
Solving non-linear constraint satisfation problems in-

volving time-dependant functions

Aymeric Bethencourt and Luc Jaulin

Abstract. In this paper, we consider the resolution of non-linear constraint satisfaction problems

where the variables of the systems are trajectories (functions from R to Rn). We introduce the

notion of tubes as intervals of functions, for which the lower and upper bounds are trajectories

with respect to the inclusion. We then define basic operators and prove propositions verified by

tubes. We show the possibility to build contractors on tubes and propagate constraints to solve

problems involving time-dependant functions as the unknown variables. We show that the approach

is particularly powerful when inter-temporal equations (e.g. delays) are involved. Finally, in order

to illustrate the principle and efficiency of the approach, several test cases are provided.

ENSTA-Bretagne

LABSTICC

2 Rue Francois Verny

29200 Brest, France

1. Introduction

Interval analysis [1][2] has become over the past few years a strong alternative to traditional proba-

bilistic approaches [3] to solve complex systems of equations, e.g. Simultaneous Localization And

Mapping [4][5][6], 3D Reconstruction [7], path planning [8], or more generally the characterization

of the state evolution of dynamic systems [9][10]. Interval analysis has been proven particularly ef-

ficient when the number of equations (namely constraints) is superior to the number of unknown

variables [11]. The idea is to cast the system as a constraint satisfaction problem by considering in-

tervals enclosing the solution and use contractors (built from the constraints) to successively contract

these intervals until a fixed point is reached.

As more and more applications of Interval Analysis involve trajectories (functions from R to

R
n) [12], this paper will introduce the notion of intervals of trajectories (namely tubes), inspired

from Taylor models [13], and define basic operations on tubes in section 2. We then show how

to build contractors on tubes and demonstrate a few minimal contractors in section 3. We define

the notion of Synchronous and Asynchronous constraints (constraints that involve inter-temporal

relations) and show that our approach is particularly powerful for asynchronous constraints. Finally

section 4 provides three non-linear test cases to illustrate the methodology, and section 5 concludes

the paper.

2 Aymeric Bethencourt and Luc Jaulin

FIGURE 1. A tube [x] of R which encloses the function x

2. Intervals of functions (or tubes)

In Interval Analysis, the unknown variables are usually boolean numbers, integers or real numbers,

but the originality of this paper is to consider trajectories. In this section we consider the reader to be

familiar with interval analysis [2]. We do however recall the basic notions of lattices and contractors

that are used for working with tubes.

2.1. Lattices

A lattice (E ,≤) is a partially ordered set, closed under least upper and greatest lower bounds [14].
The least upper bound of x and y is called the join or supremum and is denoted by x∨y. The greatest
lower bound is called the meet or infimum and is written as x ∧ y.

Example : The set Rn is a lattice with respect to the partial order relation given by x ≤ y ⇔
∀i ∈ {1, . . . , n} , xi ≤ yi.We have

x ∧ y = (x1 ∧ y1, . . . , xn ∧ yn) and (2.1)

x ∨ y = (x1 ∨ y1, . . . , xn ∨ yn)

where xi ∧ yi = min (xi, yi) and xi ∨ yi = max (xi, yi). A lattice E is complete if for all (finite or
infinite) subsets A of E , the least upper bound (denoted ∨A) and the greatest lower bound (denoted
∧A) belong to A.

Notice that the concept of lattice only works when using multidimensional intervals as set

representation since min() and max() can only be defined element wise. This is not the case when

using other set representations, such as e.g. ellipsoids [15].

2.2. Tubes

A Tube (or interval of a trajectory) [16] [17] is an set-membership vision of a random signal. The set

Fn of all functions from R to Rn is a complete lattice with partial order x ≤ y ⇔ ∀t ∈ R, x(t) ≤
y(t). A tube [x] is an interval [x−,x+] of Fn, i.e., a pair of two trajectories x−,x+ such that for all

t, x− (t) ≤ x+ (t). The set of all tubes of Fn is denoted by IFn.

Solving non-linear constraint satisfation problems involving time-dependant functions 3

An element x of Fn belongs to the tube [x] if ∀t,x (t) ∈ [x] (t). Fig. 1 illustrates a function
x ∈ F1 which is inside the tube [x]. This tube gives us information related to the unknown function
x.

If x is a function from R to Rn (i.e., x ∈ Fn), we define

x ([t]) = {x (t) , t ∈ [t]} . (2.2)

Numerically, a tube [x] is defined by

[x] ([t]) =
G

t∈[t]

[x] (t) , (2.3)

i.e., [x] ([t]) is the smallest box which encloses all boxes [x] (t) , t ∈ [t]. It is easy to prove that

x ∈ [x] , t ∈ [t]⇒ x (t) ∈ [x] ([t]) , (2.4)

and that no box smaller than [x] ([t]) satisfies this property.

