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Abstract

This paper proposes an original method to compute an inner and an outer
approximation of the image f(X) of a subset X of Rn (e.g., X is the unit ball)
by a smooth nonlinear function f : Rn → Rn. A boundary approach is pro-
posed. More precisely, the boundary ∂f(X) will be covered by parallelepipeds
in order to get an accurate enclosure of f(X).

Keywords: Parallelepipeds, Boundary approach, Inclusion function,
Gnomonic atlas

1. Introduction

Several approaches are used to represent and propagate uncertainties.
The most popular representations are probability distributions [1], belief
functions (see e.g. [2, 3]), possibility distributions [4] and sets [5, 6]. Each
representation has developed its own tools to propagate the uncertainties
through a constraint network. Without any doubt, the most ubiquitous prop-
agation tool is the Bayesian �lter which can be declined into the Kalman �lter

1This work was supported by the Defense Innovation Agency (AID) and the Brittany
Region.



[7] for linear systems and the particle �lter [8] for nonlinear systems.
For the propagation steps and for any of the approaches, the two basic

problems that have to be solved are the inverse problem [9] and the direct
problem [1, 10]. To de�ne them, we consider two vectors x and y linked by
the constraint y = f(x), where f : Rm 7→ Rn.

� The direct problem: Assume that x is known with some uncertainty,
estimate y ∈ Rn and characterize the uncertainty for y.

� The inverse problem: Assume that y is known with some uncertainty,
estimate x ∈ Rm and characterize the uncertainty for x.

In this paper, we will focus on the direct problem. In a probability framework,
one of the most famous results is obtained [11] when f is a�ne (i.e., f(x) =
Ax + b) and x is Gaussian (x̄,Γx). In such a case, Kolmogorov has shown
that y is also Gaussian (ȳ,Γy) with ȳ = Ax̄ + b and Γy = AΓxA

T. Now,
this speci�c case is an exception and solving the direct problem in a reliable
way can be considered as open in the general case, for all types of uncertainty
representation.

In a set-membership framework, i.e., x is known to belong to a set X,
then, the uncertainty for y is represented by the set Y = f(X). Interval
methods [12, 13] can used to compute such an outer enclosure for Y, but
the pessimism is often too large. Other types of sets such as zonotopes
[14] or ellipsoids [15, 16] have been considered to limit the pessimism, but
again, the pessimism still exists and cannot be quanti�ed. The control of the
overestimation can only be reached if bisections are performed which makes
the direct problem intractable [17], even if f is a�ne [18]. Some e�cient
algorithms have been proposed to �nd an outer enclosure for Y (see e.g.,
[19]), but to our knowledge, no algorithm has been proposed to �nd an inner
approximation.

In this paper, we propose an original approach to characterize a set de-
�ned as the image of a set X ⊂ Rn (a ball for instance) by nonlinear function
f : Rn → Rn. Our approach proposes to cover ∂f(X), the boundary of
f(X), as proposed in [20] where the covering was made with boxes. Here,
we propose a covering with small parallelepipeds instead which creates some
interesting connections with the literature on geometric inference. Indeed,
the use of parallelepipeds also allows us to represent the set Y = f(X) using
a Delaunay triangulation [21, 22].
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Our main contribution is to propose an approximation which is less con-
servative (in term of convergence order) and which provides both an inner
and an outer approximation of the image set Y.

The paper is organized as follows. Section 2 explains how to get an accu-
rate parallelepiped outer approximation of the image of a small box through
a nonlinear function f . Section 3 provides theoretical results to show that
the parallelepiped approximation has an order greater than existing interval
methods, in the case where f : Rm → Rn with m < n. Section 4 introduces
the concept of gnomonic atlas to cover the boundary of X [23]. This covering
will allow us to focus on the image of the boundary in order be more accurate.
Section 5 illustrates on some examples how our boundary parallelepiped ap-
proach can be used to compute the inner and outer approximations of Y.
Section 6 concludes the paper.

Notations

In this paper, we will use the following notations

� Vectors x ∈ Rn are written in bold.

� The norm ∥x∥ of a vector x always means the Euclidean norm.

� The upper bound of an interval [a] is denoted by ub([a]) and its lower
bound by lb([a]).

� A box [x] of Rn is the Cartesian product of n intervals:
[x] = {x ∈ Rn | ai ≤ xi ≤ bi for i = 1, · · · , n}
where ai ∈ R, bi ∈ R.

� The width w([x]) of a box [x] ⊂ Rn is the length of its largest side:
w([x]) = maxi∈{1,...,n} ub([xi])− lb([xi]).

� The center of a box [x] is denoted by x̄.

� Parallelepipeds are written with angles, for example ⟨x⟩. They will be
de�ned in Section 2.1.

� The set of boxes of Rn is denoted by IRn. The set of parallelepipeds of
Rn is denoted by PRn.

� The m dimensional unit ball is U = {u ∈ Rm|∥u∥ ≤ 1}.
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� The notion of boundary which is considered in this paper is the topo-
logical boundary.

� The boundary of a set X is denoted by ∂X.

2. Parallelepiped approximation

In this section, we show how to compute an accurate approximation of
f([x]), when [x] is a tiny box (i.e., su�ciently small) and f : Rm → Rn. We
consider the more general case where m ≤ n (instead of m = n given in the
introduction). The reason for this is that the case m < n will be needed later
to compute the image of ∂X the boundary of the set of interest X.

2.1. Parallelepiped inclusion function

A parallelepiped is a subset of Rn of the form

⟨y⟩ = ȳ +A · [−1, 1]m = {ȳ +A · x |x ∈ [−1, 1]m} (1)

where m ≤ n.
Whenm > n, ⟨y⟩ is a zonotope [14, 24] (not used in this paper asm ≤ n).

