has been designed to interact with the real
world in order to perform a given set of tasks. In the case of a mobile
robot, reaching the right pose (or configuration) with respect to the goal
of the mission is an important subtask; this is why localization is still
an active research topic. The choice of the reference frame as well as
the formal representation of the workspace depend on the task to be
performed.

A. Workspace Representation

When the mission is just the exploration of an unknown environ-
ment while avoiding collisions, an occupancy grid [1], [2] is an effec-
tive means to represent either the temporary obstacles or the landmarks
that structure the environment. In such a representation, a confidence
coefficient associated with each cell quantifies the belief in the fact
that the cell is occupied. During the exploration of the environment,
the local maps are integrated [3] and the occupancy coefficients are
updated as the robot moves. Even if there is an ongoing effort to de-
sign more effective algorithms, such a cell-based model is intrinsically
greedy in memory space, which is the price paid to manage uncertainty
in the knowledge of the environment or in the specification of the task.

When the task is clearly defined, using analytical expressions
to express the relations between the mobile and the items of the
environment saves memory space and yields localization methods that
are potentially less time consuming than cell-based representations
[4]. For instance, analytical representations are most frequently used
in sensor-referenced control where the task to be performed is
implemented by output feedback regulation algorithms. Common
sense, nevertheless, suggests supplementing the basic feedback motion
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generators with supervision processes based on the updating of a
complete pose estimate. Output-feedback regulation can then be
implemented by feeding back the state estimate, which includes the
pose.

B. State Estimation

Extended Kalman filtering (EKF) is ubiquitous in state estimation
for dynamic processes. Applied to the localization of mobile robots,
it provides an integrated solution for the tracking of initial estimates
of the pose [5]. In this technique, the covariance matrix updated along
with the state estimate quantifies the estimation inaccuracy [6] and al-
lows validation gates [7] to be defined and used for the recognition
of landmarks. When there are several possible initial estimates, multi-
target tracking [8] can be used to extend the original localization mech-
anism [9]. A finite set of good initial estimates remains, nevertheless,
needed.

Set-membership estimation is an alternative solution for the
estimation of the state of dynamic processes [10], [11]. This method-
ology characterizes the set ofall states consistent with the available
measurements as interpreted by an observation model. Compare with
EKF-based solutions, which consist of point estimates and local
covariance matrices. The first set-membership methods introduced
in robotics [12], [13] were based on a linearization of the equations,
and used ellipsoidal domains to enclose the solution sets; this choice
corresponded to the availability and convenience of ellipsoidal
algorithms together with the possibility of comparing the solutions
with those based on EKF. Later on, an exact polyhedral description
has been used with more accurate results [14]. An important property
of set-membership estimation is its greater ability to deal with short
data sets compared to the methods relying upon the usual Gaussian
hypothesis [15]. This is especially useful duringinitialization.

C. Initial Localization

The search for initial pose estimates has been the subject of a re-
newed interest during the last four years. Drumheller [16] introduced
the concept of an interpretation tree in the context of localization, and
designed a strategy to prune this interpretation tree to limit complexity.
More recently, Crowleyet al. [17] used pattern recognition to match
densemeasurements with a set of landmarks in the map of the environ-
ment via a principal component representation of the measurements.
Markovian approaches [18] consider localization as the computation
of a probability distribution over the free configuration space. This ap-
proach allows a total lack of initial knowledge about the robot location
to be represented by a uniform initial distribution. Each new measure-
ment, possibly obtained after a robot displacement, is interpreted in a
statistical framework and used to update the probability distribution of
the location. This technique can give rise to multimodal distributions
when the perception of the environment is symmetrical, thus making it
possible to deal with ambiguous situations without the need of prior es-
timates. Technically, the probability distribution is computed on a grid
representation of the free configuration space. This allows the use of a
map learned after an exploration phase with the correlative disadvan-
tage of the large amount of memory and computation time needed. To
overcome this problem of complexity, methods with adaptive step sizes
have been proposed, based on the use of octrees [19] or on Monte-Carlo
sampling [20]. The navigation of a robot in a totally or partially un-
known environment is a typical application of this type of method. In
[21], this Markovian approach is used, together with an optimization
procedure that estimates the most probable cell inside the updated grid;
superimposing interpolation functions allows the precision of the esti-
mate to be increased.
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With the same kind of data obtained from an omnidirectional vi-
sion sensor, it is proposed in [22] to partition the free space iteratively.
The two-dimensional (2–D) workspace is structured by characteristic
points, and the measurements are the angles under which couples of
characteristic points are seen. The inaccuracy of the measurement is
expressed by bounds on the errors.