2.3. Tube arithmetic

We can extend operations on lattices to intervals of this lattice. The extension is the smallest interval

which encloses all possible values. Therefore we can extend operations on Fn, such as sums, mul-
tiplication, image by a function, etc. to tubes. We use the rules of interval arithmetic and inclusion

functions [1]. An arithmetic on tubes is thus a direct extension of interval arithmetic. As it is the case

for interval computation, the result of an operation on tubes contains all results of the same operation

performed on the enclosed elements of Fn.
Integral. Consider two numbers t1, t2 such that t2 ≥ t1 ≥ 0. The integral of a tube [x] over

an interval [t1, t2] is defined [18] by
Z t2

t1

[x] (τ) dτ =

�Z t2

t1

x (τ) dτ such that x ∈ [x]

�
. (2.5)

Since t2 ≥ t1, we deduce from the monotonicity of the integral operator that
Z t2

t1

[x] (τ) dτ =

�Z t2

t1

x− (τ) dτ,

Z t2

t1

x+ (τ) dτ

�
. (2.6)

where [x] = [x−, x+]. From the definition of tube integrals, we have

x ∈ [x]⇒

Z t2

t1

x (τ) dτ ∈

Z t2

t1

[x] (τ) dτ. (2.7)

Moreover, the interval primitive defined by
R t
0
[x] (τ) dτ defines a tube that vanishes for t = 0.

Extension of operators. If ⋄ is a binary operator in Rn(such as+,−,the multiplication ∗ when
n = 1 or the vector product when n >= 2) then it can be extended to Fn (in the Minkowski sense)

and to IFn as follows

A ⋄B = {a ⋄ b, a ∈ A, b ∈ B} (2.8)

From the monotony of the operator, we have

[x] ⋄ [y] = [∨([x] ⋄ [y]),∧([x] ⋄ [y])] (2.9)

E.g., for [x] and [y] ∈ IFn and a ∈ R+

(i) [x] + [y] = [x− + y−, x+ + y+]
(ii) a[x] = [ax− ∨ ay−, ax+ ∧ ay+]

(2.10)

Tube envelope. Consider a collection {fi, i ∈ N} of functions. The tube envelope �{fi, i ∈
N} is the smallest tube enclosing all fi. We have

4 Aymeric Bethencourt and Luc Jaulin

�{fi, i ∈ N} = [∨i∈Nfi;∧i∈Nfi)] (2.11)

For instance,

for t ∈ [0,∞],�{t, cos(t),−1} = [−1; t] (2.12)

Inclusion.We define the tube inclusion as follows

[x] ⊏ [y]⇐⇒ y− 6 x− 6 x+ 6 y+ (2.13)

Intersection.We define the tube intersection as follows

[x] ⊓ [y]⇐⇒ [[x] ∨ [y], [x] ∧ [y]] (2.14)

2.4. Constraint propagation on tubes

Tube contractor. Consider a constraint L(x) on a trajectory x. A contractor associated with the

constraint L is an operator

[y]
CL−→ [x] (2.15)

where [x] and [y] are tubes, such that

∀t, [x](t) ⊂ [y](t) (contraction)�
L(x)
x ∈ [x]

�
=⇒ x ∈ [y] (completeness)

(2.16)

We call C* the minimal contractor for L that returns the tube [y] with the smallest width and
is consistent with the constraint L.

Many problems of estimation, control, robotics, etc. can be represented as constraint satisfac-

tion problems (CSP) [19],[20] and many minimal contractors can be applied to optimally contract

the domains depending on the class of the problem [11]. Several minimal contractors have been

developed over the years: Gauss elimination, Gauss-Seidel Algorithm, Krawczyk method, Newton

algorithm, etc. [2].

We can also propose minimal contractors for tubes, but let us first separate our constraints into

two categories:

• Synchronous constraint: Constraint that is set to happen at the same time, typically x(t) =
y(t) is synchronous.

• Asynchronous constraint: Constraint that is set to happen at different times, typically x(t) =
y(t− 2) is asynchronous. This requires to have the history of the variable y and this is where tubes
will be particularly powerful.

We are now proposing a few minimal contractors for both types.

Proposition 1. The minimal contractor associated with the synchronous constraint x 6 y or
∀t ∈ [0,∞[, x(t) 6 y(t) is

C6

�
[x]
[y]

�
=

�
[x−, x+ ∧ y+]
[x− ∨ y−, y+]

�
(2.17)

Solving non-linear constraint satisfation problems involving time-dependant functions 5

FIGURE 2. (a) represents the trajectory x and its tube [x], (b) the trajectory y and
its tube [y], and (c) illustrates the meet and join of them.

Proof. x 6 y so according to the independence theorem, we can find a such that y = x + a
with a > 0. We can therefore contract the associated tube.

[y] = [y] ∩ ([x] + [a]) (2.18)

⇐⇒ [y] = [y− ∨ (x− + a−), y+ ∧ (x+ + a+)]

⇐⇒ [y] = [y− ∨ (x− + 0), y+ ∧ (x+ +∞)]

⇐⇒ [y] = [y− ∨ x−, y+]

since [a] = [0,∞[. By considering x = y + a with a 6 0, we can prove that [x] = [x−, x+ ∧ y+]
the same way.

Figure 2 illustrates the contractions.