The matrix A is called the shape matrix. Its columns are called the support
vectors of ⟨y⟩. This matrix A can be uniquely decomposed into a matrix N
and a matrix D such that

� The columns of N have unit length

� the matrix D is diagonal and positive

� A = N ·D

The matrix N will be called the normalized matrix. For the remaining of
this article the notion of decomposition of a matrix will refer to this unique
decomposition.

Parallelepipeds are e�cient wrappers to enclose a set [25, 26]. Consider
a function f : Rm → Rn, m < n, a parallelepiped inclusion function is a
function

⟨f⟩ : IRm → PRn

[x] 7→ ⟨f⟩([x]) (2)

such that
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f([x]) ⊂ ⟨f⟩([x]). (3)

This de�nition is illustrated by Figure 1 in the case where m = 1 and
n = 2. In the �gure, the graph of f given by {(x, f(x)),x ∈ Rm} is painted
black. Two projections of the graph are given (gray). One of the projection
corresponds to the image of f : f(Rm) = {f(x),x ∈ Rm}. The blue segment
of Rn corresponds to the image of [x] by f . It is this blue segment which is
enclosed in the parallelepiped ⟨f⟩([x]).

Figure 1: Parallelepiped inclusion function ⟨f⟩

2.2. Approximation theorem

To get a parallelepiped inclusion function for f : Rm 7→ Rn, we need to
compute a parallelepiped which encloses f([x]), for a given box [x] of Rm.

De�nition 1. Consider two intervals [x] and [y]. Their product is de�ned
in [6] as

[x] · [y] = {x · y ∈ R | x ∈ [x] , y ∈ [y]} (4)
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Remark 1. By relying on De�nition 1, operations like the product of two
matrices or a matrix and a vector can be extended to interval matrices and
interval vectors.

Theorem 1. Consider a function f of class C1 ( i.e., di�erentiable with its
derivative continuous) from Rm to Rn and a box [x] ∈ IRm with center x̄.
De�ne the linear approximation

ℓ(x) = f(x̄) +
df

dx
(x̄) · (x− x̄) (5)

as illustrated by Figure 2. We have

∀x ∈ [x], ∥f(x)− ℓ(x)∥ ≤ ρ (6)

where

ρ = ρf ([x]) = ub

(∥∥∥∥([ dfdx
]
([x])− df

dx
(x̄)

)
· ([x]− x̄)

∥∥∥∥) (7)

Moreover
ρ = o(w([x])), (8)

i.e., ρ is small compared to ε = w([x]), when w([x]) is small.

Remark 2. In Equation 7,
[
df
dx

]
is an inclusion function of df

dx
in the sense of

Moore [12]. This means that
[
df
dx

]
([x]) contains all df

dx
(x), for x ∈ [x]. Thus[

df
dx

]
([x]) is an interval matrix. Since [x] is an interval vector (or a box), the

quantity [a] =
([

df
dx

]
([x])− df

dx
(x̄)
)
· ([x]− x̄) can be computed as suggested

by Remark 1 and is also an interval vector. The norm in (7), ∥[a]∥ has also to
be understood in the Moore's sense, i.e., ∥[a]∥ = {n ∈ R|∃a ∈ [a], n = ∥a∥}.
Therefore ∥[a]∥ is an interval from which we extract the upper bound.

Proof. Let us bound the error

e = f(x)− ℓ(x)
= f(x)− f(x̄)− df

dx
(x̄) · (x− x̄)

(9)

using the methodology given is [27], Section 4.3, based on the centered form
[12]. Since x ∈ [x], we get

e(x) ∈ [ec]([x])
= e(x̄)︸︷︷︸

=0

+
[
de
dx

]
([x]) · ([x]− x̄)

=
[
d(f(x)−ℓ(x))

dx

]
([x]) · ([x]− x̄)

=
([

df
dx

]
([x])− df

dx
(x̄)
)
· ([x]− x̄)

(10)
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Figure 2: Principle of the parallelepiped enclosure

The smallest ball which encloses the box [ec]([x]) has a radius ρ = ub(∥[ec]([x])∥).
Since

w
([

df
dx

]
([x])− df

dx
(x̄)
)

= O(w([x]))
w([x]− x̄) = O(w([x]))

(11)

we have w([ec]) = o(w([x])). Moreover, since 0 ∈ [ec], we get ub ([ec]) =
o(w([x])), i.e., ρ = o(w([x])).

De�nition 2. The Hausdor� distance expresses how far two compact sub-
sets of a metric space are. Let (M, d) be a metric space and A ⊂ M and
B ⊂ M be two non-empty compact subsets of M. The Hausdor� distance
between A and B is de�ned by :

h(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b,A)
}

(12)

Where d(a,B) = infb∈B d(a, b) and d(b,A) = infa∈A d(b, a).