This paper extends some results developed in [23] and presented in
[24]. It is focused upon the initial localization problem and defines a
general theoretic framework, which can be used with any kind of sen-
sors and landmarks. The only assumptions are the availability of 1) a
sufficiently representative map, and 2) a computable model of the in-
teraction between the sensors and the environment (both constitute an
observation simulator). Assumption 1) is not restrictive, since the map
is part of the task definition. The proposed technique uses a set-inver-
sion algorithm [25] based on interval analysis to find an initial solution
set compatible with the available measurements and an environment
model consisting of a collection of landmarks.

This paper is organized as follows. In Section II, localization will
be interpreted as the inverse operation of the simulation of onboard
measurements, while the observation relations are shown to be combi-
nations of equalities and inequalities. Section III recalls the basics of
the set inversion via interval analysis (SIVIA) algorithm, which will
be used to perform the inversion of a simulator that predicts the sensor
data for any given configuration of the robot. Section IV illustrates the
method on two simulated examples, the latter showing how the method
is able to deal with ambiguous situations. An adaptation of the method
that takes outliers into account is illustrated using data obtained with
an actual robot.

II. BOUNDED-ERRORFORMULATION OF OBSERVATIONS

LetW be a reference frame tied to the workspace, i.e., the part of
the environment where the mission of the robot is defined, andM be
a reference frame tied to the vehicle. Localization is understood as the
action performed to estimate the poseq which specifies the transfor-
mation fromM toW . Consider a simple vehicle as shown in Fig. 1.
q can be defined as

q = [xC ; xC ; �]
T
:

The vehicle is equipped with external sensors that provide informa-
tion about the progress and completion of its mission; telemeters and
artificial vision systems are typical examples of such sensors. Each
sensor performs aninteractionbetween the vehicle and at least one
landmarkWS of the environment.1 This relation is generally written
as an observation equation

W
z = M

h q;
W
S : (1)

In the sequel, the simple academic example of a telemetric measure-
ment will show the relevance of completing those equalities with in-
equalities, leading to the generalized formulation of an interaction

Wz = Mh q;WS

0 � Mg q;WT :
(2)

A. Ideal Telemetric Measurement With Respect to a Facet

Consider a perfectly accurate telemeter in an ideally Lambertian en-
vironment (Fig. 2). The telemeter is installed on the vehicle at the point

1As usual in mechanics,x denotes the coordinates of the vectorx in the
reference frameF .

Fig. 1. Pose of a vehicle.

Fig. 2. Ideal telemetric measurement.

Fig. 3. Attributes of a facet landmark.

T with coordinatesM [x0T ; y
0
T ]
T ; it emits and receives a unidirectional

wave in the direction�0. When the sensor provides a distanced, this
means that there exists an obstacle pointP described indifferently in
M by (4), or inW by (5) (in the sequel,R(')(3) denotes a rotation of
angle')

R(') =
cos(') � sin(')

sin(') cos(')
(3)

M�!
CP = [ x0T y0T ]T +R(�0): [ d 0 ]T (4)

W�!
OP = [ xC yC ]T +R(�):M

�!
CP: (5)

Consider a facetW
�!
AB described as displayed in Fig. 3.A andB are

its vertices,M its midpoint,l its half length,W�!u = [cos('); sin(')]T

the normal vector directed toward the inner part of the facet, and� the
distance between the originO of W and the straight line(A;B) that

supports
�!
AB.

The fact that a given pointP belongs toW
�!
AB is expressed by the

three following facts.

1) P belongs to the straight line(A;B) as described by the equality
(6).