Proposition 2. The minimal contractor associated with the synchronous constraint x = y
(which means that ∀t ∈ [0,∞], x(t) = y(t)) is

C=

�
[x]
[y]

�
=

�
[x− ∨ y−, x+ ∧ y+]
[x− ∨ y−, x+ ∧ y+]

�
(2.19)

Proof. As x = y, any given elements of x and y cannot exceed each other’s range. Both

variables will share a new interval equal to the intersection of their respective intervals

6 Aymeric Bethencourt and Luc Jaulin

[x] = [x] ∩ [y] (2.20)

⇐⇒ [x] = [x− ∨ y−, x+ ∧ y+]

The same is proven for y.
Proposition 3. Theminimal contractor associated with a translation or delay ∀t ∈ [0,∞[, x(t) =

y(t− τ) is

Cdelay

�
[x]
[y]

�
=

�
∀t,

[x−(t) ∨ y−(t− τ), x+(t) ∧ y+(t− τ)]
[x−(t+ τ) ∨ y−(t), x+(t+ τ) ∧ y+(t)]

�
(2.21)

Proof. The proof is immediate considering Proposition 2.

Fig. 3 illustrates this notion. The purple area represents the tube [x−(t) ∨ y−(t− τ), x+(t) ∧
y+(t− τ)]

Let us notice that this constraint is asynchronous as it involves two different times: t and t− τ.
Special case. If the constraint is x(t) = x(t−τ), then x is τ -periodic and ∀k ∈ N, Cperiodic ([x]) =

([x−(t) ∨ x−(t− kτ), x+(t) ∧ x+(t− kτ)])
Proposition 4. The minimal contractor associated with an axial symmetry around the axis

t = τ is

CASym ([x(τ + t)]) = [x
−(τ + t) ∨ x−(τ − t);x+(τ + t) ∧ x+(τ − t)] (2.22)

Proof. Let’s define the axial symmetry operator S such that S(f(τ + t)) = f(τ − t). S is

increasing since

f(τ + ta) 6 f(τ + tb) (2.23)

⇔ S(f(τ + ta)) 6 S(f(τ + tb))

⇔ f(τ − ta) 6 f(τ − tb)

Moreover,

[x(τ + t)] = [x−(τ + t), x+(τ + t)] (2.24)

⇔ S([x(τ + t)]) = [S(x−(τ + t)), S(x+(τ + t))]

⇔ S([x(τ + t)]) = [x−(τ − t), x+(τ − t)]

Therefore CASym ([x(τ + t)]) = [x(τ + t)]⊓S([x(τ + t)]) = [x
−(τ + t)∨x+(τ − t);x+(τ +

t) ∧ x−(τ − t)]
Special case : When τ=0, then x is even and Ceven ([x(t)]) = [x−(t) ∨ x−(−t);x+(t) ∧

x+(−t)]
Fig.4 illustrates this case.

Proposition 5. The minimal contractor associated with a central symmetry around the axis

t = τ is

CCSym ([x(τ + t)]) = [x
−(τ + t) ∨ (−x+(τ − t));x+(τ + t) ∧ (−x−(τ − t))] (2.25)

Proof. The proof is identical to proposition 4 considering S decreasing.

Special case : When τ = 0, then x is odd and Codd ([x(t)]) = [x
−(t) ∨ (−x+(−t));x+(t) ∧

(−x−(−t))]
Notice that both symmetries are asynchronous constraints.

Solving non-linear constraint satisfation problems involving time-dependant functions 7

FIGURE 3. Asynchronous constraint propagation on tubes.

8 Aymeric Bethencourt and Luc Jaulin

FIGURE 4. On the left, we illustrate the axial symmetry. On the right, the central symmetry.

2.5. State estimation

The problem to be considered in this section is the state estimation of a non-linear continuous-time

systems in a bounded error context. Usually we describe the system as follows:

ẋ(t) = f(x(t)) (2.26)

y(t) = g(x(t))

where t ∈ [0,∞[is the time, x(t) ∈ Rn and y(t) ∈ Rn are respectively the state and the output
vectors at time t, and f and g the evolution and observation functions. To solve the state estimation
problem, many efficient methods can be found in the literature when f and g are linear [21][22].

When f is non-linear, there are only to our knowledge a few approaches [23][24][25] that propose

an efficient state estimation.

The originality of our approach is to consider that g is no longer the observation function at

a given state, but a relationship between two states of the system at different times. g is therefore

an inter-temporal equation between the state of the system at time t1 and its state at time t2 . (2.26)
becomes

ẋ(t) = f(x(t)) (2.27)

y(t1, t2) = g(x(t1),x(t2))

This representation allows us to express inter-temporal constraints, and use them to solve time-

dependent problems as presented in the next section. An alternative solution is to formulate the inter-

temporal constraints in the framework of DAEs (Differential Algebraic Equations). Reachability

analysis of DAE systems has already been considered in [26] and [27]. In our approach, we propose

the following way to solve such systems. We first start with a with a large tube enclosing x and

contract [x] for all t using the output vectors, i.e. y(t1, t2) will contract [x](t1) and [x](t2). We then

Solving non-linear constraint satisfation problems involving time-dependant functions 9