Corollary 1. Given a C1 function f from Rm to Rn and a box [x] ∈ IRm.
We have

f([x]) ⊂ ℓ([x]) + ρU (13)

where U is the unit ball of Rn, ρ = ρf ([x]) (see (7)) and ℓ([x]) is de�ned by
(5). Moreover, the Hausdor� distance h(f([x]), ℓ([x])) between f([x]) and its
approximation ℓ([x]) is o(w([x])).
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Proof. The inclusion is a consequence of Theorem 1. Moreover

h(f([x]), ℓ([x])) ≤ ρ see (6)
= ub

(∥∥([ df
dx

]
([x])− df

dx
(x̄)
)
· ([x]− x̄)

∥∥)
= O

∥∥([ df
dx

]
([x])− df

dx
(x̄)
)
· ([x]− x̄)

∥∥
= O

∥∥([ df
dx

]
([x])− df

dx
(x̄)
)∥∥ ·O ∥([x]− x̄)∥

= O ∥w([x])∥ ·O ∥w([x])∥
= o(w([x]))

(14)

2.3. Parallelepiped in�ation

Corollary 1 provides a linear approximation ℓ([x]) for the set f([x]) to be
approximated. The set ℓ([x]) is a �at parallelepiped which has the form

ℓ([x]) = {y ∈ Rn|∃x ∈ [−1, 1]m,y = Ax+ b} . (15)

In this section, we show how to in�ate ℓ([x]) to obtain a parallelepiped ⟨z⟩ ∈
PRn which encloses the set ℓ([x]) + ρU. The principle can be found in [28].

2.3.1. Principle

De�nition 3. The two parallelepipeds of PRn

⟨y⟩ = ȳ +A · [−1, 1]m
⟨z⟩ = z̄+B · [−1, 1]m (16)

have similar shapes i�
A = B ·D ·P (17)

where D is a diagonal matrix and P is a permutation matrix. This means
that two parallelepipeds have the same shape i� the transformation between
them is a rescaling and eventually a rearrangement of their generators.

Remark 3. In particular, if the decomposition described in Section 2.1 of A
and B gives A = N · D1 and B = N · D2, they have the same shape. In
addition, the transformation between A and B is a pure rescaling without
permutation. Indeed, as the matrices D1 and D2 are diagonal, they are
invertible. Then

A = N ·D1

= N ·D2 ·D−1
2 ·D1

= B ·D−1
2 ·D1

Then Equation 17 is veri�ed with D = D−1
2 ·D1 and P is the identity.
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Proposition 1. The Minkowski sum of ⟨y⟩ = ȳ + A · [−1, 1]m and ⟨z⟩ =
z̄+B · [−1, 1]m is

⟨y⟩+ ⟨z⟩ = (ȳ + z̄) + (A+B) · [−1, 1]m (18)

if the decomposition of A and B gives the same normalized matrix.

Proof. As explained in Remark 3, the ith column bi of B is related to the
ith column ai of A by the relation

bi = diai (19)

where di is the ith entry of the diagonal matrix D. Thus

⟨y⟩+ ⟨z⟩ = {ȳ +A · x |x ∈ [−1, 1]m}+ {z̄+B · r | r ∈ [−1, 1]m}
= ȳ + a1 · [−1, 1] + · · ·+ am · [−1, 1] + z̄+ b1 · [−1, 1] + · · ·+ bm · [−1, 1]
= ȳ + z̄+ a1 · [−1, 1] + b1 · [−1, 1] + · · ·+ am · [−1, 1] + bm · [−1, 1]
= ȳ + z̄+ a1 · [−1, 1] + d1a1 · [−1, 1] + · · ·+ am · [−1, 1] + dmam · [−1, 1]
= ȳ + z̄+ a1 · (1 + d1) · [−1, 1] + · · ·+ am · (1 + dm) · [−1, 1] (since di > 0)
= ȳ + z̄+ (a1 + d1a1) · [−1, 1] + · · ·+ (am + dmam) · [−1, 1]
= ȳ + z̄+ (a1 + b1) · [−1, 1] + · · ·+ (am + bm) · [−1, 1])
= {ȳ + z̄+ (A+B) · x |x ∈ [−1, 1]m}

Illustration. Assume that we want to enclose the Minkowski sum ⟨y⟩+U
of a parallelepiped ⟨y⟩ and a disk U. We �rst enclose U inside a parallelepiped
⟨e⟩ the shape of which is similar to ⟨y⟩. Then, we compute ⟨y⟩ + ⟨e⟩. This
is illustrated by Figure 3.

This principle will now be used to in�ate the �at parallelepiped (which
corresponds to ℓ([x])):

⟨y⟩ = {y ∈ Rn|∃x ∈ [−1, 1]m,y = Ax+ b} . (20)

As a consequence we will be able to compute a parallelepiped ⟨z⟩ which
contains f([x]).

2.3.2. Centered in�ation, square case

We assume here that m = n.
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Figure 3: In�ation of a parallelepiped ⟨y⟩ by a disk U. Both ⟨y⟩ and ⟨e⟩ have a similar
shape

Proposition 2. De�ne the m dimensional centered parallelepiped

⟨y⟩ = A ·

 [−e1, e1]
...

[−em, em]

 (21)

where A is an invertible square matrix. Consider the m dimensional unit
ball U and an in�ation coe�cient ρ > 0. The parallelepiped

⟨z⟩ = A ·


e1 + ρ

√
q1 0 · · · 0

0 e2 + ρ
√
q2

...
...

. . . 0
0 · · · 0 em + ρ

√
qm

 · [−1, 1]m, (22)

where the qi is the ith diagonal element of the matrix Q =
(
ATA

)−1
, satis�es

⟨z⟩ ⊃ ⟨y⟩+ ρU. (23)

Figure 4 illustrates the in�ation in the plane supported by a1 = (5, 0) ,
a2 = (5, 2), the columns of A and ρ = 1.
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Figure 4: In�ation of a parallelepiped in the case m = n = 2

Proof. We want to �nd a parallelepiped which encloses ⟨y⟩ + ρU. For this,
we need to �nd a parallelepiped with a shape similar to ⟨y⟩ which encloses
the ball U. Since A is invertible, we have

U = A · E (24)

where E is the ellipsoid given by

E =
{
x ∈ Rm|xTATAx ≤ 1

}
. (25)

The smallest box with respect to the inclusion which encloses E is [16]

[E ] =


√
q1 0 · · · 0

0
√
q2

...
...