2) P lies betweenA andB as stated by the inequality (7).
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3) The telemeterT is in the outer part of the facet as expressed by
the inequality (8).

�!
OP ;�!u =� (6)

��!
MP;

��!
MA �l2 (7)

det
�!
TA;

�!
TB �0: (8)

Those relations, together with the definition of
�!
OP (5) that depends

on the poseq, is an instance of the general form (2).

B. Less Ideal Telemetric Measurement With Respect to a Facet

Let us now take into account the inaccuracy of telemetric measure-
ments by considering 1) the dispersion of the emitted wave inside a
cone and 2) the necessarily limited relative precision.

From a geometrical point of view, it means that, when a measurement
(d; �0) is available, the detected point should no longer correspond to
a unique point, as in (4), but rather to a crown sectorMCS(d; �0)

MCS(d; �0) =

P � 2 2

M
��!
CP

� =
x0T
y0T

+R(��)
d�

0
d� 2 [d� �d; d+ �d]

�� 2 [�0 � 
; �0 + 
]:

(9)

The induced localization relation is then translated into a system of
inequalities expressing that there exists at least one pointP � satisfying
both of the two following relations: 1)P � belongs to the crown sector
WCS(d; �0) tied to the sensor and expressed by relations (5) and (9),

and 2)P � belongs some facetW
�!
AB, i.e.,P � satisfies (6) and (7), and

the sensor lies on the reflecting side ofW�!AB as expressed by (8).
These last relations instantiate the general form (2) where the

inequalities (10) are directly linked with the measured data(d; �0),
whereas the equalities constraints (11) depend on the pose(xC ; yC ; �).

Both define a subsetS(d; �0) of the configuration set 2�[��;+�].
The practical computation of the intersection[ni=1S (di; �

0
i) of the

subsetsS (di; �
0
i) corresponding ton different measurements obtained

at the same pose is the principle of the method developed in the sequel

d� 2 [d� �d; d+ �d]

�� 2 [�0 � 
; �0 + 
]

l2 �
���!
MP

�
;
��!
MA

0 � det
�!
TA;

�!
TB

(10)

W
��!
OP

� = xC yC
T +R(�):M

��!
CP

�

M
��!
CP

� = x0T y0T
T +R(�0): d 0 T

� =
��!
OP

�
;�!u :

(11)

III. I NVERSEPROBLEM OF SIMULATION

Consider a vehicle equipped withn sensors and a description of the
workspace by a set ofm facets.WS = WSi; i = 1; . . . ;m (some of
the facets define the reference frameW that is significant with respect
to the mission). Adeterministic observation simulatoris a function
s (12) computing the measurements that should be reported by then

sensors if the configuration of the vehicle wereq, assuming that the
models of the sensors and of the environment are correct. Localization

can then be defined as the reciprocal operation of simulation. Assume
that the inaccurate experimental data are defined as a vector of range
intervals (13) and the setQ of feasible poses is defined as the reciprocal
image ofrI by s

q
s
7�! [ d1; d2 . . . dn ]T (12)

r
I = [ r�1 ; r

+
1 r�2 ; r

+
2 . . . r�n ; r

+
n ]T : (13)

The outer approximation ofQ will be computed by the SIVIA algo-
rithm. Section III-A is devoted to introducing the minimal interval anal-
ysis concepts that are necessary to understand the use of SIVIA in this
practical context. More information can be found in [26].

A. Interval Analysis and Set Inversion

Interval analysis has been originally [27] developed to analyze the
numerical problems caused by the finite length of the representation of
numbers in computers. It is now a mature technique for which com-
putation tools are readily available. Scalar intervals are basic objects
when modeling measurement inaccuracy in the bounded-error frame-
work, as illustrated by (10). WhenN interval range measurements are
available, they form a vector of intervals, or more briefly, abox.