Algorithm CCONTRACT (in : k0, [x0], inout: [x])
1 for k := 0 to k̄
2 if(k == k0)
3 [x](k) = [x0];
5 endif

6 [x](k + 1) = [x](k + 1) ∩ [φ]([x](k), [ẋ](k));
13 endfor

14 for k := k̄ to 0
15 if(k == k0)
16 [x](k) = [x0];
18 endif

19 [x](k) = [x](k) ∩ [φ̃]([x](k + 1), [ẋ](k + 1));
26 endfor

TABLE 1. Contract algorithm

apply a variant of the STRANGLE and CONTRACT algorithms from [23]. We first apply the

STRANGLE around a time k0 given an initial interval [x0] and a precision ǫ. This algorithm bisects

the interval [x0] into two sub-intervals and propagates each sub-interval using the CONTRACT
algorithm. If the contraction of the tube [x] with the sub-interval possesses empty intervals, then the
sub-interval does not contain the solution and we discard it. If the tube has no empty interval, then

the sub-interval contains the solution and we bisect it again by recursively calling CONTRACT
until the precision is reached. We then take the union of all the tubes that possesses no empty interval.

This union is guaranteed to contain the solution.

TheCONTRACT algorithm uses the operator [φ] as defined in [23] to compute enclosures of
the state vector at times δ, 2δ, ...k̄δ where δ is the sampling time and k̄ is the largest integer smaller
than t̄/δ, from a given box [x] containing x. t̄ is the end time of the problem. [φ] is the operator for

the time increasing and computes the state of the system at time k + 1 from k. [φ̃] is the operator
for the time decreasing and computes the state of the system at time k from k + 1. For the sake of
simplicity in the following examples, we are using a basic Euler method for [φ] and thus for solving
the ODE and computing the successive states of the system. Notice that using an Euler method means

that we lose the guarantee in the results below but do not impact the proof of concept presented in

this article. Moreover, there exists multiple libraries for computing rigorous bounds on the solution

of ordinary differential equations, e.g. VNODE [28] and multiple methods especially developed for

studying the evolution of dynamic systems [29].

3. Examples

3.1. Example 1: Sinusoidal signal

Let’s consider an unknown signal a(t)where t is the time. We consider to know only a few properties

about a and want to find the smallest tube enclosing the solution. For example, let us consider that a
verifies :

10 Aymeric Bethencourt and Luc Jaulin

Algorithm CSTRANGLE (in : k0, [x0], ǫ, inout : [x])
1 if([x0].width > ǫ)
2 Bisect([x0], [x1], [x2]);
3 [z] = CONTRACT (k0, [x1], [x])
4 if([z] has no empty interval)
5 CONTRACT (k0, [x1], [z]);
6 endif

7 [z] = CONTRACT (k0, [x2], [x])
8 if([z] has no empty interval)
9 CONTRACT (k0, [x2], [z]);
10 endif

11 else

12 [z] = CONTRACT (k0, [x0], [x])
13 if([z] have no empty interval)
14 [x] = [x] ⊔ [z];
15 endif

16 endif

17 return [x]
TABLE 2. Strangle algorithm

a([−∞;∞]) ⊂ [−1; 1] (3.1)

a([
π

2
, π]) ⊂ [−0.7(t−

π

2
) + 0.99, (3.2)

− 0.1(t−
π

2
) + 1.01] (3.3)

a(t+ π) = −a(t) (3.4)

a(t+ 2π) = a(t) (3.5)

b(t−
π

2
) = a(t) (3.6)

b(t) = ȧ(t) (3.7)

We first define the tube [a](t) = [a−(t), a+(t)] = [−∞,∞] then apply contractors 3.1 and
3.2. Each inclusion represents two contractors. For instance, 3.2 is equivalent to

∀t ∈ [
π

2
, π],

a(t) 6 −0.1(t− π
2) + 1.01

a(t) > −0.7(t− π
2) + 0.99

(3.8)

Therefore, we apply the superiority contractor presented in section 3. The result is presented

Fig. 5(a). Contractors 3.4 and 3.5 respectively shows that our signal is symmetrical with respect to

the point (π, 0) and is 2π periodic. Results of these contractions are presented Fig. 5(b) and Fig.

5(c).

Then we apply the time delayed contractor from 3.6 to create a new tube b :

[b(t)] = [b(t)] ∩ [a(t+
π

2
)] (3.9)

Finally, from the differential equation 3.7, we can integrate [b] and contract [a] using the equal-
ity contractor :

Solving non-linear constraint satisfation problems involving time-dependant functions 11

FIGURE 5. Successive contraction of the tube [a].

[a(t)] = [a(t)] ∩ [

tZ

τ=0

db+(τ)

dt
dτ,

tZ

τ=0

db−(τ)

dt
dτ] (3.10)

The results is illustrated in Fig. 5(d). To contract the tube even more, we can re-apply all

the contractors one time (Fig. 5(e)), three times (Fig. 5(f)), five times (Fig. 5(g)) or even ten times

(Fig. 5(h)) until the width of the tube is satisfying or until a fixed point is reached. We then clearly

recognize the sine signal.