. . . 0
0 · · · 0

√
qm

 ·
 [−1, 1]

...
[−1, 1]

 (26)
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Since

⟨y⟩+ ρU = ⟨y⟩+ ρ ·A · E
⊂ ⟨y⟩+ ρ ·A · [E ]

= A ·


e1 + ρ

√
q1 0 · · · 0

0 e2 + ρ
√
q2

...
...

. . . 0
0 · · · 0 em + ρ

√
qm

 ·
 [−1, 1]

...
[−1, 1]


(27)

we get the enclosure to be proven.

Example 1. Consider the two dimensional case, where

A =
(
a1 a2

)
=

(
a11 a21
a12 a22

)
(28)

We have

AT ·A =

(
aT1
aT2

)(
a1 a2

)
=

(
∥a1∥2 aT1 a2

aT1 a2 ∥a2∥2
)

(29)

We get

Q =
(
AT ·A

)−1
= 1

∥a1∧a2∥2 ·
(
∥a2∥2 ×
× ∥a1∥2

)
(30)

From Proposition 2, we get

⟨y⟩+ ρU ⊂ A ·

(
e1 + ρ ∥a2∥

∥a1∧a2∥ 0

0 e2 + ρ ∥a1∥
∥a1∧a2∥

)
·
(

[−1, 1]
[−1, 1]

)
. (31)

2.3.3. In�ating a centered �at parallelepiped

Proposition 3. De�ne the n dimensional �at parallelepiped

⟨y⟩ = A ·

 [−e1, e1]
...

[−em, em]

 (32)

where m < n . The matrix A is assumed to be full rank. Consider a matrix
N such that the matrix Ã = [A|N] is square and invertible. Consider the
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unit ball U of Rn and an in�ation coe�cient ρ > 0. The parallelepiped of
Rn:

⟨z⟩ = Ã·



e1 + ρ
√
q1 0 · · · 0 0 0 0

0 e2 + ρ
√
q2

... 0 0 0
...

...
. . . 0

... 0 0

0 · · · 0 em + ρ
√
qm 0

... 0

0 0 0 ρ
√
qm+1 0

...

0 0 0
... 0

. . . 0
0 0 0 0 · · · 0 ρ

√
qn


·[−1, 1]n,

(33)

where qi is the ith diagonal element of the matrix Q =
(
ÃTÃ

)−1

, satis�es

⟨z⟩ ⊃ ⟨y⟩+ ρU. (34)

Proof. We have

⟨y⟩ = A ·

 [−e1, e1]
...

[−em, em]

+N ·

 [0, 0]
...

[0, 0]



= [A|N]︸ ︷︷ ︸
=Ã

·



[−e1, e1]
...

[−em, em]
[−em+1, em+1]

...
[−en, en]


(35)

where em+1 = · · · = en = 0. By Proposition 2,⟨z⟩ in (33) encloses ⟨y⟩ + ρU
which completes the proof.

This in�ation process is summarized in Algorithm 1.

Example 2. Assume that we want to in�ate by ρ the parallelepiped

⟨y⟩ =

 a11 a21
a12 a22
a13 a23


︸ ︷︷ ︸

=A

· [−1, 1]2 (36)
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Algorithm 1 Parallelepiped in�ation

Inputs: ⟨y⟩, ρ so that ⟨y⟩ = A ·

 [−e1, e1]
...

[−em, em]


Output: ⟨z⟩
Notation: In�ate(⟨z⟩, ρ)
Algorithm:

1: N← NullSpace(A)
2: Ã← [A|N]

3: Q←
(
ÃTÃ

)−1

4: M← 0n×n

5: for i = 1 to i = n
6: M(i, i)← ρ ·

√
Q(i, i)

7: end for

8: for i = 1 to i = m
9: M(i, i)←M(i, i) + ei
10: end for

11: ⟨z⟩ ← Ã ·M · [−1, 1]n

We have
Ã =

(
a1 a2 n

)
(37)

where n = a1 ∧ a2. We have

ÃT · Ã =

 aT1
aT2
nT

( a1 a2 n
)
=

 ∥a1∥2 aT1 a2 0
aT1 a2 ∥a2∥2 0
0 0 ∥n∥2

 (38)
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Since det Ã = ∥n∥2, we get

Q =
(
ÃT · Ã

)−1

= 1
∥n∥4

 ∥a2∥2∥n∥2 × ×
× ∥a1∥2∥n∥2 ×
× × ∥a1∥2∥a2∥2 −

(
aT1 a2

)2


=


∥a2∥2
∥n∥2 × ×
× ∥a1∥2

∥n∥2 ×

× × ∥a1∥2∥a2∥2−(aT1 a2)
2

∥n∥4


=


∥a2∥2
∥n∥2 × ×
× ∥a1∥2

∥n∥2 ×
× × 1

∥n∥2


(39)

Therefore

⟨z⟩ = Ã ·

 1 + ρ∥a2∥
∥n∥ 0 0

0 1 + ρ∥a1∥
∥n∥ 0

0 0 ρ 1
∥n∥

 · [−1, 1]3
=

(
(1 + ρ∥a2∥

∥n∥ )a1 (1 + ρ∥a1∥
∥n∥ )a2 ρ n

∥n∥

)
· [−1, 1]3

(40)

An illustration is given by Figure 5.

2.3.4. Non centered case

Consider the �at parallelepiped

⟨y⟩ = ⟨yc⟩+ ȳ (41)

where ⟨yc⟩ is a parallelepiped with center 0. To in�ate ⟨y⟩ by ρ, we in�ate
⟨yc⟩ as explained in Proposition 3 and then, we translate by ȳ.