Concerningreal intervals, the following notation is used:

• is the set of scalar real intervalsfxI 2 , xI =
x�; x+ � g;

• N is the set ofN -dimensional boxesfxI 2 N , xI =
x�;x+ � Ng; such that

fx 2 x
Ig () 8i 2 f1; 2; . . . ; Ng ; x�i � xi � x

+
i :

An inclusion functionf I of a functionf from N to M is an ap-
plication from N to M , such that for any boxxI, the boxf I(xI)
includesf(xI). Inclusion functions are used to obtain implementable
inclusion tests. To check directly whether the image of a boxxI is in-
side a feasible domain may be impossible, since the setf(xI) is not
explicitly computable except in very special cases. On the other hand,
if an inclusion functionf I can be designed, it becomes easy to test
whetherf I(xI), which is a box, is included in the feasible set, which
is often also a box. This test gives sufficient feasibility conditions that
are more or less conservative, depending on how the inclusion function
f I has been derived from the original onef .

B. SIVIA Algorithm

The problem to be solved is the guaranteed estimation of the recip-
rocal imageQ of a feasible measurement setrI (13) by the simulator
functions described by (12). In this context, the inputs of SIVIA are
an initial boxqI0 that should contain all configurations of interest, an
inclusion functionsI for the simulators, and a precision parameter".

A box qI will be classified as:

• feasibleif sI(qI) � rI;
• infeasibleif sI(qI) \ rI = ;
• indeterminatein the other cases (see Fig. 4).

SIVIA is a branch-and-bound algorithm. It iteratively builds three
setsLint, Lext, andLind, described as lists of nonoverlapping boxes.
At any step of the algorithm, all boxes inLint are feasible, all those in
Lext are infeasible, andLind contains all those that are indeterminate.
Initially, Lint = ;, Lext = ;, andLind = qI0.

An iteration of the algorithm consists of the following.

1. Removing a box from such that its
width is greater than (if no such box
exists, the algorithm ends and returns
and ).
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Fig. 4. Bracketing the solution set offs(x) � 0g (the interior of the curve)
between an inner and an outer approximation: principle.

Fig. 5. Nonsymmetrical environment.

Fig. 6. Outer approximation of the solution set.

2. Appending this box to if it can be
proved to be feasible, or to if it
turns out to be infeasible. Otherwise, it
is indeterminate; it is then cut into two
subboxes across one of its principal di-
rections, and these subboxes are appended
to .

Upon completion of the algorithm, the solution set is bracketed be-
tweenLint andLint[Lind, and the width of any box inLind is smaller
than the precision parameter". This algorithm was first presented in
[25] and [28] where its complexity and convergence have been studied.

IV. L OCALIZATION BY SET INVERSION

A. Illustrative Simulated Examples

The simulated examples considered in this section illustrate the ap-
plication of the method and its ability to deal with ambiguous situations
resulting from local symmetries in the environment. All simulations are

Fig. 7. Symmetrical environment (the widths of the two corridors are equal).

Fig. 8. Iterative decomposition of the initial search domain.

Fig. 9. Outer approximation of the solution set with two disconnected subsets.

performed using realistic values to quantify measurement inaccuracy:
fj�d=dj � 2%g for range andf
 = 10�g for angular dispersion.

First, consider the simple situation displayed in Fig. 5,
where the crown sectors represent the inaccuracy of the
measurements. The initial search domain is again taken as
q
I

0 = [[�0:5 m; 4:5 m]; [�0:5 m; 3 m]; [0; 360�]]; it is itera-
tively split by SIVIA used with a precision parameter" = 0:02 m.
The resulting outer approximation of the feasible configuration set is
described by Fig. 6.

Consider now the example shown in Fig. 7, where the widths of the
two corridors are equal. SIVIA is applied in the same conditions, and
it explores the initial search domainqI0 as shown in Fig. 8. Upon com-
pletion of the algorithm, inner and outer approximations of the feasible
configuration domain are obtained, which both consist oftwo discon-
nected sets(Fig. 9). It turns out thatthe data are interpretable with
two radically different matching hypotheses, the one that corresponds
to the simulated situation (Fig. 7), but also the alternative matching hy-
pothesis illustrated in Fig. 10, which was not necessarily predicted, but
would give the same measurements.

Notice that the method does not require any explicit management
of the matching between the sets of measurements and landmarks, this
matching is a by-product of the method, even in the complicated case
of ambiguous environments.
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Fig. 10. Alternative matching hypothesis.