12 Aymeric Bethencourt and Luc Jaulin

FIGURE 6. Mass-Spring-Sonar system

Computation time for this example on a single core 3.2 Ghz processor is on average 7 ms for

Fig. 5(d) and 55 ms for Fig. 5(h).

3.2. Example 2: Non-linear mass-spring system

Let us now consider an example based on the famous academic problem that is the mass-spring

system presented in Fig.6. In actual systems, there is a progressive stiffening or weakening of the

spring as it is elongated or compressed. This causes the response of the system to be nonlinear. Its

dynamic is given by Newton’s second law.

m.ẍ+ γ.ẋ+ κ.x− βx3 = 0 (3.11)

where β is the stiffness of the spring, m is the mass, x is the displacement, κ is the spring

elasticity and γ is the damping constant.
Knowing the initial conditions, this system could be easily solved using standard numerical

methods. However, the particularity of our approach is to consider that we do not know the initial

conditions. In return, we equip the mass with a sonar that sends a ping every second. We consider the

sound wave sent at t1 to travel at c = 100m.s
−1 to the right wall, where it is reflected and received

back to the sonar at t2. In our simulation, we place the right wall at L = 10m. This means that the
mass moves significantly between the emission and the reception of pings. Each ping is represented
by an inter-temporal equation:

(L− x(t1)) + (L− x(t2)) = c.(t2 − t1)

⇔ x(t2) + x(t1) = 2L− c.(t2 − t1) (3.12)

To our knowledge, we cannot easily solve this nonlinear system with standard numerical meth-
ods. We thus consider this problem as a state estimation problem of a nonlinear delayed system and
use our constraint propagation approach defined in the previous section. We first rewrite the system
as state equations :

d
dt

�
x
ẋ

�
=

ẋ

(βx2−κ).x−γ.ẋ
m

!

(Evolution equation)

x(ti) + x(tj) = 2L− c.(ti − tj) (Observation equations)

(3.13)

Solving non-linear constraint satisfation problems involving time-dependant functions 13

where the tj are sending times and ti receiving times. Each ping represents an asynchronous
constraint that translates into a contractor for [x] and [ẋ].

We developed a simulator using MATLAB’s Ode45 and defined an initial state with the evo-

lution equations. The result is presented Fig.7. We then simulated sonar pings every seconds. We

also simulated errors in the measurements up to +/ − 0.05m to stay consistent with guaranteed

results. We also purposefully "lost" a few pings to simulate sporadic measurements. For the sake of

transparency, we used m = 8kg, γ = 1, κ = 2, β = −0.5 and L = 100m. Initial conditions are
x0 = 10m and ẋ0 = 0m.s

−1. The simulated sonar output has the following form :

x(3.00) + x(3.48) = 34.33

x(9.00) + x(9.54) = 15.46 (3.14)

x(12.00) + x(12.55) = 13.06

x(20.00) + x(20.51) = 24.38

etc.

As we are using a simple Euler method, 3.13 numerically becomes :

x(k + 1) = x(k) + dt.ẋ(k) (3.15)

ẋ(k + 1) = ẋ(k) + dt.
(βx2(k)− κ).x(k)− γ.ẋ(k)

m
x(i) + x(j)− l = 0

where l = 2L− c.(i− j) which is a small measured interval. Therefore we have :

x(j) = x(j − 1) + dt.ẋ(j − 1) (3.16)

= x(j − 2) + dt.ẋ(j − 2) + dt.ẋ(j − 1)

= x(j − 3) + dt.ẋ(j − 3) + dt.ẋ(j − 2) + dt.ẋ(j − 1)

= x(i) + dt.

j−1X

k=i

ẋ(k)

and

x(j)− x(i) = v (3.17)

x(j) + x(i) = l (3.18)

where v =

j−1X

k=i

ẋ(k) which is equivalent to

x(i) =
1

2
(l − v) (3.19)

x(j) =
1

2
(l + v)

To sum up, we have the following contractors :

◦ State equation. Tubes [x] and [ẋ], contracted using the evolution equation from 3.13:

14 Aymeric Bethencourt and Luc Jaulin

[ẋ(t)] = [ẋ(t)] ∩

tZ

τ=0

�
(βx2 − k).x− c.ẋ

m

�
(τ).dτ (3.20)

[x(t)] = [x(t)] ∩

tZ

τ=0

[ẋ] (τ).dτ

◦ Movements. Using the speed tube [ẋ] of the mass, we can compute all the nmax variables

vn = dt.

jn−1X

k=in

ẋ(k), where n corresponds to the n-th sonar emission and vn corresponds to the

movement of the mass between the n-th sonar emission and n-th sonar reception. We have the
following contractor :

[vn] = [vn] ∩ dt.

jn−1X

k=in

[ẋ](k) (3.21)

◦ Positions. From 3.19, we get two more contractors:

[x](in) = [x](in) ∩
1

2
([ln]− [vn]) (3.22)

[x](jn) = [x](jn) ∩
1

2
([ln] + [vn])

We present in table 3 and 4 theCONTRACT and STRANGLE algorithms modified specif-

ically for this example. Given an initial tube for [x] and [ẋ], the algorithm STRANGLE2will apply
the contractors 3.21 and 3.22, 3.20. The algorithm imposes intervals [box](1) to [x] and [box](2) to
[ẋ] when the time reaches k0 and propagates the intervals forward then backward along the tubes
according to the states equations. If the contracted tubes contain empty intervals, the given box at

k0 does not contain the solution. In this case, we discard the given box (white area on Fig.9). If the
contracted tubes have no empty interval, then the tubes might contain the solution, and we keep it

stored in memory (blue area on Fig.9). In the end, we take the union of all non-empty tubes. The

union contains the solution.