2.4. Parallelepiped inclusion function

Proposition 4. Given f : Rm 7→ Rn with m < n. A parallelepiped inclusion
function is given by :

⟨f⟩ : IRm 7→ PRn

[x] → ⟨f⟩([x]) = ȳ +A · [−1, 1]n (42)
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Figure 5: In�ation of the �at parallelepiped ⟨y⟩

with
ȳ = f(x̄)
A = In�ate( df

dx
(x̄), ρf ([x]))

x̄ = center([x])
(43)

where the In�ate function is described by Algorithm 1.

Proof. A �rst order Taylor approximation of f(x) is

f(x) ≃ f(x̄) +
df

dx
(x̄) · (x− x̄)︸ ︷︷ ︸
ℓ(x)

Now, from Theorem 1 the error made by this approximation when x ∈ [x]
is lower than ρf ([x]). The in�ation has thus to be performed as de�ned in
Algorithm 1 . This yields the expression for A. The translation by ȳ is
explained in Subsection 2.3.4.

The following section shows that the parallelepiped inclusion function has
a nice property of convergence.
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3. Parallelepiped enclosure of the image of a large box

The previous section has shown how to compute a parallelepiped which
accurately encloses the image of a tiny box [x] by a function f : Rm 7→ Rn.
When the box [x] is large, it has to be cut into small subboxes. We will show
that we can obtain an accurate outer approximation and quantify the qual-
ity of the approximation in terms of convergence order. The corresponding
methodology will be used later in Section 5 to get both an inner and an outer
approximations of the image set in the case where m = n.

3.1. Principle

Consider a function f : Rm 7→ Rn with m < n and a box [x] of Rm. We
want to compute an accurate parallelepiped approximation which encloses
f([x]). Equivalently, we want to compute a collection of parallelepipeds the
union of which contains f([x]).

To achieve our goal, we cut the box [x] into small boxes {[x](0), [x](1), . . . }.
Then, for each of these boxes [x](i), we compute a parallelepiped ⟨f⟩([x](i))
containing the set f([x](i)).

3.2. Order

De�nition 4. Given f : Rm 7→ Rn a C1 function with m < n. The inclusion
function ⟨f⟩ converges with an order k, if for any tiny box [x], we have

vol(⟨f⟩([x])) = εnεk(n−m) (44)

where we use the asymptotic Bachmann�Landau notation [29]: ε = O(w([x]))
(see below). The order of convergence of ⟨f⟩ is the largest k such that ⟨f⟩
converges with an order k.

To understand this de�nition, consider the following points.

1. The notation with ε is needed to shorten the mathematics expressions,
but should be handled with care. When we write ϕ([x]) = εi. It
means that ϕ([x]) ∈ R and that if we take a nested sequence [x](i)

converging to x̄ ∈ R, the ratio ϕ([x])
w([x])i

remains bounded. For instance,

if f : Rm 7→ Rn and if [f ] is the natural inclusion function for f , we can
write w([x]) = ε, vol([x]) = εm,w([f ]([x])) = ε and vol([f ]([x])) = εn.
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2. Ifm = n, De�nition 4 does not apply. It is important to have vol(f([x])) =
0 (i.e., m < n) to be able to de�ne the order of convergence. The or-
der of convergence becomes essential as soon as n − m > 0. In the
applications of this paper, we will take n−m = 1.

3. If [f ] is the natural inclusion function, we know [12], that

vol([f ]([x])) = εn. (45)

Thus the natural inclusion function has an order 0.

4. A logarithmic view of (44) is

log (vol(⟨f⟩([x]))) = (n+ k(n−m)) log ε (46)

Thus, if we draw for tiny boxes log (vol(⟨f⟩([x]))) as a function of log ε
we should observe an asymptotic behavior when ε→ 0.

Proposition 5. If f is of class C1 , the parallelepiped inclusion function is
of order k = 1.

This proposition is illustrated by Figure 6 in the situation where m = 1
and n = 2. We have w([x]) = ε, and vol([f ]([x])) = ε2 and vol(⟨f⟩([x])) = ε3.

Figure 6: Illustration of the convergence order in ε3 of ⟨f⟩ for m = 1 and n = 2

Proof. Consider a tiny box [x] with center x̄. We have

w
([

df
dx

]
([x])− df

dx
(x̄)
)

= ε
w ([x]− x̄) = ε

(47)
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As a consequence (see [30])

w
(([

df
dx

]
([x])− df

dx
(x̄)
)
· ([x]− x̄)

)
= ε2

⇒
∥∥([ df

dx

]
([x])− df

dx
(x̄)
)
· ([x]− x̄)

∥∥ = ε2

⇒ ρ ([x]) = ub
(∥∥([ df

dx

]
([x])− df

dx
(x̄)
)
· ([x]− x̄)

∥∥) = ε2
(48)

This is a well known property of the centered form already shown in [12].
Now, due to our in�ation process, we have

vol(⟨f⟩([x])) = ρn−m([x]) · εm, (49)

as illustrated by Figure 6 for m = 1 and n = 2. Since ρ ([x]) = ε2, we have

vol(⟨f⟩([x])) = ε2(n−m) · εm = εnε1(n−m) (50)

which concludes the proof.