Fig. 11. Actual range data; some aligned impact points are generated by
unmapped steps and the longest measured distances.

B. Actual Data and Outliers Management

When considering real data as, for instance, the ones displayed in
Fig. 11 obtained when the robot was in a hall, some range data obvi-
ously cannot be associated with any landmark in the map because of
the failure of one sensor and of the presence of elements that are not
mentioned in the map. The facetsWSi; i = 1 . . . 5 that constitute a
description of the workspace have been superimposed on Fig. 11.

One possibility for allowing the presence of outliers in the mea-
surements is to relax the conditions for a box to be feasible when
using SIVIA (Section III-B). We can acceptn0 outliers if the test
s
I(qI) � r

I is replaced by the fact that(n � n0) components of
s
I(qI) (which are scalar intervals) are included in the corresponding

components ofrI . No other change is necessary.
Consider the experimental data of Fig. 11. If we admit up ton0 =

16 outliers and onlyn � n0 = 8 significant measurements, applying
SIVIA with a precision parameter" = 0:02 m and an initial search
domainqI

0 = [�0:5 m; 5 m] � [�0:5 m; 6 m] � [0; 360�] yields the
result shown in Fig. 12. This takes 12 s using a Pentium 600.

V. CONCLUSION

The initial localization problem has been formulated as the inverse
operation of the simulation of measurements. The SIVIA algorithm,
based on interval computation, provides a systematic, efficient, and
general solution to the estimation problem when a model is available
to compute the measurements expected for a given configuration of
the robot. Set-membership estimation is the theoretical framework of
the method, and the inaccuracy of the measurements is expressed in
terms of bounds on the possible errors. This set-theoretic approach en-
ables one to use inequalities and not only equations in the observation
models. It has also the advantage of not requiring a large number of
data, explicitly or implicitly. This is important when measurements are

Fig. 12. Outer approximation of the solution set (actual range data).

scarce or when there are many outliers. When the observation model
(including the error bounds) is valid, this method gives a guaranteed re-
sult in the sense that the true solutionmustbelong to the sets computed.
The theoretical simplicity and rigorousness of the method qualify it
as a convenient framework for data fusion. The simulation model in-
corporates descriptions for both the environment and the sensors. The
unavoidable differences between the model and the actual system are
managed in two ways:lack of accuracyis dealt with by specifying error
bounds,uncertaintycaused by failures in some sensors or in the simula-
tion model is taken into account by tolerating a prespecified maximum
number of outliers. Using fuzzy sets in place of usual sets, in the di-
rection proposed by [29], would be an alternative strategy to take data
uncertainty into account.

The computational complexity of the algorithm is bilinear in the
number of sensors and in the number of environment items that consti-
tute the map; however, it is exponential in the dimension of the configu-
ration to be estimated. The approach is, thus, practicable for a problem
of vehicle localization, where this dimension is three.

Moreover, the algorithm is an “anytime algorithm,” which means
that each iteration of SIVIA yields a guaranteed outer approximation of
the solution set. This outer approximation is a valuable search domain
to start a new estimation when new data become available.

A remarkable feature of the approach lies in the fact that, when mea-
surements are ambiguous because of symmetries in the environment,
the estimate of the configuration domain may be disconnected, each
connected component corresponding to a specific matching hypothesis.

As all configurations in the solution set are equally candidates to be
the true one, the strategy to move the robot under this knowledge should
minimize a risk criterion rather than maximize an observability crite-
rion. This corresponds to worst-case risk management, as opposed to
probabilistic risk management performed if the estimated probability
distribution of the localization was used. The solution set will degen-
erate to a single connected subset only if a subsequent measurement
eliminates the ambiguity of the situation. This can be done either by
using a more classical multihypotheses localization tracker based upon
multitarget tracking, or by integrating the robot motion with the present
method. Such a development is done in the framework of the design of
set-membership state observers. For first results in the latter direction,
see [26] and [30].

REFERENCES

[1] A. Elfes, “Using occupancy grids for mobile robots perception and nav-
igation,” IEEE Computer, pp. 46–57, June 1989.