Table 3 presents the algorithm where φi([x](k), [ẋ](k)) is the numerical estimation method

of the state equation 3.13. For instance, using an Euler method, φ2([x](k), [ẋ](k)) = [x](k) +

dt. (β[x]
2(k)−κ).[x](k)−γ.[ẋ](k)

m
. Again, the result can be guaranteed using more complex methods

and/or VNODE. Our algorithm is only guaranteed in respect to the numerical estimation method

used. Because of the wrapping effect on each step of the propagation, the tubes [x] and [ẋ] rapidly
explode. It is therefore impossible to contract efficiently the tubes from beginning (k0 = 0) to
end (k0 = k̄) in one passing. We therefore bisect box until a required width is reached and use

CONTRACT2 to contract the tubes. We define box = ([x](k0), [ẋ](k0)) and apply the iterative
algorithm proposed in table 4 to bisect, propagate and take the union of the non-empty tubes until

the required precision is reached.

Fig.8 shows the result of the algorithm. (1p) represents the position tube [x] after applying the
contractors 3.22 and (1v) represents the speed tube [ẋ]. (2p) and (2v) represent the same tubes after
applying STRANGLE2 for k0=0s. (3p) and (3v) for k0=0s, k0=25s and k0=50s. The final result is
shown in (4p) and (4v) for which STRANGEL2 is applied every t%5 = 0s.

Solving non-linear constraint satisfation problems involving time-dependant functions 15

Algorithm CCONTRACT2 (in : k0, [box], inout: [x], [ẋ])
1 for k := 0 to k̄
2 if(k == k0)
3 [x](k) = [box](1);
4 [ẋ](k) = [box](2);
5 endif
6 [x](k + 1) = [x](k + 1) ∩ [φ1]([x](k), [ẋ](k));
7 [ẋ](k + 1) = [ẋ](k + 1) ∩ [φ2]([x](k), [ẋ](k));
8 if(k == in or k == jn)

9 [vn] = [vn] ∩ dt.

jn−1X

p=in

[ẋ](p);

10 [x](in) = [x](in) ∩
1
2 ([ln]− [vn]);

11 [x](jn) = [x](jn) ∩
1
2 ([ln] + [vn]);

12 endif
13 endfor
14 for k := k̄ to 0
15 if(k == k0)
16 [x](k) = [box](1);
17 [ẋ](k) = [box](2);
18 endif

19 [x](k) = [x](k) ∩ [φ̃1]([x](k + 1), [ẋ](k + 1));

20 [ẋ](k) = [ẋ](k) ∩ [φ̃2]([x](k + 1), [ẋ](k + 1));
21 if(k == in or k == jn)

22 [vn] = [vn] ∩ dt.

jn−1X

p=in

[ẋ](p);

23 [x](in) = [x](in) ∩
1
2 ([ln]− [vn]);

24 [x](jn) = [x](jn) ∩
1
2 ([ln] + [vn]);

25 endif
26 endfor

TABLE 3. Contract algorithm for Ex. 2

Notice that if the inter temporal constraints are posed such that the problem is infeasible, the
solution set becomes empty. Computation time for this example on a single core 3.2 Ghz processor
is on average 2.5s.

3.3. Example 3: Group of AUVs

For the last example, let us consider a group of robotic Autonomous Underwater Vehicles (AUVs).
When not submerged, the AUVs are able to use the Global Positioning System to accurately com-
pute their position. However, when they are underwater, they can no longer use the GPS and have
to estimate their position using their state equations. To illustrate the method, we developed a 3D
simulator that generates a set of data from a simulated group of 6 robots following given trajectories.

16 Aymeric Bethencourt and Luc Jaulin

Algorithm CSTRANGLE2 (in : ǫ, [k0], [box], inout : [x], [ẋ])
1 if(box.width > ǫ)
2 Bisect([box], [subbox1], [subbox2]);
3 ([z], [ż]) = CONTRACT2([subbox1], [z], [ż])
4 if([z] and [ż] have no empty interval)
5 CONTRACT2([subbox1], [z], [ż]);
6 endif
7 ([z], [ż]) = CONTRACT2([subbox2], [z], [ż])
8 if([z] and [ż] have no empty interval)
9 CONTRACT2([subbox2], [z], [ż]);
10 endif
11 else
12 ([z], [ż]) = CONTRACT2([box], [z], [ż])
13 if([z] and [ż] have no empty interval)
14 [x] = [x] ⊔ [z];
15 [ẋ] = [ẋ] ⊔ [ż];
16 endif
17 endif
18 return ([x], [ẋ])

TABLE 4. Strangle algorithm for Ex. 2

FIGURE 7. MATLAB’s Ode45 solution.