3.3. Accuracy of the approximation

Consider a large box [x] and cut it into small boxes {[x](i), i ∈ {1, 2, . . . }}
of width ε = o(w([x])). We have approximately ε−m subboxes covering [x].
Our parallelepiped approximation ⟨f⟩([x](i)) ⊂ Rn has a strictly positive
volume V (to be understood as a n-dimensional Lebesgue measure), whereas
the volume of the set f([x]) is zero since m < n. The volume V satis�es

log V = log (vol(⟨f⟩([x](i))) · ε−m)
= log (vol(⟨f⟩([x](i))))−m log ε
= (n+ k(n−m)) log ε−m log ε See (46)
= (k + 1)(n−m) log ε

(51)

Since k = 1 for the parallelepiped approximation, we get

log V⟨f⟩ = 2(n−m) log ε (52)

Since k = 0 for any interval approximation, we get

log V[f ] = (n−m) log ε (53)

The parallelepiped approximation provides a better convergence order if

log V⟨f⟩ < log V[f ]
⇔ (2n− 2m) log ε < (n−m) log ε
⇔ 2n− 2m > n−m
⇔ n > m

(54)
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The parallelepiped approximation becomes interesting as soon as n > m. To
solve the direct problem for f : Rn 7→ Rn, the boundary approach allows us
to decrease the dimension of x by one (i.e., m = n − 1). This justi�es the
combination of the boundary approach and the parallelepiped approximation.

Remark 4. We have chosen to quantify the convergence in terms of volume,
but the Hausdor� distance could have been used as well for this comparison.
A similar result would have been obtained.

3.4. Example

Assume that we want to enclose the set ψ0([x]) with [x] = [−1, 1]2 and

ψ0(x) =


1√

1+x2
1+x2

2
x1√

1+x2
1+x2

2
x2√

1+x2
1+x2

2

 (55)

which corresponds to the inverse gnomonic chart that will be reconsidered
later. The set ψ0([x]) is painted red in Figure 7(a). Since ∥ψ0(x)∥ = 1, the
red surface is a part of the unit sphere of R3. The Jacobian matrix is

dψ0

dx
=

1√
1 + x21 + x22

3

 −x1 −x2
1 + x22 −x1x2
−x1x2 1 + x21

 . (56)

We can thus get the parallelepiped approximation. For ε = 0.2, we obtain
Figure 7(b) with a pessimism of ρ = 0.22. For ε = 0.1, we obtain Figure 7(c)
with ρ = 0.051. For ε = 0.05, we get Figure 7(d) with ρ = 0.012.

4. Gnomonic atlas

In the previous section, we have shown how to compute an outer approx-
imation of the image of a large box by a nonlinear function f : Rm → Rn,
m < n. Now, in this paper, we want to compute an inner and an outer
approximation of the image Y = f(X) of a set X in the case where m = n.
The set X can have any shape (e.g., a ball), but it is assumed to be compact
and to have a boundary M = ∂X which is a smooth manifold of dimension
n − 1. This assumption is needed to use our boundary approach. An at-
las [31] covering M can be built. Now, to be able to use the results of the
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Figure 7: Approximation of ψ0([−1, 1]2)

previous section, the atlas for M should be a box-atlas [32, 23], i.e., an at-
las whose charts domains are boxes. The construction of the charts can be
facilitated using symmetries. As shown in [23], box atlas can be built for
several manifolds: spheres, Lie groups such as SO(3), . . . . To our knowledge,
characterizing the class of manifolds for which a box atlas exists is still an
open problem.

This section de�nes the notion of gnomonic atlas which is a box-atlas
that can be de�ned by a unique chart. All other charts can be deduced using
symmetries. An illustration will be de�ned in the case where M is a sphere
of R3. Note that the corresponding atlas needs to be constructed speci�cally
for the sphere as a special case.
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4.1. Gnomonic projection

The gnomonic projection, represented by Figure 8, is one possible pro-
jection used to map the Earth. All great circles map to straight lines of the
chart and large distortion occur far from the center. This projection will be
used to cut the unit sphere into similar regions called quarters.

Figure 8: Gnomonic projection of the red gnomonic quarter onto the box [−1, 1]2

4.2. Box atlas

To cover the whole sphere, we can consider six gnomonic charts. As
illustrated by Figure 9, we have an atlas of the sphere, which is called a box
atlas. A box atlas [32] on a manifold M of dimension m is a family of pairs
{(Ui,φi), i ∈ {1, . . . , imax}} such that U1 ∪ · · · ∪ Uimax = M. The Ui are
compact sets and are such that their interior do not overlap. The φi (called
the charts) are invertible and φi(Ui) = [−1, 1]m.

4.3. Using symmetries

In the example of the sphere, all charts can be obtained from one of them
using symmetries (or action) and one chart. This is illustrated by Figure
10 where ψ0 = φ−1

0 . Indeed, from one of the six quarters of the sphere we
can generate all other quarters. Two generators are needed. We can take
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Figure 9: 6 charts of the sphere

for instance s1 = ek·
π
2 the rotation of π

2
with respect to k (the y3 axis) and

s2 = ej·
π
2 the rotation of π

2
with respect to j (the y2 axis). The six symmetry

actions that are needed to cover the sphere are

Σ =
{
1, s1, s

2
1, s

−1
1 , s2, s

−1
2

}
. (57)

We can thus write that the sphere corresponds to the set

S =
⋃
σ∈Σ

σ ◦ψ0([−1, 1]2). (58)

De�nition 5. Given a manifold M ⊂ Rn of dimension m. A gnomonic atlas
{ψ0,Σ} for a manifold M is composed of the inverse chart ψ0 and a set of
symmetries Σ of Rn such that

M =
⋃
σ∈Σ

σ ◦ψ0([−1, 1]m). (59)

Moreover, the quarter σ ◦ ψ0([−1, 1]m), σ ∈ Σ should not have overlapping
interiors.