[2] A. Schultz and W. Adams, “Continuous localization using evidence
grids,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA’98),
Leuven, Belgium, May 1998, pp. 2833–2839.

[3] , “Unifying exploration, localization, navigation, and planning
through a common representation,” inProc. IEEE Int. Conf. Robotics
and Automation (ICRA’99), Detroit, MI, May 1999, pp. 2651–2658.



IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 6, DECEMBER 2002 971

[4] B. Schiele and J. Crowley, “A comparison of position estimation tech-
niques using occupancy grids,”IEEE Trans. Robot. Automat., vol. 16,
pp. 1628–1634, Apr. 1994.

[5] J. Crowley, “World modeling and position estimation for a mobile robot
using ultrasonic ranging,” inProc. IEEE Int. Conf. Robotics and Au-
tomation (ICRA’89), Scottsdale, AZ, 1989, pp. 674–680.

[6] J. Castellanos, J. Monteil, J. Neira, and J. Tardos, “The smap: A prob-
abilistic framework for simultaneous localization and map building,”
IEEE Trans. Robot. Automat., vol. 15, pp. 948–952, Oct. 1999.

[7] J. Leonard and H. F. Durrant-Whyte, “Mobile robot localization by
tracking geometric beacons,”IEEE Trans. Robot. Automat., vol. 7, pp.
376–382, June 1991.

[8] Y. Bar-Shalom and T. E. Fortmann,Tracking and Data Associa-
tion. Boston, MA: Academic, 1988.

[9] D. Maksarov and H. Durrant-Whyte, “Mobile vehicle navigation in un-
known environments: A multiple hypothesis approach,” inProc. IEE
Control Theory Applications Conf., July 1995, pp. 385–400.

[10] F. C. Schweppe,Uncertain Dynamic Systems. Englewood Cliffs, NJ:
Prentice-Hall, 1973.

[11] M. Milanese, J. Norton, H. Piet-Lahanier, and E. Walter,Bounding Ap-
proaches to System Identification. New York: Plenum, 1996.

[12] A. Preciado, D. Meizel, A. Segovia, and M. Rombaut, “Fusion of
multisensor data: A geometric approach,” inProc. IEEE Int. Conf.
Robotics and Automation (ICRA’91), vol. 3, Sacramento, CA, 1991,
pp. 2806–2811.

[13] A. Sabater and F. Thomas, “Set-membership approach to the propa-
gation of uncertain geometric information,” inProc. IEEE Int. Conf.
Robotics and Automation (ICRA’91), vol. 3, Sacramento, CA, 1991, pp.
2718–2723.

[14] E. Halbwachs and D. Meizel, “Multiple hypotheses generation for ve-
hicle localization,” inProc. European Control Conf. (ECC’97), Louvain,
Belgium, 1997, on CD-ROM.

[15] D. Meizel, A. Preciado-Ruiz, and E. Halbwachs, “Estimation of a mobile
robot localization: Geometric approaches,” inBounding Approaches to
System Identification, M. Milanese, J. Norton, H. Piet-Lahanier, and E.
Walter, Eds. New York: Plenum, 1996, pp. 463–489.

[16] M. Drumheller, “Mobile robot localization using sonar,”IEEE Trans.
Pattern Anal. Machine Intell., vol. PAMI-9, Feb. 1987.

[17] J. Crowley, F. Wallner, and B. Schiele, “Position estimation using prin-
cipal components of range data,” inProc. IEEE Int. Conf. Robotics and
Automation (ICRA’98), Leuven, Belgium, 1998, pp. 3121–3128.

[18] K. Konolige and K. Chou, “Markov localization using correlation,”
in Proc. Int. Joint Conf. Artificial Intelligence (IJCAI), 1999, pp.
1154–1159.

[19] A. Burgard, D. Derr, D. Fox, and A. B. Cremers, “Integrating global
position estimation and position tracking for mobile robots: The dy-
namic Markov localization approach,” inProc. IROS Conf., Victoria,
BC, Canada, Oct. 1998, pp. 730–735.