V i ∈ {1, 2, 3}, x̂i =

100 sin t
100 cos t

(10 cos t)− 10

 (3.23)

V i ∈ {4, 5, 6}, x̂i =

100 sin t
100 cos t

(10 cos t)− 30

 (3.24)

Solving non-linear constraint satisfation problems involving time-dependant functions 17

FIGURE 8. Successive results of the STRANGLE2 algorithm.

We assume that the state of each AUV is described by the following equations :

ẋ1 = u1 cosu2
ẋ2 = u1 sinu2

(3.25)

where the speed u1 and heading u2 are measured every 0.01s for a duration of 100s. The
initial state is not known. Because of the noise in the measurements, the uncertainty of the state
is increasing over time. The estimated position is represented by a box enclosing the real position

18 Aymeric Bethencourt and Luc Jaulin

FIGURE 9. Result on a x, ẋ plane of the STRANGLE2 bisections for (a) t=10s
and (b) t=0s. The white boxes represent tubes that become empty at some point.
The blue boxes represent tubes that have no empty interval for all t. The solution
is in the union of all these tubes.

of the AUV. This box is obviously very thin when the AUV uses the GPS, then gets bigger and
bigger underwater. The idea is to contract these boxes when two or more AUVs are in range of
communication with each other. We equipped each submarine with a sonar that can broadcast the
estimated position box of the AUV every second. The originality of this example is to consider that
the displacement of the robot while the sonar wave is moving is superior to the precision of the
localization. Therefore we cannot suppose that we measure a true distance between AUVs at the
same time, but between AUVs at different times. Note that the communication is one-way only and
does not have to be synchronized between the AUVs. When AUV i received at ti a sonar ping from
robot j emitted at tj , we get a constraint of the form :

||pi(ti)− pj(tj)|| = c.(ti − tj) (3.26)

where c is the celery of the sound in water and pi is the position vector of a submarine i in
x-y-z coordinates. This way, we have a system of constraints similar to example 2. Fig.10 presents
the 3D simulator developed to generate the constraints for each AUV.

||p1(1.00) + p2(1.32)|| = 128.44 (3.27)

||p1(9.00) + p3(9.74)|| = 284.38 (3.28)

||p3(9.00) + p5(9.15)|| = 72.49 (3.29)

||p5(17.00) + p4(18.13)|| = 682.98 (3.30)

etc.

Using the same approach than for example 2, we can solve this problem using constraint prop-
agation on tubes. Fig. 11 shows the result of the contractions for the position x of one AUV.

Computation time for this example on a single core 3.2 Ghz processor is on average 15 ms for
all AUVs. Finally, we can further consider a more realistic model where the clocks of the AUVs are

Solving non-linear constraint satisfation problems involving time-dependant functions 19

FIGURE 10. 3D simulation of a group of 6 AUVs.

unsynchronized, meaning that the constraints are defined on uncertain times. [30] shows that it is
still possible to easily solve the problem.

4. Conclusion

Solving nonlinear systems involving differential equations is a difficult problem, especially when the
initial conditions are unknown or when the problem is ill-conditioned, e.g. involving inter-temporal
measurements. To numerically solve this class of problems, this paper has first introduced the notion
of tube which encompasses the informations needed to guarantee associations upon trajectories.
Then, an arithmetic was developed around this notion, and a contractor-based approach has been
followed. As a result, a method has been proposed to contract tubes that enclose the solution. Further
work will include the study of outliers and the study of the scalability of the approach when applied to
a swarm of hundreds of AUVs [31]. As most interval-based methods, this approach can be combined
with probabilistic methods [10] and made robust with respect to outliers by relaxing a given number
of constraints [12].

Finally, in order to share our research with the community, we integrated tubes, their properties,
operators and minimal contractors presented below with IBEX (Interval Based EXplorer), a powerful
library for interval computation. You can download IBEX and all the source codes for the examples
presented in this article on http://AymericBethencourt.com/tubes/

References

[1] R. E. Moore,Methods and Applications of Interval Analysis. Philadelphia, PA: SIAM, 1979.

[2] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, “Applied interval analysis,” Springer-Verlag, 2001.

[3] S. Thrun, W. Bugard, and D. Fox, Probabilistic Robotics. Cambridge, M.A.: MIT Press, 2005.

20 Aymeric Bethencourt and Luc Jaulin

FIGURE 11. Result of the contractions for [x], (a) after using position contraction
upon receiving a sonar communication from another robot at t=26s and 63s, (b)
after propagating the state equation from 0 to k̄ and (c) from k̄ to 0.

Solving non-linear constraint satisfation problems involving time-dependant functions 21

[4] L. Jaulin, “Range-only SLAM with occupancy maps; A set-membership approach,” IEEE Transaction on

Robotics, vol. 27, no. 5, pp. 1004–1010, 2011.

[5] F. L. bars, A. Bertholom, J. Sliwka, and L. Jaulin, “Interval slam for underwater robots; a new experiment,”

in NOLCOS 2010, Italy, 2010.