5. Computing the image of a set by a nonlinear Rn → Rn function

Consider a C1 function f : Rn → Rn and a compact set X. Its boundary
M = ∂X is assumed to be a smooth, compact manifold M of Rn.
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Figure 10: The sphere can be generated by a unique chart and 6 symmetries

We say f is locally injective at a point x0 ∈ X if it is injective on some
neighbourhood of x0 ; it is locally injective on X if it is locally injective at
each point of X. By the Inverse Function Theorem, if f is C1 and the Jacobian
f ′(x) is nonsingular at x0 then f has a C1 inverse in a neighbourhood of x0

and in particular is locally injective.
In this case, an inner and an outer approximations of Y = f(X) can be

obtained by computing an enclosure for f(M).

Example 3. Take f(x) = x2 and X1 = [2, 3]. We haveM1 = {2, 3}, f(M1) =
{4, 9} and f(X1) = [4, 9], which illustrates the fact that f(X1) can be deduced
from f(M1). The condition of local injectivity is valid, since df

dx
(x) ̸= 0,∀x ∈

X1. If we now take M2 = {−2, 3}. We have f(M2) = {4, 9} whereas f(X2) =
[0, 9]. There is a fold at x = 0 and f(X2) cannot be deduced from f(M2).
The condition of local injectivity is not valid, since df

dx
(0) = 0.

In this section, we explain how this boundary approach can be imple-
mented and illustrate why it is interesting in terms of convergence order.

If f is locally injective, from [33], we have: ∂Y ⊂ f(M). If it is not case, we
may have folds that contribute to ∂Y. Since we assume the local injectivity of
f , to get an inner and an outer approximations of Y, it is enough to compute
an outer enclosure for f(M). We thus get an outer enclosure for ∂Y from
which we can deduce an inner and an outer approximations for Y. Indeed,
the ∂Y separates the space into two zones: Y and its complementary Y. Only
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the set Y is bounded, which allows us to know which zone is Y and which
one is Y. The classi�cation can be done using the Alexander rules [34].

For a given set X ⊂ Rn, the topological boundary M of X, is de�ned as

M = ∂X = X\int(X) (60)

where X is the closure of X (i.e., all points in X plus its limit points) and
int(X), the interior of X (all points that have a neighborhood completely
contained in X).
Remark 5. We restrict our study to the case f : Rm → Rn where m = n. The
case where m < n is less interesting since Y = f(X) is an embedded manifold
of Rn with a zero volume and no interior (and we are interested by the
inner approximation). Our boundary approach can neither be interesting
for the case where m > n since we would have Y = f(M) which gives no
information on the boundary ∂Y of Y and thus no possibility to get an inner
approximation of Y.

5.1. Enclosing the image of a manifold
The following theorem explains how to compute an enclosure of the image

f(M) by f of a manifold M. For our application, M = ∂X.
Theorem 2. Consider gnomonic atlas {ψ0,Σ} of a manifold M ⊂ Rn of
dimension m and a function f : Rn → Rn. We have

f(M) ⊂
⋃
i

⟨gi⟩([−1, 1]m) (61)

where ⟨gi⟩ is a parallelepiped inclusion function of

gi = f ◦ σi ◦ψ0 (62)

and σi is the ith element of Σ.
The construction of gi([−1, 1]m) is illustrated by Figure 11.

Proof. Since {ψ0,Σ} is a box atlas, we have

M =
⋃
i

σi ◦ψ0([−1, 1]m) (63)

Thus
f(M) = f (

⋃
i σi ◦ψ0([−1, 1]m))

=
⋃

i f ◦ σi ◦ψ0([−1, 1]m)
=

⋃
i gi([−1, 1]m)

(64)

Now, gi([−1, 1]m) ⊂ ⟨gi⟩([−1, 1]m) which concludes the proof.
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Figure 11: Construction of the function gi

5.2. Test-case 1

Consider the mapping

f

 y1
y2
y3

→
 y21 − y22 + y1

2y1y2 + y2
y3

 (65)

This function has been built using complex polynomials to avoid folding. The
two �rst components of this function correspond to the conformal mapping
in C given by z 7→ z2 + z. Indeed

(y1 + iy2)
2 + (y1 + iy2) = y21 − y22 + y1 + i(2y1y2 + y2). (66)

We want to compute the image Z of the unit ball

Y =
{
y ∈ R3 such that ∥y∥ ≤ 1

}
. (67)

We have

df

dy
(y) =

 2y1 + 1 −2y2 0
2y2 2y1 + 1 0
0 0 1

 . (68)
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Since det df
dy
(y) = (2y1 + 1)2 + 4y22, is nonzero except when y1 = −1

2
and

y2 = 0, f has no fold on Y. This means that the inside and the outside of
Z = f(Y) are separated by f(∂Y) which makes our approach valid. Moreover,
f tends to wrap Y into itself creating a continuum of self intersections. A
parallelepiped approximation of f(∂Y) has been computed by our algorithm.
For ε = 0.2, the approach described in Section 5.1 generates Figure 12(b)
with a pessimism of ρ = 0.83. For ε = 0.1, we obtain Figure 12(c) with
ρ = 0.18. For ε = 0.05, we get Figure 12(d) with ρ = 0.042.