[20] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte-Carlo localization
for mobile robots,” inProc. IEEE Int. Conf. Robotics and Automation
(ICRA’99), Detroit, MI, 1999, pp. 1322–1328.

[21] C. Olson, “Probabilistic self-localization for mobile robots,”IEEE
Trans. Robot. Automat., vol. 16, pp. 55–66, Feb. 2000.

[22] E. M. Mouaddib and B. Marhic, “Geometrical matching for mobile robot
localization,”IEEE Trans. Robot. Automat., vol. 16, pp. 542–552, Oct.
2000.

[23] O. Lévêque, “Méthodes ensemblistes pour la localization de véhicules,”
Ph.D. dissertation, Technol. Univ. Compiègne, Compiègne, France,
1998.

[24] O. Lévêque, L. Jaulin, D. Meizel, and E. Walter, “Vehicle localization
from inaccurate telemetric data: A set-inversion approach,” inProc. 5th
Symp. Robot Control (SYROCO’97), vol. 1, Sept. 1997, pp. 179–186.

[25] L. Jaulin and E. Walter, “Set inversion via interval analysis for nonlinear
bounded-error estimation,”Automatica, vol. 29, no. 4, pp. 1053–1064,
1993.

[26] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter,Applied Interval Anal-
ysis. London, U.K.: Springer-Verlag, 2001.

[27] R. Moore, Methods and Applications of Interval Anal-
ysis. Philadelphia, PA: Soc. for Ind. Appl. Math., 1979.

[28] L. Jaulin and E. Walter, “Guaranteed nonlinear parameter estimation
from bounded-error data via interval analysis,”Math. Comput. Simu-
lation, vol. 35, no. 4, pp. 1923–1937, 1993.

[29] P. Buschka, A. Saffiotti, and Z. Wasik, “Fuzzy landmark-based localiza-
tion for a legged robot,” inProc. IEEE/RSJ Int. Conf. Intelligent Robots
and Systems (IROS’00), Takamatsu, Japan, 2000, pp. 1205–1210.

[30] M. Kieffer, L. Jaulin, E. Walter, and D. Meizel, “Guaranteed mobile
robot tracking using interval analysis,” inProc. MISC’99: Workshop on
Applications of Interval Analysis to Systems and Control, Girona, Spain,
Feb. 1999, pp. 347–359.

On Mobile Robot Localization From Landmark Bearings

Ilan Shimshoni

Abstract—This paper deals with the problem of robot localization from
noisy landmark bearings measured by the robot. We present a new localiza-
tion method which is based on linear constraints, one due to each bearing
measurement. This linear system can be solved at low computational cost
but yields not very accurate results. Therefore, we transform the system
to an equivalent linear system which yields virtually optimal results at a
small fraction of the cost of a nonlinear optimization method, which usu-
ally achieves the optimal result. Experimental results showing the quality
of the results and the low computational cost are presented.

Index Terms—Angle measurements, landmarks, robot localization.

I. INTRODUCTION

When mobile robots or automated guided vehicles (AGVs) are
moving in their workspaces, one of the basic problems which needs
to be solved is for the robot to know its position and orientation in
the plane as accurately as possible. One of the standard methods for
performing this task is to put landmarks in known locations in the
workspace. In any place in the workspace, the robot is able to measure
the bearings to a sufficient number of these landmarks. Using three or
more such measurements, the robot is able to estimate its position and
orientation in the plane [1]–[4].

The most widely used method for computing this estimate is a
geometric method based on the idea that the angle between two such
bearing measurements yields the constraint that the robot’s position is
limited to lie on a circle. Adding an additional bearing measurement
yields two more circles whose intersection is the desired location.
The problem begins when there are errors in the measurements. To
overcome this problem, more than three landmarks are placed in the
workspace, and all the measured bearings have to be used to get the
optimal estimate for the robot’s position. The geometric method does
not lend itself naturally to more than three bearing measurements.
Thus, costly nonlinear minimization techniques with their known
problems have to be employed.

We would like, therefore, to take a different approach, which has
been presented in [5], but without dealing with the accuracy problems.
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