[6] C. Drocourt, L. Delahoche, B. M. E. Brassart, and A. Clerentin, “Incremental construction of the robot’s

environmental map using interval analysis,” Global Optimization and Constraint Satisfaction: Second

International Workshop, COCOS 2003, vol. 3478, pp. 127–141, 2005.

[7] A. Bethencourt and L. Jaulin, “3d reconstruction using interval analysis on the kinect device coupled with

an imu,” International Journal of Advanced Robotic Systems, vol. 10, 2013.

[8] N. Delanoue, L. Jaulin, and B. Cottenceau, “Using interval arithmetic to prove that a set is path-connected,”

Theoretical Computer Science, Special issue: Real Numbers and Computers, vol. 351, no. 1, pp. 119–128,

2006.

[9] J. Aubin and H. Frankowska., Set-Valued Analysis. Birkhäuser, Boston, 1990.

[10] F. Abdallah, A. Gning, and P. Bonnifait, “Box particle filtering for nonlinear state estimation using interval

analysis,” Automatica, vol. 44, no. 3, pp. 807–815, 2008.

[11] G. Chabert and L. Jaulin, “Contractor Programming,” Artificial Intelligence, vol. 173, pp. 1079–1100,

2009.

[12] V. Drevelle and P. Bonnifait, “High integrity gnss location zone characterization using interval analysis,”

in ION GNSS, 2009.

[13] M. Berz and K. Makino, “Verified integration of odes and flows using differential algebraic methods on

high-order taylor models,” Reliable Computing, vol. 4, no. 3, pp. 361–369, 1998.

[14] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order. (ISBN 0521784514): Cambridge

University Press, 2002.

[15] S. Gollamudi, S. Nagaraj, S. Kapoor, and Y.-F. Huang, “Set-membership state estimation with optimal

bounding ellipsoids,” in Int. Symposium on Information Theory and its Applications, 1996.

[16] A. Kurzhanski and I. Valyi, Ellipsoidal Calculus for Estimation and Control. Boston, MA: Birkhäuser,

1997.

[17] M. Milanese, J. Norton, H. Piet-Lahanier, and E. Walter, Eds., Bounding Approaches to System Identifica-

tion. New York, NY: Plenum Press, 1996.

[18] C. Aubry, R. Desmare, and L. Jaulin, “Loop detection of mobile robots using interval analysis,” Automat-

ica, vol. 49, no. 2, pp. 463–470, 2013.

[19] I. Araya, B. Neveu, and G. Trombettoni, “Exploiting Common Subexpressions in Numerical CSPs,” in

Proc. CP, Constraint Programming, LNCS 5202, 2008, pp. 342–357.

[20] M. Ceberio and L. Granvilliers, “Solving nonlinear systems by constraint inversion and interval arith-

metic,” in Artificial Intelligence and Symbolic Computation, vol. 1930, LNCS 5202, 2001, pp. 127–141.

[21] F. L. Chernousko, State Estimation for Dynamic Systems. Boca Raton, FL: CRC Press, 1994.

[22] F. C. Schweppe, “Recursive state estimation: unknown but bounded errors and system inputs,” "IEEE

Transactions on Automatic Control", vol. 13, no. 1, pp. 22–28, 1968.

[23] L. Jaulin, “Nonlinear bounded-error state estimation of continuous-time systems,” Automatica, vol. 38,

pp. 1079–1082, 2002.

[24] J. Bravo, T. Alamo, and E. Camacho, “Robust mpc of constrained discrete-time nonlinear systems based

on approximated reachable sets,” Automatica, vol. 42, pp. 1745–1751, 2006.

[25] C. Combastel, “A state bounding observer for uncertain non-linear continuous-time systems based on

zonotopes,” in CDC-ECC ’05, 2005.

[26] E. A. Cross and I. M. Mitchell, “Level set methods for computing reachable sets of systems with differen-

tial algebraic equation dynamics,” in American Control Conference, 2008. IEEE, 2008, pp. 2260–2265.

[27] M. Althoff and B. Krogh, “Reachability analysis of nonlinear differential-algebraic systems,” 2013.

[28] N. Nedialkov, “Interval tools for odes and daes,” in Scientific Computing, Computer Arithmetic and Vali-

dated Numerics, 2006. SCAN 2006. 12th GAMM - IMACS International Symposium on, 2006, pp. 4–4.

22 Aymeric Bethencourt and Luc Jaulin

[29] O. Bouissou, A. Chapoutot, and A. Djoudi, “Enclosing temporal evolution of dynamical systems using

numerical methods,” in 5th NASA Formal Methods Symposium, NFM 2013, NASA Ames Research Center,

Moffett Field, CA, USA, 2013.

[30] A. Bethencourt and L. Jaulin, “Cooperative localization of underwater robots with unsynchronized clocks,”

Paladyn, Journal of Behavioral Robotics., vol. 4, no. 4, pp. 233–244, 2013.

[31] A. Bethencourt, “Interval analysis for swarm localization. application to underwater robotics.” PhD dis-

sertation, Universite de Breatgne Occidental, Brest, France, 2014.

Aymeric Bethencourt and Luc Jaulin