Figure 12: Covering of f(M) with parallelepipeds

5.3. Test-case 2

Consider the dynamical system

ẋ = γ(x). (69)

We de�ne the �ow Φt(x0) as the function which returns the State vector
x(t) reached at time t assuming that x(0) has been initialized at x0. More
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formally, Φt can be de�ned as the function:

Φt :

{
R× Rn → Rn

(t,x) → Φt(x)
(70)

where
d
dt
Φt(x) = γ(Φt(x))

Φ0(x) = x
(71)

Assume that x0 ∈ X0. For a given t, we de�ne the reach set as

Xt = Φt(X0). (72)

We would like to use the parallelepiped method previously presented in order
to characterize Xt. Here Φt plays the role of f . De�ne A(x0, t) =

∂Φt(x0)
∂x0

. If
we integrate the variational equation

Ȧ =
∂γ(x)

∂x
·A (73)

with A(0) = I up to t, we get the Jacobian of f . This Jacobian is needed to
get a parallelepiped enclosure of f([x]). For interval evaluation of f and its
Jacobian, we used the CAPD [35] combined with Codac [36].

As an illustration, we consider the Lorenz system

ẋ1 = 10(x2 − x1)
ẋ2 = x1(28− x2)− x2
ẋ3 = x1x2 − 8

3
x3

(74)

An integration of the unit ball X0 for t ∈ {0, 0.05, 0.1, 0.15}, generates
Figure 13. Quickly, we observe a strong distortion of the ball which is con-
sistent with the chaotic behavior of the Lorenz system.

Let us now illustrate Formula (46) on our Lorenz example in order to
visualize the convergence order of the approximation. For this, we take t =
0.002 and di�erent precisions for the paving. Since m = 2 and n = 3, we get
for the parallelepiped approximation (see (52)):

log V⟨f⟩ = 2(n−m) log ε = 2 log ε (75)

and for any interval extension (see (53)).

log V[f ] = (n−m) log ε = log ε. (76)
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Figure 13: Covering of the reach set Xt with parallelepipeds for t ∈ {0, 0.05, 0.1, 0.15}

This is consistent with our numerical experiments depicted in Figure 14. The
x axis corresponds to log ε and the y axis corresponds to the volume of the

approximations. The blue box illustrates an asymptotic slope
log V[f ]

log ε
of 1 and

the orange boxes illustrates an asymptotic slope
log V⟨f⟩
log ε

of 2.

5.4. Test-case 3

We chose here an example with a two dimensional solution set Z. This
makes the visualization of the inner and the outer approximations easier.
Consider the mapping

f

(
y1
y2

)
→
(
y21 − y22 + y1
2y1y2 + y2

)
(77)

which is a two dimensional version of Test-case 1 (see (65)). We want to
illustrate the occurrence of fake boundaries in Z = f(Y) and how they could
be avoided. Fake boundaries are symptomatic of boundary-based methods.
When the studied function f : Rn → Rn has no fold (like the function of
Equation 77) we have

∂Z ⊆ f(∂Y) (78)
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Figure 14: Order of approximation in terms of volumes with respect to log ε using paral-
lelepipeds (orange) and a classical interval approach (blue)

The fake boundary is the set di�erence between f(∂Y) and ∂Z.

f(∂Y)\∂Z = {z ∈ f(∂Y) | z /∈ ∂Z} . (79)

It occurs when f(Y) overlaps itself, i.e., when f is not globally injective.
Let us compute the image Z of the unit disk

Y =
{
y ∈ R2 such that ∥y∥ ≤ 1

}
. (80)

Since m = 1, we can take the gnomonic atlas {ψ0,Σ} with

ψ0(x) =

(
cos πx

4

sin πx
4

)
(81)

and
Σ = {1, s, s2, s3} (82)

where s is a rotation of π/2. For ε = 0.2, the approach described in Section
5.1 generates 40 parallelepipeds. We used the CGAL library to get the trian-
gulation represented on the left of Figure 15. We observe that our approach
which is based on the characterization of f(∂Y) yields a fake boundary. This
fake boundary corresponds to f(∂Y)\∂f(Y). Indeed, due to the local injec-
tivity, the boundary ∂Z of the solution set Z = f(Y) corresponds to ∂f(Y)
which is a subset of f(∂Y).
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Figure 15: Triangulation approximation of Z = f(Y) with (left) and without (right) the
fake boundaries. The parallelepiped enclosing f(∂Y) are painted yellow. The green trian-
gles are inside Z. The red triangles are outside Z.

Now, parallelepipeds surrounded by green triangles are necessary inside Z
and correspond to fake boundaries. This means that these parallelepipeds en-
close elements of f(∂Y) that are outside ∂f(Y). They could thus be removed
to get the approximation for f(Y) on the right of Figure 15.

Let us note that in this example the function f is locally injective for all
y, except for y0 = (−1

2
, 0). To be totally rigorous, Equation 78 should then

have been ∂Z ⊆ f(∂Y)∪ f(y0). Now it has to be noted that f(y0) is a single
point. Due to the continuity of f , we already know that ∂Z will not contain
an isolated point. This assumption allows us to consider Equation 78 here.

6. Conclusion

In this paper, we have proposed an original approach to compute an inner
and and outer approximations for a set Y de�ned as the image of a set X by
nonlinear function f : Rn → Rn. This problem is fundamental as soon as we
want to propagate uncertainties in a set-membership framework.

Our approach assumes that f is locally injective and that the boundary
of X can be covered by a gnomonic atlas. The principle is to cover ∂f(X), the
boundary of f(X), by small parallelepipeds. Each parallelepiped is computed
using a linearisation followed by an in�ation. The in�ation rate is evaluated
using the centered form provided by interval arithmetic to guarantee the
enclosure.
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An extension to the situation where f : Rm → Rn is a submersion (i.e.,
m > n) could be obtained using our parallelepiped approach by adding a
projection step. As shown in [37], the case m > n has several fundamental
applications as in reachability analysis (see, e.g., [38]).

The code source associated with the three test-cases is available at

https://godardma.github.io/subpages/libs/parallelepiped.html
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